基于低温处理ZnO-SnO_2纳米复合材料的高效平面钙钛矿太阳能电池
详细信息    查看官网全文
摘要
在有机卤素钙钛矿太阳能电池中,电子收集层是决定器件效率最关键的因素之一。我们在低温条件下制备了具有不同Zn/Sn比率的ZnO–SnO_2纳米复合材料用于基于CH_3NH_3PbI_3的平面结构的钙钛矿太阳能电池的制备。经过优化后,基于含有89mol%ZnO的ZnO–SnO_2复合材料的器件相比于基于ZnO的器件具有更高的效率。我们运用稳态和瞬态的光致发光谱和电化学阻抗谱来表征CH_3NH_3PbI_3和不同电子收集材料的界面,发现基于ZnO–SnO_2电子收集层的钙钛矿太阳能电池的高效率同时归因于高的电荷收集效率和界面处大的电荷复合电阻。CH_3NH_3PbI_3吸收层的热稳定性和相应电池的耐老化性都依赖于电子收集层,表现为SnO_2>ZnO–SnO_2>ZnO,表明在环境条件下羟基诱导的CH_3NH_3PbI_3分解可能是其最主要因素。此外,通过引入低温处理的Al_2O_3作为ZnO–SnO_2复合材料的覆盖层,最优的器件效率进一步提高到15.2%。
Electron collection layer(ECL) is one of the most important fundamentals to determine the power conversion efficiency(PCE) in organometal halide-based perovskite solar cells(PSCs). We prepared ZnO–SnO_2 nanocomposites with different Zn/Sn ratios at low temperature as ECLs for CH_3NH_3PbI_3-based planar-structured PSCs. ZnO–SnO_2 nanocomposite with the optimal 89 mol% of the Zn O content gives higher PCE than the Zn O for the best fabricated PSC. The thermal stability of CH_3NH_3PbI_3 absorber and the device stability of the corresponding PSC are both dependent on the ECLs in the order: SnO_2>ZnO–SnO_2>ZnO, suggesting that the hydroxyl-induced degradation of CH_3NH_3PbI_3 may be predominant in the ambient air environment in the initial 700 h. The PCE of the optimized device was further improved to 15.2% by introducing the low-temperature processable Al_2O_3 as a capping layer to the ZnO–SnO_2 composite.
引文
[1]Song,J.;Zheng,E.;Wang,X-F.;Tian,W.;Miyasaka,T.Sol.Energy Mater.Sol.Cells,2016,144,623-630.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700