核壳结构阵列光电阳极材料的设计制备与性能研究
详细信息    查看官网全文
摘要
光电化学(photoelectrochemical,PEC)制氢技术是指直接利用太阳能作为能量源来驱动,结合电化学氧化还原反应过程催化目标反应物分解制备氢气的过程,它已成为当前洁净能源生产开发和环境污染治理的重要手段。其中,为了克服光电阳极/阴极材料的固有缺陷,实现光电化学分解水制氢效率的不断提高与功能强化,借助新型的纳米技术和材料可控制备方法对光电阳极/阴极材料的组成与微纳结构进行精细调控具有重要的意义。除了对电极材料的结构进行调变,探索新型的光电阳极材料对于该领域的发展也至关重要。但是单一的半导体材料很难同时实现大的光谱响应范围、有效的电子-空穴分离以及快速的表面水分解反应速率。因此,我们制备了具有合适组成以及精细结构设计的核壳型复合光电阳极材料,通过改善电极材料的光电化学反应过程,实现了光电阳极材料PEC分解水性能的提高。
With the increasing exploration and development of renewable and clean power sources, photoelectrochemical(PEC) water splitting into hydrogen and oxygen using solar energy have attracted considerable attention. Semiconductor photocatalysts, in particular transition-metal oxide such as ZnO, TiO_2, and α-Fe_2O_3 have been extensively studied as photoanode materials for PEC water splitting with low cost and environmental-friendliness. However, these photoelectrode normally suffer from less efficiency in light capture, poor charge carrier mobility and large kinetic barriers for surface water oxidation. Herein, core-shell composite photoanodes with appropriate composition and well-designed nanostructure have been fabricated. With significant improvement in light absorption, charge separation, and surface water oxidation, these core-shell photoanodes exhibit largely enhanced PEC performance.
引文
[1]Shao,M.;Ning,F.;Wei,M.*;Evans,D.;Duan,X.;Adv.Funct.Mater.2014,24:580.
    [2]Zhang,C.;Shao,M.*;Ning,F.;Xu,S.;Li,Z.;Wei,M.*;Evans,D.;Duan,X.;Nano Energy 2015,12:231.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700