基于Biolog FF板的5种灰葡萄孢杀菌剂对烟草灰霉病菌的代谢活性研究(英文)
详细信息    查看官网全文
摘要
由灰葡萄孢(Botrytis cinerea)引起的烟草灰霉病是一种全球性的重要真菌病害。啶酰菌胺、多菌灵、异菌脲、嘧霉胺和丙环唑是灰霉病防治的代表性药剂。本文采用Biolog FF板测定了烟草灰霉病菌对这些代表性防治药剂的敏感性。研究结果表明,5种化合物对烟草灰霉病菌均表现出强烈的抑制作用,其EC_(50)值分别为0.94、0.05、0.50、0.61及0.31μg ml~(-1)。烟草灰霉病菌能代谢96.8%的供试碳源;其中29种碳源能被高效代谢,33种碳源被代谢的效率适中。在不同药剂压力下,烟草灰霉病菌表现出不同的代谢指纹图谱。啶酰菌胺作用下,烟草灰霉病菌不能代谢与三羧酸循环相关的碳源;多菌灵作用下,病原菌不能代谢与糖酵解相关的碳源;异菌脲作用下,烟草灰霉病菌的碳源代谢几乎不受影响;丙环唑作用下,病原菌不能代谢任何碳源,且其所有生命活动完全被抑制。研究结果对了解5种代表性灰葡萄孢杀菌剂在病原菌代谢方面的活性具有重要意义,对今后将Biolog FF板应用于其它杀菌剂与其它病原真菌的研究具有参考价值,同时本文获得烟草灰霉病菌的碳源代谢指纹图谱可以用于该病原菌今后的鉴定。
Tobacco grey mold caused by Botrytis cinerea is an important fungal disease worldwide. Boscalid, carbendazim, iprodione, pyrimethanil and propiconazole are representative botryticides for grey mold management. This research investigated the sensitivities of B. cinerea from tobacco to these chemicals using the Biolog FF Microplate. All five chemicals showed inhibitory activity, with average EC_(50) values of 0.94, 0.05, 0.50, 0.61 and 0.31 μg ml_(-1), respectively. B. cinerea metabolized 96.8% of tested carbon sources, including 29 effectively and 33 moderately, but the metabolic fingerprints differed under pressures imposed by these botryticides. For boscalid, B. cinerea was unable to metabolize many substrates related to tricarboxylic acid cycle. For carbendazim, carbon sources related to glycolysis were not metabolized. For iprodione, use of most carbon substrates was weakly inhibited, and the metabolic profile was similar to that of the control. For propiconazole, no carbon substrates were metabolized and the physiological and biochemical functions of the pathogen were totally inhibited. These findings provide useful information on metabolic activities of these botryticides, and may lead to future applications of the Biolog FF Microplate for examining metabolic effects of other fungicides on other fungi, as well as providing a metabolic fingerprint of B. cinerea that could be useful for identification.
引文
1.Williamson,B.,Tudzynski,B.,Tudzynski,P.&van Kan,A.L.Botrytis cinerea:the cause of grey mould disease.Mol.Plant Pathol.8(5),561-580(2007).
    2 .Elmer,P.A.G.&Michailides,T.J.Epidemiology of Botrytis cinerea in orchard and vine crops.Botrytis:Biology,Pathology and Control.pp.243-272(2007).
    3.Choquer,M.et al.M.Botrytis cinerea virulence factors:new insights into a necrotrophic and polyphageous pathogen.FEMS Microbiology Letters.277(1),1-10(2007).
    4 .Pedras,M.S.C.,Hossain,S.&Snitynsky,R.B.Detoxification of cruciferous phytoalexins in Botrytis cinerea:Spontaneous dimerization of a camalexin metabolite.Phytochemistry.72(2),199-206(2011).
    5 .Villa-Rojas,R.,Sosa-Morales,M.E.,López-Malo,A.&Tang,J.Thermal inactivation of Botrytis cinerea conidia in synthetic medium and strawberry puree.Int.J Food Microbiol.155(3),269-272(2012).
    6 .Wang,H.C.et al.First report of Fusarium wilt of tobacco caused by Fusarium kyushuense in China.Plant Dis.97(3),424(2013).
    7 .Leroux,P.Chemical control of Botrytis and its resistance to chemical fungicides.Botrytis:Biology,pathology and control.pp:195-222(2007).
    8 .Delp,C.J.Benzimidazole and related fungicides.Modern selective fungicides:properties,applications,mechanisms of action.Gustav Fisher Verlag,Jena,Germany,pp.233-244(1987).
    9 .Leroux,P.,Chapeland,F.,Desbrosses,D.&Gredt,M.Patterns of cross-resistance to fungicidesin Botryotinia fuckeliana(Botrytis cinerea)isolates from French vineyards.Crop Prot.18(10),687-697(1999).
    10 .Davidse,L.C.&Ishii,H.Biochemical and molecular aspects of the mechanisms of action of benzimidazoles,N-phenylcarbamates and N-phenylformamidoximes and the mechanisims of resistance to these compounds in fungi.Modern Selective Fungicides:properties,applications,mechanisms of action.Gustav Fisher Verlag,Jena,Germany,pp.305-322(1995).
    11 .Birchmore,R.J.&Forster,B.FRAC methods for monitoring the sensitivity of Botrytis cinerea to anilinopyrimidine fungicides.EPPO Bulletin.26(1),181-197(1996).
    12 .Rosslenbroich,H.J.&Stuebler,D.Botrytis cinerea–history of chemical control and novel fungicides for its management.Crop Prot.19(8),557-561(2000).
    13 .Kalamarakis,A.E.,Petsikos-Paragiotarou,N.,Mavroides,B.&Ziogas,B.N.Activity of fluazinam against strains of Botrytis cinerea resistant to benzimidazoles and/or dicarboximides and to a benzimidazole-phenylcarbamate mixture.J Phytopathol.148(7-8),449-455(2000).
    14 .Dacol,L.,Gibbard,M.,Hodson,M.O.&Knight,S.Azoxystrobin:development on horticultural crops in Europe.Brighton Crop Protection Conference.Pests and Diseases.pp.843-848(1998).
    15 .Cui,W.,Beever,R.E.,Parkes,S.L.,Weeds,P.L.&Templeton,M.D.An osmosensing histidine kinase mediates dicarboximide fungicide resistance in Botryotinia fuckeliana(Botrytis cinerea).Fung.Gen.Biol.36(3),187-198(2002).
    16 .Leroux,P.,Walker,A.S.&Senechal,Y.Etude de la sensibilitéde Botrytis cinerea au boscalid.In:7th International Conference on Plant Diseases(cd ROM;www.afpp.net).AFPP,Paris,France(2003).
    17 .Baroffio,C.A.,Siegfried,W.&Hilber,U.W.Long-term monitoring for resistance of Botryotinia fuckeliana to anilinopyrimidine,phenylpyrrole and hydroxyanilide fungicides in Switzerland.Plant Dis.87(6),662-666(2003).
    18 .Markoglou,A.N.&Ziogas,B.N.SBI-fungicides:fungicidal effectiveness and resistance in Botrytis cinerea.Phytopathologia Mediterranea.41(2),120-130(2002).
    19 .Buyer,J.S.,Roberts,D.P.,Millner,P.&Russek-Cohen,E.Analysis of fungal communities by sole carbon source utilization profiles.J Microbiol.Meth.45(1),53-60(2001).
    20 .Atanasova,L.&Druzhinina,I.S.Global nutrient profiling by Phenotype Micro Arrays:a tool complementing genomic and proteomic studies in conidial fungi.Journal of Zhejiang University Science B.11(3),151-168(2010).
    21 .Wang,H.C.et al.Metabolic effects of azoxystrobin and kresoxim-methyl against Fusarium kyushuense examined using the Biolog FF Micro Plate.Pestic.Biochem.Phys.130,52-58(2016).
    22 .Matsson,M.&Hederstedt,L.The carboxin-binding site on Paracoccus denitrificans succinate:quinine reductase identified by mutations.Journal of Bioenergetics and Biomembranes.33(2),99-105(2001).
    23 .Zhang,C.Q.,Liu,Y.H.,Ma,X.Y.,Feng,Z.&Ma,Z.H.Characterization of sensitivity of Rhizoctonia solani,causing rice sheath blight,to mepronil and boscalid.Crop Prot.28(5),381-386(2009).
    24 .Zhang,C.Q.et al.Sensitivity of Botrytis cinerea from vegetable greenhouses to boscalid.Plant Pathol.56(4),646-653(2007).
    25 .Chen,F.,Liu,X.,Chen,S.&Schnabel,G.Characterization of Monilinia fructicola strains resistant to both propiconazole and boscalid.Plant Dis.97(5),645-651(2013).
    26 .Stammler,G.,Benzinger,G.&Speakman,J.A rapid and reliable method for monitoring the sensitivity of Sclerotinia sclerotiorum to boscalid.J Phytopathol.155(11-12),746-748(2007).
    27 .Davidse,L.C.&Flach,W.Differential binding of methyl benzimidazol-2-yl carbamate to fungal tubulin as a mechanism of resistance to this antimitotic agent in mutant strains of Aspergillus nidulans.The Journal of Cell Biology.72,174-193(1977).
    28 .Ma,Z.H.,Yoshimura,M.A.,Holtz,B.A.&Michailides,T.J.Characterization and PCR-based detection of benzimidazole-resistant isolates of Monilinia laxa in California.Pest Manag.Sci.61(5),449-457(2005).
    29 .Radice,S.,Ferraris,M.,Marabini,L.,Grande,S.&Chiesara,E.Effect of iprodione,a dicarboximide fungicide,on primary cultured rainbow trout(Oncorhynchus mykiss)hepatocytes.Aquatic Toxicology.54(1-2),51-58(2001).
    30 .Ma,Z.H.,Yan,L.Y.,Luo,Y.&Michailides,T.J.Sequence variation in the two component histidine kinase gene of Botrytis cinerea associated with resistance to dicarboximide fungicides.Pestic.Biochem.Physiol.88(3),300-306(2007).
    31 .Klose,S.,Wu,B.M.,Ajwa,H.A,Koike,S.T.&Subbarao,K.V.Reduced efficacy of rovral and botranto control Sclerotinia minor in lettuce production in the Salinas Valley may be related to accelerated fungicide degradation in soil.Crop Prot.29(7),751-756(2010).
    32 .Fungicide Resistance Action Committee.FRAC Code List 2013:fungicides sorted by mode of action(2013).
    33 .Korolev,N.,Mamiev,M.,Zahavi,T.&Elad,Y.Screening of Botrytis cinerea isolates from vineyards in Israel for resistance to fungicides.Eur.J Plant Pathol.129(4),591-608(2011).
    34 .Masner,P.,Muster,P.&Schmid,J.Possible methionine biosynthesis inhibition by pyrimidinamine fungicides.Pestic.Sci.42(3),163-166(1994).
    35 .Chen,P.J.,Moore,T.&Nesnow S.Cytotoxic effects of propiconazole and its metabolites in mouse and human hepatoma cells and primary mouse hepatocytes.Toxicology in Vitro.22(6),1476-1483(2008).
    36 .Lepesheva,G.I.&Waterman,M.R.Sterol 14α-demethylase cytochrome P450(CYP51),a P450 in all biological kingdoms.Biochimica et Biophysica Acta(BBA)-General Subjects.1770(3),467-477(2007).
    37 .Becher,R.&Wirsel,S.G.R.Fungal cytochrome P450 sterol 14α-demethylase(CYP51)and azole resistance in plant and human pathogens.Appl.Microbiol.Biotechnol.95(4):825-840(2012).
    38 .Wang,H.C.et al.First report of Botrytis cinerea causing gray mold of tobacco in Guizhou Province of China.Plant Dis.95(5),612(2011).
    39 .Brandt,U.,Schagger,H.&von Jagow,G.Characterization of binding of the methoxyacrylate inhibitors mitochondrial cytochrome c reductase.Eur.J Biochem.173(3),499-506(1988).
    40 .Bochner,B.R.,Gadzinski,P.&Panomitros,E.Phenotype microarrays for high-throughput phenotypic testing and assay of gene function.Genome Research.11(7),1246-1255(2001).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700