微波衰减用随机复合超材料的电磁参数调控
详细信息    查看官网全文
摘要
近年来,基于超材料独特的负介电常数和负磁导率行为,使其在微波吸收与衰减领域得到了广泛的关注。负介电常数、负磁导率及其衍生的新颖特性在超材料中被发现后,随机复合超材料是否具有类似性质倍受关注。主要利用原位合成技术制备了金属陶瓷等异质复合材料,通过功能体优化筛选和显微结构有效剪裁,在射频频段获得了负介电常数和负磁导率。研究表明,自由电子的等离体振荡导致了负介电常数,逾渗行为具有决定性影响:亚逾渗组分复合材料的介电常数为正值,频散特征符合德拜弛豫;超过但仍接近逾渗阈值组分的复合材料,介电常数为负值,特征是法诺共振。负磁导率主要归因于磁共振。与典型的超材料相比,随机复合超材料在工艺技术方面具有优势,其双负性质的发现,为吸波、屏蔽、透波、无线输电等应用领域电磁参数调控提供了新的思路。
引文
[1]倪旭,张小柳,卢明辉,等.声子晶体和声学超构材料[J].物理,2012,41(10):655-662.
    [2]黄吉平.从光学隐身衣到热学隐身衣——神奇的热学超构材料简介[J].物理教学,2015,5:001.
    [3]齐美清,崔铁军.一种缩减雷达散射截面的编码超材料[C]//2015年全国微波毫米波会议论文集.2015.
    [4]顾超,屈绍波,裴志斌,等.基于电阻膜的宽频带超材料吸波体的设计[J].物理学报,2011,60(8):662-666.
    [5]刘凌云,胡长寿,郭彪.超材料吸波体吸波特性研究[J].材料导报,2010,24(5):1-3.
    [6]程用志,聂彦,龚荣洲,等.基于超材料与电阻型频率选择表面的薄型宽频带吸波体的设计[J].物理学报,2012,61(13):134101-134101.
    [7]Shelby R A,Smith D R,Schultz S.Experimental verification of a negative index of refraction[J].Science,2001,292(5514):77-79
    [8]Gao M,Shi Z,Fan R,et al.High-Frequency Negative Permittivity from Fe/Al_2O_3 Composites with High Metal Contents[J].Journal of the American Ceramic Society,2012,95(1):67-70.
    [9]Shi Z,Chen S,Sun K,et al.Tunable radio-frequency negative permittivity in nickel-alumina“natural”meta-composites[J].Applied Physics Letters,2014,104(25):252908.
    [10]Shi Z,Chen S,Fan R,et al.Ultra low percolation threshold and significantly enhanced permittivity in porous metal-ceramic composites[J].Journal of Materials Chemistry C,2014,2(33):6752-6757.
    [11]Sun K,Zhang Z D,Qian L,et al.Dual percolation behaviors of electrical and thermal conductivity in metal-ceramic composites[J].Applied Physics Letters,2016,108(6):061903.
    [12]Sun K,Zhang Z,Fan R,et al.Random copper/yttrium iron garnet composites with tunable negative electromagnetic parameters prepared by in situ synthesis[J].RSC Advances,2015,5(75):61155-61160.
    [13]Sun K,Fan R H,Zhang Z D,et al.The tunable negative permittivity and negative permeability of percolative Fe/Al_2O_3composites in radio frequency range[J].Applied Physics Letters,2015,106(17):172902.
    [14]Wang X,Shi Z,Chen M,et al.Tunable electromagnetic properties in Co/Al_2O_3 cermets prepared by wet chemical method[J].Journal of the American Ceramic Society,2014,97(10):3223-3229.
    [15]Nan C W,Shen Y,Ma J.Physical properties of composites near percolation[J].Annual Review of Materials Research,2010,40:131-151.
    [16]Shi Z,Fan R,Zhang Z,et al.Random composites of nickel networks supported by porous alumina toward double negative materials[J].Advanced Materials,2012,24(17):2349-2352.
    [17]Shi Z C,Fan R H,Zhang Z D,et al.Experimental and theoretical investigation on the high frequency dielectric properties of Ag/Al_2O_3 composites[J].Applied Physics Letters,2011,99(3):032903.
    [18]Cheng C,Yan K,Fan R,et al.Negative permittivity behavior in the carbon/silicon nitride composites prepared by impregnation-carbonization approach[J].Carbon,2016,96:678-684.
    [19]Shi Z,Fan R,Yan K,et al.Preparation of iron networks hosted in porous alumina with tunable negative permittivity and permeability[J].Advanced Functional Materials,2013,23(33):4123-4132.
    [20]Shi Z,Fan R,Zhang Z,et al.Experimental realization of simultaneous negative permittivity and permeability in Ag/Y_3Fe_5O_(12)random composites[J].Journal of Materials Chemistry C,2013,1(8):1633-1637.
    [21]Zhang Z,Fan R,Shi Z,et al.Tunable negative permittivity behavior and conductor-insulator transition in dual composites prepared by selective reduction reaction[J].Journal of Materials Chemistry C,2013,1(1):79-85.
    [22]Shi Z,Fan R,Wang X,et al.Radio-frequency permeability and permittivity spectra of copper/yttrium iron garnet cermet prepared at low temperatures[J].Journal of the European Ceramic Society,2015,35(4):1219-1225.
    [23]Tsutaoka T,Kasagi T,Hatakeyama K.Permeability spectra of yttrium iron garnet and its granular composite materials under dc magnetic field[J].Journal of Applied Physics,2011,110(5):053909.
    [24]Yan K,Fan R,Shi Z,et al.Negative permittivity behavior and magnetic performance of perovskite La_(1-x)Sr_xMnO_3 at high-frequency[J].Journal of Materials Chemistry C,2014,2(6):1028-1033.
    [25]毕科,周济,赵宏杰,李勃.基于铁磁共振的超材料研究进展[J].科学通报,2013,58(19):1785-1795.
    [26]Tsutaoka T,Fukuyama K,Kinoshita H,et al.Negative permittivity and permeability spectra of Cu/yttrium iron garnet hybrid granular composite materials in the microwave frequency range[J].Applied Physics Letters,2013,103(26):261906.
    [27]Kasagi T,Tsutaoka T,Hatakeyama K.Negative permeability spectra in Permalloy granular composite materials[J].Applied physics letters,2006,88(17):172502.
    [28]Zhao Q,Kang L,Du B,et al.Experimental demonstration of isotropic negative permeability in a three-dimensional dielectric composite[J].Physical review letters,2008,101(2):027402.
    [29]Lu M H,Zhang C,Feng L,et al.Negative birefraction of acoustic waves in a sonic crystal[J].Nature materials,2007,6(10):744-748.
    [30]Liu B,Zhao X,Zhu W,et al.Multiple Pass-Band Optical Left-Handed Metamaterials Based on Random Dendritic Cells[J].Advanced Functional Materials,2008,18(21):3523-3528.
    [31]Li Y,Kita S,Munoz P,et al.On-chip zero-index metamaterials[J].Nature Photonics,2015,9(11):738-742.
    [32]Boltasseva A,Atwater H A.Low-loss plasmonic metamaterials[J].Science,2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700