基于纳米纤维的多维度纳米宏观体:结构设计、调控及其电催化应用
详细信息    查看官网全文
摘要
过渡金属,过渡金属氧化物,碳材料和非金属元素掺杂碳材料等催化剂在高效制氢领域存在广泛应用前景~([1-6])。最近,在制备高效析氢电催化剂方面,我们开发了具有不同晶型结构的Mo S_2二维层状结构,实现了层数和尺寸可控,并研究了催化剂结构与其催化活性直接的关系~([7-9])。同时,钴硫属化物,也被证明是一种良好的析氧催化剂。本研究提出设计一种新型核壳结构,以纳米纤维为反应容器和载体生长Co_9S_8@MoS_2核壳结构。该Co_9S_8@Mo S_2核壳结构由Co_9S_8纳米晶为核,富勒烯结构的Mo S_2为壳层。碳化生长过程所形成的碳纳米纤维不仅充当载体,而且还是核壳结构的反应容器。独特的Co_9S_8@MoS_2/CNFs催化剂系统不仅作为双功能催化剂用于析氢和析氧反应中,与单相层状Mo S_2/CNFs和Co_9S_8/CNFs相比较,具有更高的催化活性。
Electrocatalytic water splitting through the two half-reactions, hydrogen evolution reaction(HER) and oxygen evolution reaction(OER), is a clean and sustainable approach to generate molecular hydrogen(H_2). In addition, hydrogen is supposedly an economic fuel used in electrochemical cells for electric devices, such as fuel cells and metal-air batteries. These important electrochemical reaction processes need effective catalysts to minimize reaction kinetic barriers, expedite the reactions, reduce the overpotential, and thus improve the energy conversion efficiency. To achieve these targets, substantial efforts have been devoted to designing low-cost earth-abundant transition metal-based electrocatalysts to replace the state-of-the-art Pt and IrO_2 catalysts for ORR, HER and OER.
引文
[1]Wang,Q.;Zhu,H.;et al.,Int.J.Hydrogen Energ.2016,10.1016/j.ijhydene.2016.07.257.
    [2]Liu,X.;Zhu,H.;et al.,Mater.Design2016,109,162-170.
    [3]Wang,J.;Zhu,H.;et al.,Int.J.Hydrogen Energ.2016,41,18044-18049.
    [4]Zhu,H.;Du,M.L.;et al.,Adv.Mater.2015,27,4752-4759.
    [5]Zhu,H.;Du,M.L.;et al.,Chem.Commun.2014,50,15435-15438
    [6]Zhu,H.;Du,M.L.;et al.,J.Mater.Chem.A2014,2,7680-7685.
    [7]Zhu,H.;Du,M.L.;et al.,ACS Appl.Mater.Inter.2014,6,22126-22137.
    [5]Zhu,H.;Du,M.L.;et al.,J.Mater.Chem.A2014,2,11728-11741
    [6]Zhu,H.;Du,M.L.;et al.,Biosens.Bioelectron.2013,49,210-215

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700