磁性可回收Fe_3O_4-CdS复合纳米材料强化光催化还原Cr(Ⅵ)
详细信息    查看官网全文
摘要
在常温常压下利用纳米半导体吸收光激发产生的光生电子使毒性高的Cr(Ⅵ)还原为毒性低的Cr(Ⅲ)的光催化还原技术,因其能重复利用太阳能,而被认为是种很有潜力的技术,但普通的纳米半导体光催化材料存在着催化效率相对较低、难从水中回收分离的问题。本研究利用水热法合成磁性可回收的Fe_3O_4-CdS复合纳米可见光催化剂,对合成材料进行表征,比较Fe_3O_4、CdS及Fe_3O_4-CdS对Cr(Ⅵ)的光催化还原性能,考察了复合材料中Fe_3O_4含量、溶液中Cr(Ⅵ)浓度、催化剂投加量、Cr(Ⅵ)溶液的初始pH值等因素对催化剂催化性能的影响,同时考察了合成的Fe_3O_4-CdS光催化性能的稳定性。研究结果表明:Fe_3O_4-CdS为粒径20-100nm的圆形或近圆形颗粒,在外加磁场下能很好地从水中分离回收;Fe_3O_4本身没有可见光催化还原Cr(Ⅵ)的性能,但Fe_3O_4能促进光生电子的传递,Fe_3O_4和CdS复合后,能促进CdS对Cr(Ⅵ)的光催化还原,Fe_3O_4-CdS复合催化剂中Fe_3O_4的优化含量为20%,过高的Fe_3O_4反而抑制光催化;低浓度的Cr(Ⅵ)或高浓度的光催化剂有利于Cr(Ⅵ)的可见光催化还原,低pH有利于Cr(Ⅵ)的光催化还原,但20%Fe_3O_4-CdS也能在较宽的pH范围(3.2-9.6)内对Cr(Ⅵ)具有良好的可见光催化还原性能;1.27g/L 20%Fe_3O_4-CdS对30mg/L Cr(Ⅵ)重复利用6次后,Cr(Ⅵ)的去除率仅从第1次的99.3%下降到第6次的90.5%,表明Fe_3O_4-CdS具有良好的可将光催化稳定性。
引文
[1]Lv,X.,et al.,Removed of chromium(VI)from wastewater by nanoscale zero-valent iron particles supported on muhiwaUed carbon nanotubes.Chemosphere,2011.85(7):p.1204-1209.
    [2]Wang,C.-C.,et al.,Photocatalytic Cr(VI)reduction in metal-organic frameworks:A mini-review.Applied Catalysis B;Environmental,2016.193;p.198-216.
    [3]Liu,J.,et al.,An ecological new approach for treating Cr(VI)-containing industrial wastewater:Photochemical reduction.Water research,2016.93:p.187-194.
    [4]Wang,J.-C.,et al.,Synergistic photocatalysis of Cr(VI)reduction and 4-Chlorophenol degradation over hydroxylated a-Fe 2 0 3 under visible light irradiation.Journal of hazardous materials,2016.311:p.11-19.
    [5]Zhou,Y.,et al.,A new oxynitride-based solid state Z-scheme photocatalytic system for efficient Cr(VI)reduction and water oxidation.Applied Catalysis B:Environmental,2016.183:p.176-184.
    [6]Yang,L,et al.,Photocatalytic reduction of Cr(VI)on WO 3 doped long TiO 2 nanotube arrays in the presence of citric acid.Applied Catalysis B:Environmental,2010.94(1):p.142-149.
    [7]Yu,H.,et al.,Fabrication of a Ti02-BDD Heterojunction and its Application As a Photocatalyst for the Simultaneous Oxidation of an Azo Dye and Reduction of Cr(VI).Environmental science&technology,2008.42(10):p.3791-3796.
    [8]Vinu,R.and G.Madras,Kinetics of simultaneous photocatalytic degradation of phenolic compounds and reduction of metal ions with mono-Ti02.Environmental science&technology,2007.42(3):p.913-919.
    [9]Huang,K.,Y.Xiu,and H.Zhu,Selective removal of Cr(VI)from aqueous solution by adsorption on mangosteen peel.Environmental Science and Pollution Research,2013.20(9):p.5930-5938.
    [10]Fellahi,O.,et al.,Reduction of Cr(VI)to Cr(III)using silicon nanowire arrays under visible light irradiation.Journal of hazardous materials,2016.304:p.441-447.
    [11]Pawar,R.C.and C.S.Lee,Sensitization of CdS nanoparticles onto reduced graphene oxide(RGO)fabricated by chemical bath deposition method for effective removal of Cr(VI).Materials Chemistry and Physics,2013.141(2):p.686-693.
    [12]Djellabi,R.,et aL,Cr(VI)photocatalytic reduction under sunlight followed by Cr(III)extraction from TiO 2surface.Materials Letters,2016.176;p.106-109.
    [13]Marinho,B.A.,et al.,Solar photocatalytic reduction of Cr(VI)over Fe(III)in the presence of organic sacrificial agents.Applied Catalysis B:Environmental,2016.192:p.208-219.
    [14]Mishra,P.M.,et al.,Facile synthesis ofnano-structured magnetite in presence ofnatural surfactant for enhanced photocatalytic activity for water decomposition and Cr(VI)reduction.Chemical Engineering Journal,2016.299:p.227-235.
    [15]Li,G.-S.,D.-Q.Zhang,and J.C.Yu,A new visible-light photocatalyst;CdS quantum dots embedded mesoporous Ti02.Environmental science&technology,2009.43(18):p.7079-7085.
    [16]Li,W.,et al.,Novel Approach To Enhance Photosensitized Degradation ofRhodamine B under Visible light Irradi ation by the Zn x Cd1-x S/TiO2 Nanocomposites.Environmental science&technology,2011.45(7):p.2987-2993.
    [17]Daskalaki,V.M.,et al.,Solar light-responsive Pt/CdS/TiO2 photocatalysts for hydrogen production and simultaneous degradation of inorganic or organic sacrificial agents in wastewater.Environmental science&technology,2010.44(19):p.7200-7205.
    [18]Wang,C.,et al.,Controlled synthesis in large-scale of CdS mesospheres and photocatalytic activity.Materials Letters,2010.64(3):p.439-441.
    [19]Guo,Y.,et al.,Optical and photocatalytic properties of arginine-stabilized cadmium sulfide quantum dots.Materials letters,2011.65(3):p.486-489.
    [20]Wang,D.,et al.,Laser-ablation-induced synthesis of porous ZnS/Zn nano-cages and their visible-lightdriven photocatalytic reduction of aqueous Cr(Ⅵ).Optical Materials Express,2016.6(4):p.1306-1312.
    [21]Hernandez-Gordillo,A.,et al.,Preparation and characterization of the hybrid ZnS(en)0.5-CdS heterojunction.Materials Letters,2014.115:p.147-150.
    [22]Zhu,H.,et al.,Photocatalytic decolorization and degradation of Congo Red on innovative crosslinked chitosan/nano-CdS composite catalyst under visible light irradiation.Journal of Hazardous Materials,2009.169(1):p.933-940.
    [23]Tian,X.,et al.,Cr(Ⅵ)reduction and immobilization by novel carbonaceous modified magnetic Fe 3 0 4/halloysite nanohybrid.Journal of hazardous materials,2016.309:p.151-156.
    [24]Boruah,P.K.,et al.,Sunlight assisted degradation of dye molecules and reduction of toxic Cr(VI)in aqueous medium using magnetically recoverable Fe304/reduced graphene oxide nanocomposite.RSC Advances,2016.
    [25]Xu,J.,et al.,Dechlorination of 2,4-dichlorophenol by nanoscale magnetic Pd/Fe particles:effects of pH,temperature,common dissolved ions and humic acid.Chemical engineering journal,2013.231:p.26-35.
    [26]Xu,J.,et al.,Enhanced dechlorination of 2,4-dichlorophenol by Pd/Fe Fe 3 0 4 nanocomposites.Journal of hazardous materials,2013.244:p.628-636.
    [27]Chang,P.R.,et al.,Characterization of magnetic soluble starch-functionalized carbon nanotubes and its application for the adsorption of the dyes.Journal of hazardous materials,2011.186(2):p.2144-2150.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700