电导率缓变组织的磁感应磁声声源分析
详细信息    查看官网全文
摘要
磁感应磁声成像是基于磁激发、声振动和传输物理机制的一种多物理场耦合的电导率成像新方法。本文基于声振动的理论分析,建立单层柱状电导率缓变模型模拟生物组织的病理变化,估算了模型内部的磁声声源强度。结果表明,内部声源取决于组织电导率和感应电场强度旋度的乘积,而边界声源是由组织电导率的梯度与感应电场的叉乘决定。对低电导率的生物组织而言,当电导率过渡区宽度很小时,边界声源强度远远大于内部声源强度,此时可以看成电导率突变模型,忽略内部声源对磁声信号的影响,否则必须同时定量计算内部声源和边界声源对磁声信号的贡献,为进一步实现生物病理组织的精确磁感应磁声图像重建提供了理论依据。
As a multi-physics imaging approach, magnetoacoustic tomography with magnetic induction(MAT-MI) works on the physical mechanism of magnetic excitation, acoustic vibration and transmission. Based on the theoretical analysis of the source vibration, numerical studies are conducted to simulate the pathological changes of tissues for a single-layer cylindrical conductivity gradual-varying model and estimate the strengths of sources inside the model. The results suggest that the inner source is generated by the product of the conductivity and the curl of the induced electric intensity inside conductivity homogeneous medium, while the boundary source is produced by the cross product of the gradient of conductivity and the induced electric intensity at conductivity boundary. For a biological tissue with low conductivity, the strength of boundary source is much higher than that of the inner source only when the size of conductivity transition zone(SCTZ) is small. In this case, the tissue can be treated as a conductivity abrupt-varying model, ignoring the influence of inner source. Otherwise, the contributions of inner and boundary sources should be evaluated together quantitatively. This study provide basis for further study of precise image reconstruction of MAT-MI for pathological tissues.
引文
[1]Xu Y et al.Magnetoacoustic Tomography with Magnetic Induction(MAT-MI)[J].Phys.Med.Biol.(S0031-9155),2005,50(21):5175-5587.
    [2]Li X et al.Magnetoacoustic Tomography with Magnetic Induction for Imaging Electrical Impedance of Biological Tissue[J].J.Appl.Phys.(S0021-8979),2006,99(6):066112(1-3).
    [3]Li X et al.Multi-excitation Magnetoacoustic Tomography with Magnetic Induction for Bioimpedance Imaging[J].IEEE Trans.Med.Imag.(S0278-0062),2010,29(10):1759-1767.
    [4]Hu G et al.Magnetoacoustic Imaging of Human Liver Tumor with Magnetic Induction[J].Appl.Phys.Lett.(S0003-6951),2011,98(2):023703(1-3).
    [5]Zhou L et al.Magnetoacoustic Tomography with Magnetic Induction(MAT-MI)for Breast Tumor Imaging:Numerical Modeling and Simulation[J].Phys.Med.Biol.(S0031-9155),2011,56(7):1967-1983.
    [6]Mariappan L et al.Magneto Acoustic Tomography with Short Pulsed Magnetic Field for In-vivo Imaging of Magnetic Iron Oxide Nanoparticles[J].Nanomed.Nanotechnol.(S1549-9634),2015,12(3):689-699.
    [7]Li Y et al.Two-Dimensional Lorentz Force Image Reconstruction for Magnetoacoustic Tomography with Magnetic Induction[J].Chin.Phys.Lett.(S0256-307X),2010,27(8):84302(1-4).
    [8]Ma Q et al.Magnetoacoustic Tomography with Magnetic Induction:A Rigorous Theory[J].IEEE Trans.Biomed.Eng.(S0018-9294),2008,55(2):813-816.
    [9]Ma Q et al.Investigation on Magnetoacoustic Signal Generation with Magnetic Induction and Its Application to Electrical Conductivity Reconstruction[J].Phys.Med.Biol.(S0031-9155),2007,52(16):5085-5099.
    [10]Jossinet J.Variability of Impedivity in Normal and Pathological Breast Tissue[J].Med.Biol.Eng.Comput.(S0140-0118),1996,34:346-350.
    [11]Li X et al.Solving the Forward Problem of Magnetoacoustic Tomography with Magnetic Induction by means of the Finite Element Method[J].Phys.Med.Biol.(S0031-9155),2009,54:2667–2682.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700