Hydrothermal growth of nanorod arrays and in situ conversion to nanotube arrays for highly efficient Ag-sensitized photocatalyst
详细信息    查看官网全文
摘要
TiO_2 nanorod arrays(NRAs) were hydrothermally grown on transparent fluorine-doped tin oxide(FTO) substrates, and were converted into nanotubes(NTAs)by hydrothermally in situ etching. Ag nanoparticles(NPLs) were sensitized on the NRAs and NTAs by a simple photodeposition approach( products were denoted as Ag-TiO_2 NRAs and NTAs). The Ag-TiO_2 NTAs samples possessed a large specific surface area(116 m2g-1) with Ag NPLs homogeneously dispersed among the TiO_2 NTAs. The Ag-TiO_2 NTAs exhibited significantly enhanced photocatalytic activities(98.8%) in degradation of methyl orange(MO) compared to Ag-TiO_2 NRAs(92.6%),TiO_2 NTAs(86.2%), and NRAs(81.7%). The enhanced photocatalytic activities can be attributed to the large specific surface area of TiO_2 NTAs and strong surface plasmon resonance(SPR) of Ag NPLs. In addition, Ag-TiO_2 NTAs showed easy recovery feature in the recovery process and high durability in the recycling test,which was expected to be an efficient and practical photocatalyst used for waste water treatment.
TiO_2 nanorod arrays(NRAs) were hydrothermally grown on transparent fluorine-doped tin oxide(FTO) substrates, and were converted into nanotubes(NTAs)by hydrothermally in situ etching. Ag nanoparticles(NPLs) were sensitized on the NRAs and NTAs by a simple photodeposition approach( products were denoted as Ag-TiO_2 NRAs and NTAs). The Ag-TiO_2 NTAs samples possessed a large specific surface area(116 m2g-1) with Ag NPLs homogeneously dispersed among the TiO_2 NTAs. The Ag-TiO_2 NTAs exhibited significantly enhanced photocatalytic activities(98.8%) in degradation of methyl orange(MO) compared to Ag-TiO_2 NRAs(92.6%),TiO_2 NTAs(86.2%), and NRAs(81.7%). The enhanced photocatalytic activities can be attributed to the large specific surface area of TiO_2 NTAs and strong surface plasmon resonance(SPR) of Ag NPLs. In addition, Ag-TiO_2 NTAs showed easy recovery feature in the recovery process and high durability in the recycling test,which was expected to be an efficient and practical photocatalyst used for waste water treatment.
引文
[1]J.Q.Yan,H.Wu,H.Chen,Y.X.Zhang,F.X.Zhang,S.Z.Frank Liu,Fabrication of Ti O2/C3N4heterostructure for enhanced photocatalytic Z-scheme overall water splitting,Appl.Catal.BEnviron.191(2016)130-137.
    [2]S.Islam,N.Bidin,S.Riaz,S.Naseem,F.M.Marsin,Correlation between structural and optical properties of surfactant assisted sol-gel based mesoporous Si O2-Ti O2 hybrid nanoparticles for p Hsensing/optochemical sensor,Sensor.Actuat.B Chem.225(2016)66-73.
    [3]S.M.Wang,W.W.Dong,X.D.Fang,S.Z.Wu,R.B.Tao,Z.H.Deng,J.Z.Shao,L.H.Hu,J.Zhu,Cd S and Cd Se quantum dot co-sensitized nanocrystalline Ti O2 electrode:Quantum dot distribution,thickness optimization,and the enhanced photovoltaic performance,J.Power Sources273(2015)645-653.
    [4]X.J.Li,M.Y.Li,J.C.Liang,X.F.Wang,K.F.Yu,Growth mechanism of hollow Ti O2(B)nanocrystals as powerful application in lithium-ion batteries,J.Alloys Compd.681(2016)471-476.
    [5]K.Praveena,K.Sadhana,H.L.Liu,N.Maramu,G.Himanandini,Improved microwave absorption properties of Ti O2 and Ni0.53Cu0.12Zn0.35Fe2O4 nanocomposites potential for microwave devices,J.Alloys Compd.681(2016)499-507.
    [6]H.Z.Yao,W.Y.Fu,L.Liu,X.Li,D.Ding,P.Y.Su,S.Feng,H.B.Yang,Hierarchical photoanode of rutile Ti O2 nanorods coupled with anatase Ti O2 nanosheets array for photoelectrochemical application,J.Alloys Compd.680(2016)206-211.
    [7]Y.X.Wang,X.S.Zhu,Y.M.Lao,X.H.Lv,Y.Tao,B.M.Huang,J.X.Wang,J.Zhou,Z.H.Cai,Ti O2 nanoparticles in the marine environment:Physical effects responsible for the toxicity on algae Phaeodactylum tricornutum,Sci.Total Environ.565(2016)818-826.
    [8]M.T.Wang,D.K.Wang,Z.H.Li,Self-assembly of CPO-27-Mg/Ti O2 nanocomposite with enhanced performance for photocatalytic CO2 reduction,Appl.Catal.B Environ.183(2016)47-52.
    [9]N.C.T.Martins,J.?ngelo,A.V.Gir?o,T.Trindade,L.Andrade,A.Mendes,N-doped carbon quantum dots/Ti O2 composite with improved photocatalytic activity,Appl.Catal.B Environ.193(2016)67-74.
    [10]H.Liu,T.Lv,C.K.Zhu,Z.F.Zhu,Direct band gap narrowing of Ti O2/Mo O3 heterostructure composites for enhanced solar-driven photocatalytic activity,Sol.Energ.Mat.Sol.C.153(2016)1-8.
    [11]P.Wang,C.H.Peng,M.Yang,Ag decorated 3D urchin-like Ti O2 microstructures synthesized via a one-step solvothermal method and their photocatalytic activity,J.Alloys Compd.648(2015)22-28.
    [12]D.Zhang,Y.Sun,Q.Wu,P.Y.Ma,H.Zhang,Y.P.Wang,D.Q.Song,Enhancing sensitivity of surface plasmon resonance biosensor by Ag nanocubes/chitosan composite for the detection of mouse Ig G,Talanta 146(2016)364-368.
    [13]V.E.Podasca,T.Buruiana,E.C.Buruiana,UV-cured polymeric films containing Zn O and silver nanoparticles with UV-vis light-assisted photocatalytic activity,Appl.Surf.Sci.377(2016)262-273.
    [14]H.R.Liu,Y.C.Hua,Z.X.Zhang,X.G.Liu,H.S.Jia,B.S.Xu,Synthesis of spherical Ag/Zn Oheterostructural composites with excellent photocatalytic activity under visible light and UVirradiation,Ceram.Int.355(2015)644-652.
    [15]L.E.Wu,S.M.Fang,L.Ge,C.C.Han,P.Qiu,Y.J.Xin,Facile synthesis of Ag@Ce O2core-shell plasmonic photocatalysts with enhanced visible-light photocatalytic performance,J.Hazard.Mater.300(2015)93-103.
    [16]C.J.Bodson,B.Heinrichs,L.Tasseroul,C.Bied,J.G.Mahy,M.W.C.Man,S.D.Lambert,Efficient P-and Ag-doped titania for the photocatalytic degradation of waste water organic pollutants,J.Alloys Compd.682(2016)144-153.
    [17]L.Yang,D.L.Chu,Y.Chen,W.H.Wang,Q.H.Zhang,J.H.Yang,M.Zhang,Y.L.Cheng,K.R.Zhu,J.G.Lv,G.He,Z.Q.Sun,Photoelectrochemical properties of Ag/Ti O2 electrodes constructed using vertically oriented two-dimensional Ti O2 nanosheet array films,J.Electrochem.Soc.163(2016)H180-185.
    [18]X.H.Zhang,L.L.Wang,C.B.Liu,Y.B.Ding,S.Q.Zhang,Y.X.Zeng,Y.T.Liu,S.L.Luo,Abamboo-inspired hierarchical nanoarchitecture of Ag/Cu O/Ti O2 nanotube array for highly photocatalytic degradation of 2,4-dinitrophenol,J.Hazard.Mater.313(2016)244-252.
    [19]A.S.Guzenda,S.Owczarek,H.Szymanowski,L.Volesky,B.Walkowiaka,S.Miszczak,M.G.Lipman,Iron doped thin Ti O2 films synthesized with the RF PECVD method,Ceram.Int.41(2015)7496-7500.
    [20]J.J.Tao,Z.G.Gong,G.Yao,Y.L.Cheng,M.Zhang,J.G.Lv,S.W.Shi,G.He,X.S.Chen,Z.Q.Sun,Enhanced photocatalytic and photoelectrochemical properties of Ti O2 nanorod arrays sensitized with Cd S nanoplates,Ceram.Int.42(2016)11716-11723.
    [21]H.Z.Yao,W.Y.Fu,L.Liu,X.Li,D.Ding,P.Y.Su,S.Feng,H.B.Yang,Hierarchical photoanode of rutile Ti O2 nanorods coupled with anatase Ti O2 nanosheets array for photoelectrochemical application,J.Alloys Compd.680(2016)206-211.
    [22]T.X.Wu,G.Z.Wang,X.G.Zhu,P.Liu,X.Zhang,H.M.Zhang,Y.X,Zhang,H.J.Zhao,Growth and in situ transformation of Ti O2 and HTi OF3 crystals on chitosan-polyvinyl alcohol co-polymer substrates under vapor phase hydrothermal conditions,Nano Res.9(2016)745-754.
    [23]L.L.Huo,B.C.Liu,G.Zhang,J.Zhang,Universal strategy to fabricate a two-dimensional layered mesoporous Mo2C electrocatalyst hybridized on graphene sheets with high activity and durability for hydrogen generation,ACS Appl.Mater.Inter.8(2016)18107-18118.
    [24]P.Jezowski,K.Fic,O.Crosnier,T.Brousse,F.Beguin,Use of sacrificial lithium nickel oxide for loading graphitic anode in Li-ion capacitors,Electrochim.Acta 206(2016)440-445.
    [25]V.Amoli,M.G.Sibi,B.Banerjee,M.Anand,A.Maurya,S.A.Farooqui,A.Bhaumik,A.K.Sinha,Faceted titania nanocrystals doped with indium oxide nanoclusters as a superior candidate for sacrificial hydrogen evolution without any noble-metal cocatalyst under solar irradiation,ACSAppl.Mater.Inter.7(2015)810-822.
    [26]Y.Li,N.Guijarro,X.L.Zhang,M.S.Prévot,X.A.Jeanbourquin,K.Sivula,H.Chen,Y.D.Li,Templating sol-gel hematite films with sacrificial copper oxide:enhancing photoanode performance with nanostructure and oxygen vacancies,ACS Appl.Mater.Inter.7(2015)16999-17007.
    [27]J.L.Yang,Q.L.Wu,S.M.He,J.Yan,J.Y.Shi,J.Chen,M.M.Wu,X.F.Yang,Completely oriented anatase Ti O2 nanoarrays:topotactic growth and orientationrelated efficient photocatalysis,Nanoscale 7(2015)13888-13897.
    [28]Q.W.Wu,S.R.Hua,F.X.Yang,F.W.Yu,Y.S.Cheng,B.K.Dai,Hierarchical oriented anatase Ti O2 nanostructure arrays on flexible substrate for efficient dye-sensitized solar cells,Sci.Rep.3(2013)1892.
    [29]D.H.Kim,W.M.Seong,I.J.Park,E.S.Yoo,S.S.Shin,J.S.Kim,H.S.Jung,S.W.Lee,K.S.Hong,Anatase Ti O2 nanorod-decoration for highly efficient photoenergy conversion,Nanoscale 5(2013)11725-11732.
    [30]M.G?ttlicher,M.Rohnke,A.Kunz,J.Thomas,R.A.Henning,T.Leichtwei?,T.Gemming,J.Janek,Anodization of titanium in radio frequency oxygen discharge-Microstructure,kinetics&transport mechanism,Solid State Ionics 290(2016)130-139.
    [31]W.Smith,S.Mao,G.H.Lu,A.Catlett,J.H.Chen,Y.P Zhao,The effect of Ag nanoparticle loading on the photocatalytic activity of Ti O2 nanorod arrays,Chem.Phys.Lett.485(2010)171-175.
    [32]H.Liu,X.N.Dong,L.Nan,H.X.Ma,X.J.Chen,Z.F.Zhu,A novel fabrication of silver-modified Ti O2 colloidal-assembled microstructures and enhanced visible photocatalytic activities,Mater.Lett.159(2015)142-145.
    [33]M.Diak,E.Grabowska,A.Zaleska,Synthesis,characterization and photocatalytic activity of noble metal-modified Ti O2 nanosheets with exposed{001}facets,Appl.Surf.Sci.347(2015)275-285.
    [34]T.Yuan,H.B.Lu,B.H.Dong,L.Zhao,L.Wan,S.M.Wang,Z.X.Xu,Single-crystalline rutile Ti O2 nanorod arrays with high surface area for enhanced conversion efficiency in dye-sensitized solar cells,J.Mater.Sci.Mater.El 26(2015)1332-1337.
    [35]P.Zhong,X.H.Ma,X.P.Chen,R.Zhong,X.H.Liu,D.J.Ma,M.L.Zhang,Z.M.Li,Morphology-controllable polycrystalline Ti O2 nanorod arrays for efficient charge collection in dye-sensitized solar cells,Nano Energy 16(2015)99-111.
    [36]Y.Y.Xu,M.C.Zhang,M.Zhang,J.G.Lv,X.S.Jiang,G.He,X.P.Song,Z.Q.Sun,Controllable hydrothermal synthesis,optical and photocatalytic properties of Ti O2 nanostructures,Appl.Surf.Sci.315(2014)299-306.
    [37]F.B.Li,X.Z.Li,and M.F.Hou,Photocatalytic degradation of 2-mercaptobenzothiazole in auueous La3+-Ti O2 suspension for odor control,Appl.Catal.B Environ.48(2004)185-194.
    [38]X.Quan,Q.Zhao,H.Tan,X.Sang,F.Wang,Y.Dai,Comparative study of labthanide oxide doped titanium dioxide photocatalysts prepared by coprecipitation and sol-gel process,Mater.Chem.Phys.114(2009)90-98
    [39]J.C.Yu,J.G.Yu,H.Y.Tang,L.Z.Zhang,Effect of surface microstructure on the photoinduce hydrophilicity of porous Ti O2 thin films,J.Mater.Chem.12(2002)81-85.
    [40]D.H.Yu,X.D.Yu,C.H.Wang,X.C.Liu,Y.Xing,Synthesis of natural cellulosetemplated Ti O2/Ag nanosponge composites and photocatalytic properties,ACS Appl.Mater.Inter.4(2012)2781-2787.
    [41]J.C.Liu,L.Liu,H.W.Bai,Y.J.Wang,D.D.Sun,Gram-scale production of graphene oxide-Ti O2 nanorod composites:Towards high-activity photocatalytic materials,Appl.Catal.B106(2011)76-82.
    [42]J.Hensel,G.Wang,Y.Li,J.Z.Zhang,Synergistic effect of Cd Se quantum dot sensitization and nitrogen doping of Ti O2 nanostructures for photoelectrochemical solar hydrogen generation,Nano Lett.10(2010)478-483.
    [43]S.Bharathi,D.Nataraj,D.Mangalaraj,Y.Masuda,K.Senthil,K.Yong,Highly mesoporousα-Fe2O3 nanostructures:preparation,characterization and improved photocatalytic performance towards Rhodamine B(Rh B),J.Phys.D Appl.Phys.43(2010)015501-015509.
    [44]J.Zhao,J.R.Chen,J.Gao,Decolorization of azo dyes C.I.Acid Yellow 17 and C.I.Direct Red 31 by dielectric-barrier discharge air plasma,IEEE T.Plasma Sci.38(2010)488-495.
    [45]S.Yu,J.Hu,J.Li,Self-assembly of Ti O2/Cd S mesoporous microspheres with enhanced photocatalytic activity via hydrothermal method,Int.J.Photoenergy 2014(2014)854217.
    [46]X.Li,T.Xia,C.Xu,J.Murowchick,X.Chen,Synthesis and photoactivity of nanostructured Cd S-Ti O2 composite catalysts,Catal.Today 225(2014)64-73.
    [47]H.Huang,L.Pan,C.K.Lim,H.Gong,J.Guo,M.S.Tse,O.K.Tan,Hydrothermal growth of Ti O2 nanorod arrays and in situ conversion to nanotube arrays for highly efficient quantum dot-sensitized solar cells,Small 9(2013)3153-3160.
    [48]C.Chen,M.Ye,M.Q.Lv,C.Gong,W.X.Guo,C.J.Lin,Ultralong rutile Ti O2 nanorod arrays with large surface area for Cd S/Cd Se quantum dot-sensitized solar cells,Electrochim.Acta 121(2014)175-182.
    [49]M.D.Ye,X.K.Xin,C.J.Lin,Z.Q.Lin,High efficiency dye-sensitized solar cells based on hierarchically structured nanotubes,Nano Lett.11(2011)3214-3220.
    [50]S.L.Cheng,W.Y.Fu,B.Y.Hai,L.N.Zhang,J.W.Ma,H.Zhao,M.L.Sun,L.H.Yang,Photoelectrochemical performance of multiple semiconductors(Cd S/Cd Se/Zn S)cosensitized Ti O2photoelectrodes,J.Phys.Chem.C 116(2012)2615-2621.
    [51]M.Q.Lv,D.J.Zheng,M.D.Ye,L.Sun,J.Xiao,W.X.Guo,C.J.Lin,Densely aligned rutile Ti O2 nanorod arrays with high surface area for efficient dye-sensitized solar cells,Nanoscale 4(2012)5872-5879.
    [52]L.Liu,J.Qian,B.Li,Y.Cui,X.Zhou,X.Guo,W.Ding,Fabrication of rutile Ti O2 tapered nanotubes with rectangular cross-sections via anisotropic corrosion route,Chem.Commun.46(2010)2402-2404.
    [53]Y.Z.He,P.Basnet,S.E.H.M.Murph,Y.P.Zhao,Ag nanoparticle embedded Ti O2 composite nanorod arrays fabricated by oblique angle deposition:toward plasmonic photocatalysis,ACSAppl.Mater.Inter.5(2013)11818-11827.
    [54]R.H.Zha,R.Nadimicherla,X.Guo,Ultraviolet photocatalytic degradation of methyl orange by nanostructured Ti O2/Zn O heterojunctions,J.Mater.Chem.A 3(2015)6565-6574.
    [55]Y.Yang,G.Z.Wang,Y.Liang,C.L.Yuan,T.Yu,Q.L.Li,Q.Li,Enhanced photocatalytic performance of Ag decorated hierarchical micro/nanostructured Ti O2 microspheres,J.Alloys Compd.652(2015)386-392.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700