用户名: 密码: 验证码:
基于大涡模拟和FW-H方程的气动噪声分析
详细信息    查看官网全文
摘要
民用飞机的噪声水平是适航取证的关键因素。在飞机起飞与降落过程中,增升装置是机体噪声的主要来源之一。预测增升装置的远场噪声水平并以此指导增升装置的外形优化是飞机设计中的重要工作。本文采用非定常流场模拟结合Ffowcs Williams–Hawkings(FW-H)方程的方法,对于多种算例进行了噪声计算。首先对圆柱-翼型干扰算例进行了模拟,远场噪声频谱与实验结果符合较好。最后重点对二维增升装置算例进行了详细的流场与噪声预测,采用的模型是AIAA BANC-Ⅳ研讨会的标准算例30P30N多段翼型,详细分析了其流动物理和声学特性。计算结果表明,缝翼剪切层和空腔内的流动特性计算结果与实验符合良好;对比了不同网格与积分面设置情况下,远场噪声水平的变化;通过改变FW-H积分面设置,单独分析了不同部件的噪声源对于总噪声指向性的贡献;还对比分析了不同来流马赫数时,远场噪声水平的变化趋势。计算结果表明,本文所发展的非定常流动模拟方法与FW-H噪声计算方法具有很好的可靠性。
The noise level of civil aircraft is the key factor to the certification of the aircraft.Airframe is one of main noise sources of a civil aircraft.High-lift devices are important noise sources of taking off and landing.Slat cove and flap side-edge are considered as the dominant areas where have the largest noise emission of high-lift devices.It is significant to designing the shape of slat cove and flap side-edge by predicting the noise of slat cove and flap side-edge.Unsteady computational fluid dynamics simulation and the Ffowcs Williams–Hawkings equation are used to study the flow field and sound radiation of a rod-airfoil of Re= 480000,the 30P30N multi-element airfoil.The CFD results of the rod-airfoil as well as noise result are particularly validated by reference data to test the numerical method.Then the test case of the 30P30N of the BANC-Ⅲ workshop is numerically investigated.Flow quantities of the shear layer starting from the slat cusp, which is significant for slat noise, match well with experimental data.Flow results of both coarse grid and fine grid match well with experimental data.The effects of grid density and integration surface on far field sound level are tested.Based on the decomposition of the noise components two dipoles are revealed by changing integration surface.Results of different Mach numbers show that the resonance frequencies agree well with Block's empirical model.On the flow simulation of the 30P30N airfoil, the averaged flow profiles and pressure spectrums in the slat match well with experimental data, which shows the wall-modeled LES study is suitable for flow field prediction of high-lift devices.
引文
[1]Lighthill M J.,On Sound Generated Aerodynamically.I.General Theory[J].Proceedings of the Royal Society A,1952,211(1107):564-587.
    [2]Lighthill M J.,On Sound Generated Aerodynamically.II.Turbulence as a Source of Sound,Proceedings of the Royal Society of London.Series A,Mathematical and Physical Sciences,Vol.222,No.1148(Feb.23,1954),pp.1-32.
    [3]Ffowcs Williams J E,Hawkings D L.Sound generated by turbulence and surfaces in arbitrary motion.Phil Trans R Soc Lond A,1969,264(1151):321–342]
    [4]Singer B A,Lockard D P,Brentner K S.Computational Aeroacoustic Analysis of Slat Trailing-Edge Flow[J].Aiaa Journal,1999,38(9):1558-1564.
    [5]Lockard D,Choudhari M.Noise Radiation from a Leading-Edge Slat[J].Aiaa Journal,2009.
    [6]K?nig D,Koh S,Schr?der W,et al.Slat Noise Source Identification,Aiaa/ceas Aeroacoustics Conference.2009.
    [7]Pott-Pollensk M,Wild J,Delfs J.Development of a Fast RANS-Based Noise Estimation Method for High-Lift System Design[C]//Aiaa/ceas Aeroacoustics Conference.2009.
    [8]Yao H,Davidson L,Eriksson L E,et al.Surface Integral Analogy Approaches to Computing Noise Generated by a 3D High-Lift Wing Configuration,AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition.2012.
    [9]Larsson J,Kawai S,Wall-modeling in large eddy simulation:length scales,grid resolution and accuracy,Center for Turbulence Research Annual Research Briefs2010,pp.39-46.
    [10]Bodart J,Larsson J,Wall-modeled large eddy simulation in complex geometries with application to high-lift devices,Center for Turbulence Research Annual Research Briefs 2011,pp.37-48.
    [11]Kawai S,Larsson J,Wall-modeling in large eddy simulation:Length scales,grid resolution,and accuracy,Physics of fluids,2012,24,015105.
    [12]Choudhari M,Khorrami M,Lockard D,Slat Cove Noise:30P30N 3-Element,Simplified High-Lift Configuration(Modified Slat),Guidelines for Category 7 of BANC-II Workshop,2012.https://info.aiaa.org/tac/ASG/FDTC/DG/BECAN_files_/BANCII.htm
    [13]Prieur J,Rahier G,Aeroacoustic integral methods,formulation and efficient numerical implementation,Aerospace Science and Technology,2001,5:457-468.
    [14]Lockard D P,An Efficient Two-Dimensional Implementation of the Ffowcs Williams and Hawkings Equation,Journal of Sound and Vibration,2000,229:897-911.
    [15]Lockard D P,A Comparison of Ffowcs Williams–Hawkings Solvers for Airframe Noise Applications,AIAA paper 2002-2580,2002.
    [16]Jacob M C,Boudet J,Casalino D,et al.A rod-airfoil experiment as a benchmark for broadband noise modeling[J].Theoretical and Computational Fluid Dynamics,2005,19(3):171-196.
    [17]Choudhari M,Lockard D P,and the BANC-III Category-7 Team,Assessment of Slat Noise Predictions for30P30N High Lift Configuration from BANC-III Workshop,AIAA Paper 2015-2844,2015.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700