利用高通量磁控溅射技术制备并筛选Al_2O_3:Cr~(3+)荧光材料
详细信息    查看官网全文
摘要
依赖于科学直觉与试错的传统材料研究方法日益成为新材料研发的瓶颈,而材料基因组技术可以全面提高先进材料从发现到应用的速度并降低成本。高通量实验技术是材料基因组技术的重要一环,近年来受到广泛的关注。我们利用自行搭建的高通量磁控溅射设备,在10×76mm的芯片上制备了具有不同Cr~(3+)掺杂浓度的Al_2O_3:Cr~(3+)薄膜材料样品库。每个材料芯片上具有60个样品点,Cr~(3+)掺杂浓度从0~6%wt梯度变化。我们系统研究了不同掺杂浓度与不同热处理条件对Al_2O_3:Cr~(3+)荧光材料晶体结构与发光性能的影响。最终,我们筛选出发光性能最好的材料,其在670nm与697nm处具有最强的发射峰。本文将以Al_2O_3:Cr~(3+)荧光材料为例,讨论高通量磁控溅射技术与微区扫描XRD等高通量表征技术在氧化物荧光材料高通量制备、表征中的关键问题。
The traditional methodology of material research relying on trial-and-error has become a bottleneck for the development of new materials. The material genome technology offers a solution to this challenge by greatly speeding up the process of material research from lab experiment to real application. As an essential component of material genome technology, high-throughput experiment technology has attracted great attention in recent years. In this study, we succeeded in fabricating thin film Al_2O_3:Cr~(3+) sample libraries, each containing 60 samples on 10×76mm combinatorial material chips, using a high-throughput magnetron sputtering apparatus. The correlation of doping concentration and heat processing condition versus crystal structure and luminescence properties was systematically investigated. Finally, the material with best luminescence properties, which exhibited most intense emission peaks at 670 nm and 697 nm, was identified. Using the fluorescent material as an example, this paper discusses some critical issues in the preparation and characterization of oxide fluorescent materials.
引文
[1]王海舟,汪洪,丁洪,项晓东,向勇,张晓琨.科技导报,2015,33(10):31.
    [2]汪洪,向勇,项晓东,陈立泉.科技导报,2015,33(10):13

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700