水生植物制生物炭对秋季高纬度地区人工湿地硝氮的去除研究
详细信息    查看官网全文
摘要
在秋季高纬度地区,来自于人工湿地的硝氮处理往往不尽如人意,本文的目的为在高纬度地区秋季温度条件下研究一种高效以及低值的技术去移除人工湿地中的硝氮。在秋季人工湿地中收集水生植物枯落物芦苇以及香蒲并制备生物炭,并利用盐酸进行改性。通过序批实验,研究了改性水生植物生物炭对硝酸盐氮的吸附性能及影响因素,探讨了其吸附机理。结果表明,经盐酸改性的芦苇生物炭MRB与香蒲生物炭MCB表面均带正电荷,Zeta电位分别为+5.46mV与+2.31mV。MRB与MCB对硝酸盐氮吸附行为更符合准二级动力学方程(R~2>0.99),等温吸附曲线更好拟合Freundlich方程(R~2>0.98)。批量吸附实验也表明,溶液初始pH和共存阴离子会影响改性水生植物生物炭吸附硝酸盐。改性水生植物生物炭可以有效地去除来自于人工湿地污水中的硝酸盐,在秋季高纬度地区人工湿地改性水生植物生物质材料应该被考虑是一种很有前途的废水脱硝技术。
引文
[1]孔繁翔,高光.大型浅水富营养化湖泊中蓝藻水华形成机理的思考[J].生态学报.2005,25(3):589-595.
    [2]Wang Z,Guo H,Shen F,et al.Biochar produced from oak sawdust by Lanthanum(La)-involved pyrolysis for adsorption of ammonium(NH 4+),nitrate(NO 3-),and phosphate(PO 4 3-)[J].Chemosphere.2015,119:646-653.
    [3]Quilliam R S,van Niekerk M A,Chadwick D R,et al.Can macrophyte harvesting from eutrophic water close the loop on nutrient loss from agricultural land?[J].Journal of environmental management 2015,152:210-217.
    [4]Coban O,Kuschk P,Kappelmeyer U,et al.Nitrogen transforming community in a horizontal subsurface-flow constructed wetland[J].Water research.2015,74:203-212.
    [5]Iribar A,Hallin S,Perez J M S,et al.Potential denitrification rates are spatially linked to colonization patterns of nosZ genotypes in an alluvial wetland[J].Ecological Engineering.2015,80:191-197.
    [6]Xu X,Gao B,Zhao Y,et al.Nitrate removal from aqueous solution by Arundo donax L.reed based anion exchange resin[J].Journal of hazardous materials.2012,203:86-92.
    [7]Canion A,Overholt W A,Kostka J E,et al.Temperature response of denitrification and anaerobic ammonium oxidation rates and microbial community structure in Arctic fjord sediments[J].Environmental microbiology.2014,16(10):3331-3344.
    [8]Stein O R,Hook P B.Temperature,plants,and oxygen:how does season affect constructed wetland performance?[J].Journal of Environmental Science and Health.2005,40(6-7):1331-1342.
    [9]Krevs A,Darginavicien J,Gylyt B,et al.Ecotoxicological effects evoked in hydrophytes by leachates of invasive Acer negundo and autochthonous Alnus glutinosa fallen off leaves during their microbial decomposition[J].Environmental pollution.2013,173:75-84.
    [10]Zhang W,Li Q,Wang X,et al.Reducing organic substances from anaerobic decomposition of hydrophytes[J].Biogeochemistry.2009,94(1):1-11.
    [11]刘玉学,刘微,吴伟祥,等.土壤生物质炭环境行为与环境效应[J].应用生态学报.2009,20(4):977-982.
    [12]李力,刘娅,陆宇超,等.生物炭的环境效应及其应用的研究进展[J].环境化学.2011,30(8):1411-1421.
    [13]安增莉,侯艳伟,蔡超,等.水稻秸秆生物炭对Pb(Ⅱ)的吸附特性[J].环境化学.2011,30(11):1851-1857.
    [14]Mukherjee A,Zimmerman A R,Harris W.Surface chemistry variations among a series of laboratory-produced biochars[J].Geoderma.2011,163(3):247-255.
    [15]Yao Y,Gao B,Zhang M,et al.Effect of biochar amendment on sorption and leaching of nitrate,ammonium,and phosphate in a sandy soil[J].Chemosphere.2012,89(11):1467-1471.
    [16]Ramirez-Muniz K,Jia F,Song S.Adsorption of AsV in aqueous solutions on porous hematite prepared by thermal modification of a siderite-goethite concentrate[J].Environmental Chemistry.2012,9(6):512-520.
    [17]Zimmerman A R,Gao B,Ahn M.Positive and negative carbon mineralization priming effects among a variety of biochar-amended soils[J].Soil Biology and Biochemistry.2011,43(6):1169-1179.
    [18]Al-Wabel M I,Al-Omran A,El-Naggar A H,et al.Pyrolysis temperature induced changes in characteristics and chemical composition of biochar produced from conocarpus wastes[J].Bioresource technology.2013,131:374-379.
    [19]Chen B,Chen Z,Lv S.A novel magnetic biochar efficiently sorbs organic pollutants and phosphate[J].Bioresource technology.2011,102(2):716-723.
    [20]Zhang M,Gao B.Removal of arsenic,methylene blue,and phosphate by biochar/AlOOH nanocomposite[J].Chemical engineering journal.2013,226:286-292.
    [21]Yao Y,Gao B,Chen J,et al.Engineered carbon(biochar)prepared by direct pyrolysis of Mg-accumulated tomato tissues:characterization and phosphate removal potential[J].Bioresource technology.2013,138:8-13.
    [22]Sohi S P,Krull E,Lopez-Capel E,et al.A review of biochar and its use and function in soil[J].Advances in agronomy.2010,105:47-82.
    [23]Chintala R,Mollinedo J,Schumacher T E,et al.Nitrate sorption and desorption in biochars from fast pyrolysis[J].Microporous and Mesoporous Materials.2013,179:250-257.
    [24]Hale S E,Ailing V,Martinsen V,et al.The sorption and desorption of phosphate-P,ammonium-N and nitrate-N in cacao shell and corn cob biochars[J].Chemosphere.2013,91(11):1612-1619.
    [25]Essington M E.Soil and Water Chemistry:An Integrative Approach:CRC Press[J].Boca Raton,London,New York,Washington,DC.2004.
    [26]Hollister C C,Bisogni J J,Lehmann J.Ammonium,nitrate,and phosphate sorption to and solute leaching from biochars prepared from corn stover(L.)and oak wood(spp.)[J].Journal of environmental quality.2013,42(1):137-144.
    [27]Ho Y,Mckay G.Pseudo-second order model for sorption processes[J].Process biochemistry.1999,34(5):451-465.
    [28]Breeuwsma A,Lyklema J.Physical and chemical adsorption of ions in the electrical double layer on hematite(α-Fe2O3)[J].Journal of Colloid and Interface Science.1973,43(2):437-448.
    [29]Zhang M,Gao B,Yao Y,et al.Synthesis of porous MgO-biochar nanocomposites for removal of phosphate and nitrate from aqueous solutions[J].Chemical Engineering Journal.2012,210:26-32.
    [30]李丽,陈旭,吴丹,等.固定化改性生物质炭模拟吸附水体硝态氮潜力研究[J].农业环境科学学报.2015,34(1):137-143.
    [31]Sposito G.Derivation of the Freundlich equation for ion exchange reactions in soils[J].Soil Science Society of America Journal.1980,44(3):652-654.
    [32]Bock E,Smith N,Rogers M,et al.Enhanced nitrate and phosphate removal in a denitrifying bioreactor with biochar[J].Journal of environmental quality.2015,44(2):605-613.
    [33]Chintala R,Mollinedo J,Schumacher T E,et al.Nitrate sorption and desorption in biochars from fast pyrolysis[J].Microporous and Mesoporous Materials.2013,179:250-257.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700