颗粒组成与泥石流运动的涨落
详细信息    查看官网全文
摘要
泥石流物源、流体和堆积物的颗粒分布都满足P(D)=CD~(-μ)exp(-D/D_c),其中参数C,μ和D_c由传统的粒径分布数据直接决定。μ随细颗粒(特别是粘粒)含量的增大而增大,D_c刻画粒径的范围,且随粗粒含量而增大。蒋家沟泥石流的观测表明,同一场泥石流包含着数十到数百个不同性质、流态和规模的阵流。我们发现,阵流的涨落和多样性是与流体的颗粒组成密切相关的。一定的颗粒组成对应着一定的饱和颗粒浓度,因而决定着一定的饱和流体状态。阵流的涨落,是在没有达到饱和状态时的随机运动的状态。阵流涨落随D_c增大而趋于平缓;当流体达到饱和态时,阵流达到最大的流深、流速和流量,且与颗分参数(μ,D_c)具有幂函数关系。运用本文的方法,可根据颗分参数来预估泥石流的性质和规模。
Debris flow is composed of a wide range of grains and the grain size distribution(GSD) is found to satisfy a general expression,P(D) = CD~(-μ)exp(- D/D_e).The grain composition can be described by the GSD parameters(μ,D_c),with μrepresenting the fine content and D_c defining a characteristic scale of the grain aggregate.It is found that the fluid has a coupled(μ,D_c) which is distinct from the source materials and deposits.Observations of debris flows in Jiangjia Gully(JJG) have revealed great fluctuations;we find that the fluctuation is controlled by the grain composition,and it will approaches some steady state when granular concentration is saturated,and then both the flow depth and velocity gains a power-law relationship with μand D_c.from the method introduced here it is possible to use the GSD parameters of the sedimentary materials to estimate the probably maximal discharge and velocity of a debris flow.
引文
[1]Bagnold,R.A.,1954.Experiments on a gravity-free dispersion of large solid spheres in a Newtonian fluid under shear.Royal Soc.London Proc.A225:49-63.
    [2]Folk,R.L.,Ward,W.C,1957.Brazos River bar,a study in the significance of grain size parameters.J.Sediment.Petrol.27:3-26.
    [3]Iverson,R.M.,1997.Physics of debris flow.Rev.Geophys.35:245-296.
    [4]Iverson,R.M.,Vallance,J.W.,2001.New views of granular mass flows.Geology 29(2):115-118.
    [5]Iverson,R.M.,Reid,M.E.,Iverson,N.R.,LaHusen,R.G.,Logan,M.,Mann,J.E.,Brien,D.L.,2000,Acute sensitivity of landslide rates to initial soil porosity,Science 290,513-516.
    [6]Kondolf,G.M.,Adhikari,A.,2000.Weibull vs.lognormal distributions for fluvial gravels.Journal of Sedimentary Research 70,456-460.
    [7]Kaitna,R.,Rickenmann,D.,2007.Flow of different material mixtures in a rotating drum.In:Cui,P.,Cheng,Ch.(Eds.),Debris-Flow Hazards Mitigation,Fourth International DFHM Conference:Mechanics,Prediction and Assessment,10.-13.Sept.2007,Chengdu.
    [8]Li,Y.,Liu,J.J.,Hu,K.H.,Su,P.C.,2012.Probability distribution of measured debris-flow velocity in jiangjia Gully,Yunnan Province,China.Natural Hazards 60(2):689-701.
    [9]Li,Y.,Liu,J.J.,Guo,X.J.,et al.,2015.Relationship between grain composition and debris flow characteristics:a case study of the Jiangjia Gully in China.Landslide 12(1):19-28.
    [10]Li,Y.,Zhou,X.J.,Su,P.C.,Kong,Y.D.,Liu,J.J.,2013.A scaling distribution of grain composition of debris flow.Geomorphology 192:30-42.
    [11]Liu J.J.,Li,Y.,Su,P.C.,Cheng,Z.L.,Cui,P.,2009.Temporal variation of intermittent surges of debris flow.Journal of Hydrology 365(3-4):322-328.
    [12]Rubin,D.M.,Topping,D.J.,2001.Quantifying the relative importance of flow regulation and grain size regulation of suspended sediment transport a and tracking changes in grain size of bed sediment B.Water Resources Research 37:doi:10.1029/2000WR900250.
    [13]Savage,S.B.,1984.The mechanics of rapid granular flows.Advances in Applied Mechanics 24;289-366.
    [14]Vanoni,V.A.,1975.Sedimentation Engineering.ASCE Manuals and Reports on Engineering Practice No.54.ASCE.Pp.424.
    [15]李泳,胡凯衡,陈晓清,2004.泥石流堆积的分布.山地学报,22(3):332-336.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700