介电弹性隔振器的力电耦合特性分析
详细信息    查看官网全文
摘要
介电弹性聚合物是一种功能性软材料,在电激励或者外载荷激励下会产生较大变形,使得这种材料在智能控制领域具有较大的应用前景。本文针对一种圆筒形介电弹性隔振器,分别给出了这种隔振器在静态和动态时的力电耦合模型。首先基于热力学理论和Neo-Hookean模型给出了这种圆筒形隔振器的静态力电耦合模型,仿真结果表明这种隔振器在静态状态时有较好的位移输出能力。然后考虑介电弹性材料的动态刚化现象,结合作用力平衡条件,给出了隔振器在动态时的力电耦合模型;通过仿真分析可以发现在动态状态时隔振器的位移输出能力有显著的降低,同时隔振器的刚度会随着直流电压的增大而减小,但电压输入一定范围内刚度的减小量并不显著,因此这个特性将有利于隔振器在主动控制时的稳定性。最后对隔振器进行了偏置交流电压输入分析,可以看出输入交流电压时隔振器会出现位移谐波分量,且这个分量的大小会随着偏置电压的变化而改变;同时可以发现隔振器虽然有较好的位移输出能力,但其输出力的大小有限,因此这种圆筒形隔振器可被用于轻质结构的振动隔离。
Dielectric elastomers polymer is a new kind of smart materials,it can generator large mechanical deformation under electrical stimulation or external force stimulation,so it is a suitable material for actuators used in vibration isolation. In this article,the static and dynamic electromechanical coupling model of a tubular DEAP isolator have been analyzed and discussed respectively. The static electromechanical coupling model based on the Neo-Hookean model and thermodynamic equilibrium theory are firstly proposed. The simulation results demonstrate that the isolator have a better displacement output capacity in static state. Considering the stiffness phenomena in the dynamic state of the isolator,the dynamic electromechanical coupling model of the DEAP isolator is developed by a force balance condition. The simulation analysis shows that the capacity of displacement output has been reduced significantly in the dynamic state. Besides,the isolator stiffness will be decreased with the increase of DC voltage,but it was without significantly contrasted with the isolator stiffness when DC voltage changes in a small ranges. Finally,the vibration isolator are analyzed under a bias AC voltage,the simulation result shows that a displacement harmonic component will be appeared under the bias AC voltage,and the harmonic component amplitude is relative to the difference of bias voltage and AC voltage. Meanwhile the result also shows that the size of output force is limited under a bias AC voltage despite the displacement output capacity is better. These results indicate that the present tubular DEAP isolator can be an appropriate candidate for the vibration isolation of a lightweight structure.
引文
[1]Suo Z.Theory of dielectric elastomers,Acta Mechanica Solida Sinica,23(6),549-578,(2010).
    [2]Jordi C,Michel S,Fink E.Fish-like propulsion of an airship with planar membrane dielectric elastomer actuators.Bioinspiration&biomimetics,2010,5(2):026007.
    [3]Nguyen C T,Phung H,Nguyen T D,et al.A small biomimetic quadruped robot driven by multistacked dielectric elastomer actuators.Smart Materials and Structures,2014,23(6):065005.
    [4]Kovacs G,Lochmatter P,Wissler M.An arm wrestling robot driven by dielectric elastomer actuators.Smart Materials and Structures,2007,16(2):S306.
    [5]Jia K,Wang M,Lu T,et al.Band-gap tunable dielectric elastomer filter for low frequency noise.Smart Materials and Structures,2016,25(5):055047.
    [6]Lv X,Liu L,Liu Y,et al.Dielectric elastomer energy harvesting:maximal converted energy,viscoelastic dissipation and a wave power generator.Smart Materials and Structures,2015,24(11):115036.
    [7]Sarban R,W.Jones R,Mace B R,et al,A tubular dielectric elastomer actuator:Fabrication,characterization and active vibration isolation.Mechanical Systems and Signal Processing,2011,25(8):2879-2891.
    [8]Carpi F,Salaris C,De Rossi D.Folded dielectric elastomer actuators.Smart Materials and Structures,2007,16(2):S300.
    [9]Pei Q,Pelrine R,Rosenthal M A,et al.Recent progress on electroelastomer artificial muscles and their application for biomimetic robots.Smart Structures and Materials,International Society for Optics and Photonics,2004,41-50.
    [10]Li J,Liu L,Liu Y,et al.Dielectric elastomer bending actuator:experiment and theoretical analysis//SPIE Smart Structures and Materials+Nondestructive Evaluation and Health Monitoring.International Society for Optics and Photonics,2014:905639-905639-11.
    [11]Zhang J,Chen H,Tang L,et al.Modelling of spring roll actuators based on viscoelastic dielectric elastomers.Applied Physics A,2015,119(3):825-835.
    [12]Zhang C,Chen H,Liu L,et al.Modelling and characterization of inflated dielectric elastomer actuators with tubular configuration.Journal of Physics D:Applied Physics,2015,48(24):245502.
    [13]Lu T Q,Suo Z G.Large conversion of energy in dielectric elastomers by electromechanical phase transition.Acta Mechanica Sinica,2012,28(4):1106-1114.
    [14]Sheng J,Chen H,Qiang J,et al.Thermal,mechanical,and dielectric properties of a dielectric elastomer for actuator applications.Journal of Macromolecular Science,Part B,2012,51(10):2093-2104.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700