量子点/石墨炔光阴极的制备及光电产氢性能研究
详细信息    查看官网全文
摘要
光电化学分解水制氢是解决能源短缺与环境问题的一重要途径。量子点因其在捕光及电荷分离方面的优势被广泛用于人工光合成的研究。1光谱研究表明量子点光生电子能够很迅速的转移到催化活性位点,而光生空穴的传输要远远落后于光生电子。因此光生空穴提取在一定程度是制约量子点敏化光阴极的关键因素。近年来石墨炔作为一种新型的二维大共轭材料受到了人们的广泛关注。理论计算表明石墨炔薄膜空穴迁移率可达到104cm~2 V~(-1) S~(-1),基于此我们首次构筑了以石墨炔作为空穴传输层,量子点敏化的光阴极。2拉曼及紫外光电子能谱研究表明石墨炔与4-巯基吡啶配位的CdSeQDs之间存在较强的π-π堆积作用。在施加0 V vs NHE偏压和100mW/cm~2氙灯照射下,GDY/CdSeQDs光阴极可产生-70μA/cm~2光电流,产氢法拉第效率为90±5%。该光阴极在12 h内能够保持稳定的运行,表明石墨炔可以作为一种优异的空穴传输材料应用于光电化学分解水制氢的研究。
Photoelectrochemical(PEC) hydrogen production is an attractive solution to deal with energy shortages and environment remediation. QDs have been recently demonstrated as promising candidates for solar hydrogen evolution. Spectroscopic studies have indicated that light-stimulated electron of QDs can transfer to active sites smoothly, but hole transportation of QDs is relatively difficult. Graphdiyne(GDY), a new two dimensional(2D), highly π-conjugated structure, recently appears as a novel two dimensional(2D) carbon nanomaterials. According to theoretical calculation, the hole mobility of GDY is about 104 cm~2 V~(-1) S~(-1) order of magnitude. With this recognition, we fabricate the first photocathode employing GDY as hole transfer layer for hydrogen production in neutral water. Upon exposure to Xe lamp, the integrated photocathode produces a current density of nearly-70 μA cm~(-2) at a potential of 0 V vs NHE. Simultaneously, the photocathode evolves H_2 with 90 ± 5% faradic efficiency and exhibits good stability within 12 hours, indicating GDY is a promising hole transfer material to fabricate PEC device for hydrogen production.
引文
[1]Liu,B.;Li,X.-B.;Gao,Y.-J.;Li,Z.-J.;Tung,C.-H.;Wu,L.-Z.Energy Environ.Sci.2015,8,1443-1449.
    [2]Li,J.;Gao,X.;Liu,B.;Feng,Q.;Li,X.-B.;Huang,M.-Y.;Liu,Z.;Zhang,J.;Tung,C.-H.;Wu,L.-Z.J.Am.Chem.Soc.2016,138,3954-3957.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700