碳纳米管膜/Co_30_4超级电容器
详细信息    查看官网全文
摘要
随着可穿戴结构以及柔性电子器件的发展,对器件供电电源轻质,轻薄以及高度的柔韧性提出了较高的要求。基于对柔性器件的供电需求,包括锂离子电池和超级电容器在内的大量的柔性储能器件越来越得到关注。为了提高超级电容的柔韧性,在任何外力作用下都能保持供电的性能。本文以碳纳米管柔性薄膜为导电基底,通过热处理薄膜中的有机表面活性剂提高导电薄膜的电导率以及薄膜的比表面积。处理后的薄膜电导率和比表面积分别到达~350 S cm~(-1)和~370 m~2g~(-1),从而提高原有碳纳米管薄膜的双电层电容特性。将高电导率的导电薄膜与金属氧化物Co_3O_4复合后,使得金属氧化物的法拉第赝电容与碳纳米管薄膜的双电层电容相结合,进一步柔性导电基体电极的电容性能。该柔性电容器在扫面速率为10 mV s~(-1)时,体积比电容达到350 mF cm~(-2)。
As the development of wearable structures and flexible devices, it is an urgent requirement to provide a lightweight, thin, and flexible power supply source. Due to the desire for power supply source, many energy storage carriers, such as lithium batteries and supercapacitors, are paid much attention recently. In order to achieve the above purposes, an ultra-flexible supercapacitor that can be used at critical conditions was represented in this work. The supercapacitors are based on a flexible carbon nanotube film as the substrate of the electrodes. To obtain a high electric conductivity and surface area, the as-prepared free-standing carbon nanotube paper was heated to remove the organic surfactant. The film conductivity and surface area after annealing reach to ~350 S cm~(-1), and ~370 m~2 g~(-1), respectively, which could enhance the Double-layer supercapacitance. After hybrid transition metal oxide(Co_3O_4), the Double-layer supercapacitance and Faradaic pseudocapacitance are combined together to increase the device supercapacitance. The specific supercapacitance is ~350 mF cm~(-2) at the scan rate of 10 mV s~(-1).
引文

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700