隔板的凹腔构型对超声速平行来流混合特性的影响
详细信息    查看官网全文
摘要
将凹腔应用到超声速平行来流的混合增强中,通过吸气式超声速混合层风洞确定来流参数和计算模型,采用大涡模拟的方法获得隔板带有凹腔及凹腔后缘倾角分别为30?,60?,90?三种工况下的超声速混合层的流场结构。对计算结果进行分析表明,隔板上开凹腔对混合效率的提升十分有利,混合层厚度增长了73.3%。较大的后缘倾角更有利于混合效率的提高,后缘倾角为90?时较30?和60?时无量纲时均雷诺应力分别提高13.04%和26.83%。凹腔增强混合的机理主要表现在自激振荡作为激励和诱导产生的流向涡结构与展向涡结构相互作用,增大了混合界面,促进大尺度结构的破碎。
引文
[1]何国强,秦飞,魏祥庚,等.火箭冲压组合发动机燃烧的若干基础问题研究[J].实验流体力学,30(1):1-14,27.
    [2]Yu K,Peng B,Hsu O.Implementing active combustion control in propulsion systems[R].AIAA 2001-3849,2001.
    [3]Chokani N,Kim I。Suppression of pressure oscillations in an open cavity by passive pneumatic control[R].AIAA Paper 91-1729,1991.
    [4]Sarno R L,Franke M E.Suppression of flow-induced pressure oscillations in cavities[J].Journal of Aircraft,1994,31(1):90-96
    [5]Zang A,T.Tempel,Yu.Experimental characterization of cavity-augmented supersonic mixing[R].AIAA Paper2005-1423,2005.
    [6]Qucik A,King.P I,Gruber M R,Carter C D,Hsu K-Y.Upstream mixing cavity coupled with a downstream flameholding cavity behavior in supersonic flow[R].AIAA Paper 2005-3709,2005.Paper 2005-3709,2005.
    [7]Kodera M,Ogawa H,Tomioka S,et al.Multi-objective design and trajectory optimization of space transport systems with RBCC propulsion via evolutionary algorithms and pseudospectral method[R].AIAA-2014-0629.
    [8]孙明波.超声速来流稳焰凹腔的流动及火焰稳定机制研究[D].博士学位论文.长沙:国防科学技术大学,2008.
    [9]Kim S E.Large eddy simulation using unstructured meshes and dynamic subgrid-scale turbulence models[J].AIAA paper,2004,2548:2004.
    [10]Kim W W,Menon S.Application of the localized dynamic subgrid-scale model to turbulent wall-bounded flows[J].AIAA Paper No.AIAA-97-0210,1997.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700