超声背散射信号与松质骨微结构变化的关系
详细信息    查看官网全文
摘要
为了更好地理解超声背散射信号频谱质心偏移量(SCS)与松质骨微结构之间的关系,本文用三种不同的图像腐蚀过程实现随松质骨孔隙度递增松质骨微结构的各种变化。采用时域有限差分(FDTD)模型,研究了超声分别从垂直和平行于骨小梁排列方向入射时,对于不同的松质骨微结构变化过程,SCS与松质骨孔隙度变化关系。仿真结果表明SCS均与松质骨孔隙度负相关;同时SCS受松质骨微结构变化过程中平行和垂直于骨小梁主要排列方向变化比重影响,相同孔隙度,垂直入射时,垂直方向比重大的SCS较小,平行入射时结果相反。
In order to well know the relationship of ultrasonic backscatter spectral centroid shift(SCS) and microstructural variation in cancellous bone, we presented three erosion procedures to realize various changes in cancellous bone microstructure with increasing porosity. Finite difference time domain(FDTD) method has been used to simulate and investigate the relationship between SCS and the porosity of cancellous bone with different changing process in cancellous bone microstructure when the ultrasound incidence directions are parallel and perpendicular to the major trabecular orientation. The negative correlation between SCS and the porosity of cancellous bone is verified by the simulation result. More importantly, the simulation results show that SCS was confined to the weight of the cancellous bone microstructural variations parallel and perpendicular to the major trabecular orientation, when the incidence direction is perpendicular to the major trabecular orientation, SCS is smaller when the weight of erosion in the direction that perpendicular to the major trabecular orientation is larger than parallel to the same porosity, and opposite when the incidence direction is parallel.
引文
[1]Laugier P,Ha?at G.Bone quantitative ultrasound[M].City:Springer,2011.
    [2]他得安,王威琪.超声背散射法评价松质骨状况的研究[J].应用声学,2013,32(3):199-204.Ta,D,Wang W.Assessment of cancellous bone based on ultrasonic backscatter method[J].Applied Acoustics,2013,32(3):199-204.
    [3]Zhang R,Ta D,Liu C,et al.Feasibility of bone assessment with ultrasonic backscatter signals in neonates[J].Ultrasound in medicine&biology,2013,39(10):1751-1759.
    [4]Hoffmeister B K,Mcpherson J A,Smathers M R,et al.Ultrasonic backscatter from cancellous bone:the apparent backscatter transfer function[J].IEEE transactions on ultrasonics,ferroelectrics,and frequency control,2015,62(12):2115-2125.
    [5]Ta D,Tang T,Liu C,et al.Ultrasound backscattering from cancellous bone in vivo[J].The Journal of the Acoustical Society of America,2015,137(4):2287-2287.
    [6]刘成成,他得安,王威琪.骨小梁材料特性对超声背散射信号的影响[J].声学学报,2013,38(3):382-388.Liu C,Ta D,Wang W.Effect of trabecular bone material properties on ultrasonic backscattering signals[J].ACTA Acustica,2013,38(3):382-388.
    [7]Hosokawa A.Effect of porosity distribution in the propagation direction on ultrasound waves through cancellous bone[J].IEEE transactions on ultrasonics,ferroelectrics,and frequency control,2010,57(6):1320-1328.
    [8]Hosokawa A.Numerical analysis of variability in ultrasound propagation properties induced by trabecular microstructure in cancellous bone[J].IEEE transactions on ultrasonics,ferroelectrics,and frequency control,2009,56(4):738-747.
    [9]Hosokawa A.Simulation of ultrasound propagation through bovine cancellous bone using elastic and Biot’s finite-difference time-domain methods[J].The Journal of the Acoustical Society of America,2005,118(3):1782-1789.
    [10]Jiang Y-Q,Liu C-C,Li R-Y,et al.Analysis of apparent integrated backscatter coefficient and backscattered spectral centroid shift in calcaneus in vivo for the ultrasonic evaluation of osteoporosis[J].Ultrasound in medicine&biology,2014,40(6):1307-1317.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700