烟草根系分泌物酚酸类物质的鉴定及其对根际微生物的影响
详细信息    查看官网全文
摘要
目的烟草连作已导致土传病害发生、烟株生长受抑制、产量下降和品质恶化等问题。烟株对自身及土壤微生物产生的化感作用,是烟草产生连作障碍的一个重要原因,其中化感物质中的根系分泌物是烟株与土壤微生物间相互作用的重要物质,探索烟草根系分泌物对根际微生物生长的影响是生物防控烟草青枯病的理论依据。方法本文利用超高效液相色谱串联四级杆飞行时间质谱(UPLC-Q-TOF/MS)技术,分离、鉴定烟草根系分泌物中主要酚酸类物质的种类和含量,通过添加外源酚酸类物质研究在液体培养基中烟草根系分泌物中的主要酚酸类物质对病原菌及拮抗菌的影响,并在土壤中添加鉴定出的主要酚酸类物质,通过土壤培育试验,研究其对土壤微生物多样性和数量变化,特别是对烟草青枯病菌及其拮抗菌生长的影响。结果 1)烟草根系分泌物粗提物对病原菌(茄科劳尔氏菌)生长的促进率为16.8%,对拮抗菌(短短芽孢杆菌)的生长抑制率达到29.4%;2)UPLC-Q-TOF/MS检测根系分泌物中主要酚酸类物质为苯甲酸和3-苯丙酸,含量分别为0.25μg/g干根重和1.15μg/g干根重;3)液体培养外源添加低浓度的苯甲酸(≤2μg/L)和3-苯丙酸(≤3μg/L)促进病原菌和拮抗菌的生长;4μg/L的苯甲酸对病原菌生长抑制作用不显著,对拮抗菌生长的抑制率达到90.2%,6μg/L的3-苯丙酸对病原菌的生长具有促进作用,对拮抗菌的生长抑制率达到81.1%,外源高浓度苯甲酸(≥4μg/L)和3-苯丙酸(≥7μg/L)抑制病原菌与拮抗菌的成长;4)土壤中添加3μg/kg土的苯甲酸时,土壤中病原菌的数量增加12.3%,而拮抗菌的数量减少21.0%,土壤细菌、放线菌和真菌的数量分别降低37.5%,41.9%和55.6%;3-苯丙酸浓度达到8μg/kg土时,拮抗菌生长量减少14.5%,对病原菌没有显著影响,土壤细菌、放线菌和真菌的数量分别降低69.9%,57.2%和80.7%;5)土壤添加4μg/kg的苯甲酸和7μg/kg的3-苯丙酸后,土壤微生物Shannon指数、Simpson指数、Mc Intosh指数显著下降,分别仅为对照的57.7%、94.1%、88.1%和97.6%73.3%、80.0%。结论烟草根系分泌物粗提物促进病原菌生长抑制拮抗菌生长,根系分泌物中酚酸类物质主要为苯甲酸和3-苯丙酸,液体培养中4μg/L的苯甲酸或6μg/L的3-苯丙酸浓度是对病原菌生长抑制不明显但显著抑制拮抗菌生长的分界点,土壤外源添加3μg/kg的苯甲酸或8μg/kg的3-苯丙酸时,是土壤增加病原菌减少拮抗菌数量的分界点,同时土壤微生物功能多样性显著下降,病原菌对根系分泌物中苯甲酸和3-苯丙酸的利用优于拮抗菌,这也是烟草长期连作引起青枯病暴发流行的机理之一。
[Objectives] Tobacco continuous mono-cropping has caused very serious problems, including soil-borne disease outbreak, tobacco growth suppression, yield reduction and quality decline. Allelopathy comes from tobacco and soil microorganisms may be one of the most important reasons to leading to mono-cropping obstacle. Tobacco root exudates(TRE) play a key role in the plant-microorganism interactions in the rhizosphere. It is of great importance to explore effect of tobacco root exudates on rhizosphere microorganisms. [Methods] In this study, the main phenolic acids were screened and identified by the UPLC-Q-TOF/MS method, and their contents in tobacco root exudates were evaluated. Effect of identified phenolic acids from TRE in liqiud medium on pathogen and its antagonist was investigated by applying exogenous phenolic acids. Besides, the soil was added with the identified phenolic acids and cultured for 3 d. After that, the rhizosphere microbial diversities and counts, especially the population of pathogen Ralstonia solanacearum and its antagonist Brevibacillus brevis in the soil were measured. [Results] 1)The tobacco root exudates promote the growth of pathogen by 16.8 %whereas and suppress the growth of antagonist by 29.4 %. 2) Two phenolic acids are screened and identified by UPLC-Q-TOF/MS with the concentrations of 0.25 μg/ g and 1.15 μg/ g dry root, respectively. 3)When the exogenous phenolic acids were added to the culture media, low concentrations of benzoic acid(≤2 μg/ L) and 3-phenylpropanoic acid(≤3 μg/ L) promote the growth of the pathogen and antagonist, and the 4 μg /L benzoic acid does not significantly affect R. solanacearum, whereas the population of antagonist is decreased by 90.2 %. The 6 μg/ L 3-phenylpropanoic acid promotes the growth of the pathogen while inhibits the growth of antagonist by 81.1 %. High concentrations of both benzoic acid(≥ 4μg/ L) and 3-phenylpropanoic acid(≥ 7μg/ L) significantly suppress the pathogen and antagonist. 4)When the soil was applied with the 3 μg/ kg benzoic acid, the pathogen count is increased by 12.3 % while the antagonist population is decreased by 21.0 %. Besides, the populations of soil bacteria, actinomycetes and fungi are declined by 37.5 %,41.9 % and 55.6 %, respectively. The 8 μg/ kg 3-phenylpropanoic acid significantly suppresses the antagonist growth by 14.5 %, and does not significantly affect the pathogen. Soil bacteria, actinomycetes and fungi are decreased by 69.9 %, 57.2 % and 80.7 %, respectively under this concentration of 3-phenylpropanoic acid. 5)After the 4μg/ kg benzoic acid or 7μg/ kg 3-phenylpropanoic acid application to the soil, the Shannon index, Simpson index and Mc Intosh index are significantly declined as 57.7 %, 88.1 %, 73.3 % and 94.1 %, 97.6 %, 80.0 %. [Conclusions] The tobacco root exudates promote the pathogen growth whereas suppress the antagonist growth. The main phenolic acids in tobacco root exudates are benzoic acid and 3-phenylpropanoic acid. The 4 μg/ L exogenous benzoic acid or 6 μg/ L exogenous 3-phenylpropanoic acid are the boundary concentrations, which do not significantly suppress the growth of pathogen but inhibit the antagonist. When benzoic acid and 3-phenylpropanoic acid are applied to the soil, the growth of pathogen is promoted, while the antagonist population and the rhizo-microbial functional diversity are significantly reduced under the 3 μg/ kg benzoic acid or 8 μg/ kg 3-phenylpropanoic acid. Pathogen could survive under the condition of tobacco root exudates, rather than antagonist. This may be an explanation of tobacco bacterial wilt outbreak resulted from mono-cropping obstacle.
引文
[1]Weir T,Park S-W,Vivanco J.Biochemical and physiological mechanisms mediated by allelochemicals[J].Current Opinion in Plant Biology,2004,7:472–479.
    [2]Ye J Q,Ye S F,Zhang M F et al.Effects of root exudates and aqueous root extracts of cucumber(Cucumis sativus L.)and allelochemicals,on photosynthesis and antioxidant enzymes in cucumber[J].Biochemical Systematics and Ecology,2003,31(1):129–139.
    [3]Wu H W,Haig T,Pratley J.Allelochemicals in wheat(Triticum aestivum l.):Variation of o phenolic acids in shoot tissues[J].Journal of Chemical Ecology,2001,27(1):125–135.
    [4]Ruan W,Liu M,Pan J et al.Effect of oil cakes on the growth of cucumber (Cucumis sativus L.)under continuous cropping system and its mechanism[J].Scientific Agriculture Sinica,2003,36(12):1519–1524.
    [5]韩雪,吴凤芝,潘凯.根系分泌物与土传病害关系之研究综述[J].中国农学通报,2006,22(2):316–318.Han X,Wu F Z,Pan K.Review on the relation between the root exudates and soil-spread disease[J].Chinese Agricultural Science Bulletin,2006,22(2):316–318.
    [6]Wu H W,Haig T,Pratley J.Allelochemicals in wheat(triticum aestivum l.):Cultivar difference in the exudation of phenolic acids[J].Journal of Agricultural and Food Chemistry,2001,49(88):3742–3745.
    [7]Hao W,Ren L,Ran W et al.Alleopathic effects of root exudates from watermelon and rice plants on fusarium oxysporum f.Sp.Niveum[J].Plant and Soil,2010,336:485–497.
    [8]Wu H,Raza W,Liu D et al.Allelopathic impact of artificially applied coumarin on fusarium oxysporum f.Sp.Niveum[J].World Journal of Microbiology and Biotechnology,2008,24:1297–1304.
    [9]Chen L,Yang X,Raza W et al.Trichoderma harzianum sqr-t037 rapidly degrades allelochemicals in rhizospheres of continuously cropped cucumbers[J].Applied Microbiology and Biotechnology,2011,89:1653–1663.
    [10]郭亚利,李明海,吴洪田,等.烤烟根系分泌物对烤烟幼苗生长和养分吸收的影响[J].植物营养与肥料学报,2007,13(3):458–463.Guo Y L,Li M H,Wu H T et al.Effects of root exudates on growth and nutrients uptake of tobacco seedlings[J].Plant Nutrition and Feritlizer Science,2007,13(3):458–463.
    [11]Englerbrecht M C.Modification of a semi-selective medium for the isolation and quantification of Pseudomonas solanacearum[J].Bacterial Wilt Newsletter,1994,10:3–5.
    [12]Koch R.über den augenblicklichen Stand der bakteriologischen Choleradiagnose(in German)[J].Zeitschrift für Hygiene und Infectionskrankheiten,1893,14:319–333.
    [13]Hervas A,Landa B,Datnoff L E et al.Effects of commercial and indigenous microorganisms on fusarium wilt development in chickpea[J].Biological Control,1998,13:166–176.
    [14]Liu Y,Shi J,Feng Y et al.Tobacco bacterial wilt can be biologically controlled by the applicaiton of antagonistic strains in combination with organic fertilizer[J].Biology and Fertility of Soils,2013,49:447–464.
    [15]Zhang H,Yu Z,Huang Q et al.Isolation,identification and characterization of phytoplankton-lytic bacterium ch-22against microcystis aeruginosa[J].Limnologica,2011,41:70–77.
    [16]Cartwright D K,Spurr H W J.Biological control of phytophthora parasitica var.Nicotianae on tobacco seedlings with non-pathogenic binucleate rhizoctonia fungi[J].Soil Biology and Biochemistry,1998,30:1879–1884.
    [17]Hoagland D R,Arnon D I.The water-culture method for growing plants without soil[M].Circular.Berkley:University of California Agricultural Experiment Station,1950.39.
    [18]Arnon D I,Stout P R.The essentiality of certain elements in minute quantity for plants with special reference to copper[J].Plant Physiology,1939,14:371–375.
    [19]French E B,Gutarra L,Aley P et al.Culture media for ralstonia solanacearum isolation,identification,and maintenace[J].Fitopatologia,1995,30(3):126–130.
    [20]赵斌,何绍江.几种常用培养基的配制方法[M].北京:科学出版社,2002.85–88.Zhao B,He S J.Several common culture media[M].Beijing:Science Press,2002.85–88.
    [21]Banwart W L,Porter P M,Granato T C et al.Hplc separation and wavelength area ratios of more than 50 phenolic acids and flavonoids[J].Journal of Chemical Ecology,1985,11:383–395.
    [22]Bissett A,Richardson A E,Baker G et al.Long-term land use effects on soil microbial community structure and function[J].Applied Soil Ecology,2011,51:66–78.
    [23]Garland J L,Mills A L.Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level sole-carbon-source utilization[J].Applied and Environmental Microbiology,1991,57:2351–2359.
    [24]陈志杰,梁银丽,张锋,等.温室土壤连作对黄瓜主要病害的影响[J].中国生态农业学报,2008,16(1):71–74.Chen Z J,Liang Y L,Zhang F et al.Effect of different crop successions on main disease development in cucmber under sunlit greenhouse[J].Chinese Journal of Eco-Agriculture,2008,16(1):71–74.
    [25]陈宏宇,李晓鸣,王敬国.抗病性不同大豆品种根面及根际微生物区系的变化Ι.非连作大豆(正茬)根面及根际微生物区系的变化[J].植物营养与肥料学报,2005,11(6):804-809.Chen H Y,Li X M,Wang J G.Change of microflora in the rhizosplane and rhizosphere of different disease resistance soybean cultivarsΙ.Change of microflora in the rhizoplane and rhizosphere of soybean under normal rotation cropping condition[J].Plant Nutrition and Fertilizer Science,2005,11(6):804-809.
    [26]陈宏宇,李晓鸣,王敬国.抗病性不同大豆品种根面及根际微生物区系的变化Π.连作大豆(重茬)根面及根际微生物区系的变化[J].植物营养与肥料学报,2006,12(1):104-108.Chen H Y,Li X M,Wang J G.Change of microflora in the rhizosplane and rhizosphere of different disease resistance soybean cultivarsΠ.Change of microflora in the rhizoplane and rhizosphere of soybean[J].Plant Nutrition and Fertilizer Science,2006,12(1):104-108.
    [27]韩丽梅,鞠会艳,王旭明.大豆连作土壤有机化合物对大豆根腐病菌生长的影响[J].大豆科学,2004,23(1):36-40.Han L M,Ju H Y,Wang X M.Influence of the organic compounds in continuous cropping soybean on pthogenic of root rot[J].Soybean Science,2004,23(1):36-40.
    [28]李琼芳.不同连作年限麦冬根际微生物区系动态研究[J].土壤通报,2006,37(3):563-565.Li Q F.Dynamics of the microbial flora in the liriope rhizosphere and outrhizosphere during continuous cropping years[J].Chinese Journal of Soil Science,2006,37(3):563-565.
    [29]Perez P.Root exudates of wild oats:Allelopathic effect on spring wheat[J].Phytochemistry,1991,30(7):2199–2202.
    [30]Tang C,Yong C.Collection and indentification of allelopathic compounds from the undisturbed root system of bigalta limpograss(hemarthria altissima)[J].Plant Physiology,1982,69:155–160.
    [31]Wang T S C,Yang T K,Chuang T T.Soil phenoic acids as plant growth inhibitors[J].Soil Science,1967,103(44):239–246.
    [32]马瑞霞,冯怡,李萱.化感物质对枯草芽孢杆菌(Bacillus subtilis)在厌氧条件下的生长及反硝化作用的影响[J].生态学报,2000,20:452–457.Ma R X,Feng Y,Li X.Effects of allelochemicals on growth of Bacillus subtilis and its denitrification under anaerobic condition[J].Acta Ecologica Sinica,2000,20:452–457.
    [33]高欣欣,于会泳,张继光,等.烤烟根系分泌物的分离鉴定及对种子萌发的影响[J].中国烟草科学,2012,33(3):87–91.Gao X X,Yu H Y,Zhang J G et al.Identification of chemical compositions of root exudates from flue-cured tobacco and their influence to seed germination[J].Chinese Tobacco Science,2012,33(3):87–91.
    [34]谭秀梅,王华田,孔令刚,等.杨树人工林连作土壤中酚酸积累规律及对土壤微生物的影响[J].山东大学学报(理学版),2008,43(1):14–19.Tan X M,Wang H T,Kong L Y et al.Accumulation of phenolic acids in soil of a continuous cropping polar plantation and their effects on soil microbes[J].Journal of Shandong University(Natural Science),2008,43(1):14–19.
    [35]Qu X H,Wang J G.Effect of amendments with different phenolic acids on soil microbial biomass,activity,and community diversity[J].Applied Soil Ecology,2008,39:172–179.
    [36]郝文雅,冉炜,沈其荣.水稻根系分泌物及酚酸类物质对西瓜专化型尖孢镰刀菌的影响[J].中国农业科学,2010,43(12):2443–2452.Hao W Y,Ran W,Shen Q R.Effects of root exudates from watermelon,rice plants and phenolic acids on Fusarium oxysporum f.sp.niveum[J].Scienta Agricultura Sinica,2010,43(12):2443–2452.
    [37]曾宇,叶协锋,符云鹏,等.施加腐熟小麦秸秆对土壤容重及烤烟根系生长的影响[J].中国烟草学报,2014,20(3):68–72.Zeng Y,Yi X F,Fu Y P et al.Effect of fertilizing rotten wheat straw on soil bulk density and root growth of flue-cured tobacco[J].Acta Tabacaria Sinica,2014,20(3):68–72.
    [38]Liu F,Wen X.Progress in ralationship between root exudates and rhizospheric microorganism[J].Food and Drug,2006,8(9):37–40.
    [39]Sushma G S.Chemotactic response of plant-growth-promoting bacteria towards roots of vesicular-arbuscular mycorrhizal tomato plants[J].FEMS Microbiology Ecology,2003,45(3):219–227.
    [40]Nayyar A,Hamel C,Lafond G et al.Soil microbial quality associated with yield reduction in continuous-pea[J].Applied Soil Ecology,2009,43:115–121.
    [41]Bais H P,Weir T L,Perry L G et al.The role of root exudates in rhizosphere interactions with plants and other organisms[J].Annual Review of Plant Biology,2006,57:233–266.
    [42]Broeckling C D,Broz A K,Bergelson J et al.Root exudates regulate soil fungal community composition and diversity[J].Appled and Environmental Microbiology,2008,74:738–744.
    [43]Kong C,Wang P,Gu Y et al.Fate and impact on microorganisms of rice allelochemicals in paddy soil[J].Journal of Agricultural and Food Chemistry,2008,56:5043–5049.
    [44]Wu F,Wang X.Effect of p-hydroxybenzoic and cinnamic acids on soil fungi(fusarium oxysporum f.Sp.Cucumerinim)growth and microbial population[J].Allelopathy Journal,2006,18:129–140.
    [45]柯文辉.烟草连作障碍的根际微生态研究[D].福州:福建农林大学硕士学位论文,2009.Ke W H.Studies on rhizosphere micro-ecology of tobacco successive cropping obstacle[D].Fuzhou:Ms Thesis of Fujian Agriculture and Forestry University,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700