烃类燃料的逆合成技术发展现状
详细信息    查看官网全文
摘要
能源危机和气候变化是影响全球经济发展的两大主要问题。如何更清洁、可持续地获得能源是当前科学研究的重点。本文主要介绍了以二氧化碳或一氧化碳为主要碳源,水或氢气为主要氢源进行烃类燃料逆合成的途径:费托合成反应、空间站CO_2还原技术(Sabatier还原技术,Bosch还原技术)、光催化二氧化碳逆合成反应以及海水中二氧化碳合成燃料技术。分别介绍了不同烃类燃料逆合成过程的发展历程、研究现状和工业应用情况。从逆合成反应的反应条件、产物选择性、催化剂种类、当前研究阶段等方面入手对比分析了多种反应的特点。最后,对这几种反应的发展前景进行了展望分析。
引文
[1]Balzani,V.;Armaroli,N.,Energy for a sustainable world:from the oil age to a sun-powered future[M].John Wiley&Sons:2010.
    [2]Solomon,S.,Climate change 2007-the physical science basis:Working group I contribution to the fourth assessment report of the IPCC[M].Cambridge University Press:2007;Vol.4.
    [3]Khodakov,A.Y.;Chu,W.;Fongarland,P.,Advances in the development of novel cobalt Fischer-Tropsch catalysts for synthesis of long-chain hydrocarbons and clean fuels[J].Chemical Reviews 2007,107(5),1692-1744.
    [4]Bell,A.T.,Catalytic synthesis of hydrocarbons over group VIII metals.A discussion of the reaction mechanism[J].Catalysis Reviews—Science and Engineering 1981,23(1-2),203-232.
    [5]Vannice,M.;Garten,R.,Metal-support effects on the activity and selectivity of Ni catalysts in COH2synthesis reactions[J].Journal of Catalysis 1979,56(2),236-248.
    [6]Lee,S.-C.;Jang,J.-H.;Lee,B.-Y.;Jeong,T.;Choung,S.-J.,The effect of catalyst pore structure change into the selectivity and conversion of CO2 hydrogenation over Fe-K/γ-Al2O3[J].Studies in Surface Science and Catalysis 2004,153,185-188.
    [7]Saeidi,S.;Amin,N.A.S.;Rahimpour,M.R.,Hydrogenation of CO 2 to value-added products—A review and potential future developments[J].Journal of CO2 utilization 2014,5,66-81.
    [8]Lee,S.-C.;Kim,J.-S.;Shin,W.C.;Choi,M.-J.;Choung,S.-J.,Catalyst deactivation during hydrogenation of carbon dioxide:Effect of catalyst position in the packed bed reactor[J].Journal of Molecular Catalysis A:Chemical 2009,301(1),98-105.
    [9]Cheng,J.;Hu,P.;Ellis,P.;French,S.;Kelly,G.;Lok,C.M.,Chain growth mechanism in Fischer-Tropsch synthesis:A DFT study of CC coupling over Ru,Fe,Rh,and Re surfaces[J].The Journal of Physical Chemistry C2008,112(15),6082-6086.
    [10]Brooks K P,Hu J,Zhu H,et al.Methanation of carbon dioxide by hydrogen reduction using the Sabatier process in microchannel reactors[J].Chemical Engineering Science,2007,62(4):1161-1170.
    [11]Shima A,Sakurai M,Sone Y,et al.Development of a CO2 reduction catalyst for the Sabatier reaction[J].future,2012,1:7.
    [12]史乔升,杨春信.载人航天CO2还原技术的发展与选择[J].航天医学与医学工程,2014,27(6):463-466.
    [13]Halmann,M.,Photoelectrochemical reduction of aqueous carbon dioxide on p-type gallium phosphide in liquid junction solar cells[J].Nature 1978,275,115-116.
    [14]Inoue,T.;Fujishima,A.;Konishi,S.;Honda,K.,Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders[J].Nature 1979,277,637-638.
    [15]Varghese,O.K.;Paulose,M.;La Tempa,T.J.;Grimes,C.A.,High-rate solar photocatalytic conversion of CO2 and water vapor to hydrocarbon fuels[J].Nano letters 2009,9(2),731-737.
    [16]Roy,S.C.;Varghese,O.K.;Paulose,M.;Grimes,C.A.,Toward solar fuels:photocatalytic conversion of carbon dioxide to hydrocarbons[J].ACS Nano 2010,4(3),1259-1278.
    [17]Chanmanee,W.;Islam,M.F.;Dennis,B.H.;Mac Donnell,F.M.,Solar photothermochemical alkane reverse combustion[J].Proceedings of the National Academy of Sciences 2016,113(10),2579-2584.
    [18]张伟清.美国海军演示海水变燃料技术[J].石油炼制与化工,2014,07,71.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700