Pt修饰(001)面主导N掺锐钛矿TiO_2多级球的合成及光催化制氢性能
详细信息    查看官网全文
摘要
随着全球能源与环境问题的日益严峻,光催化剂TiO_2因稳定、无毒及活性高等优势而引起了人们广泛的关注。Yang等[1]首次以溶剂热法成功制得47%(001)面暴露率的锐钛矿TiO2单晶片,紫外光下具有良好的光催化性能,但对可见光几乎无响应。通过N掺杂可降低TiO_2禁带宽度从而提高在Pt参与下的可见光催化制氢活性,但N掺杂的锐钛矿TiO_2多存在(001)面暴露率低、颗粒尺寸大且需使用含氟盖帽剂等缺点~([2])。本文采用绿色简便的无氟溶剂热法制备得到系列~92%(001)面暴露率的N掺杂锐钛矿TiO2多级纳米片介孔球x NT-(001)-24(x=N/Ti投料摩尔比0,0.12,0.3,反应24 h),SEM、XRD及BET分析表明,三个催化剂均为超薄(~9 nm)纳米片组成的多级球(400~(-1)000 nm)、均具有超细的晶粒尺寸(D200为10.0,12.3,12.1 nm)、均匀的介孔分布(rp:3.85,2.76,4.60 nm)和较高的比表面积(124.0,142.0,110.4 m2/g)。XPS结果表明N元素掺杂进入0.12NT-(001)-24和0.3NT-(001)-24的间隙位(N/Ti(at.%)=0.054,0.080),UV-Vis DRS证明随着N掺杂量增加,催化剂的带隙能(3.18,3.04,3.03 e V)变窄。通过原位光还原沉积法在其表面负载Pt(理论负载量1.71wt%),发现0.12NT-(001)-24在甲醇/水溶液中光催化制氢的速率最高,为1.8 mmol h~(-1) g~(-1)(UV-Vis:320-780nm),远高于P25催化剂,且明显优于0.4 wt%Pt/TiO2(1.33 mmol h~(-1) g~(-1))[3]及N-TiO2(0.15 mmol h~(-1) g~(-1))[4],归因于0.12NT-(001)-24催化剂高的(001)面暴露率、最高的比表面积与N掺杂后明显变窄的禁带宽度。
In the present work, N-doped anatase TiO_2 hierarchical mesoporous spheres(xNT-(001)-24, x: theoretical nN/nTi = 0, 0.12, 0.3, reaction time: 24 h) with ca. 92% exposed(001) facets have been synthesized via a facile fluorine-free one-pot solvothermal route. The x NT-(001)-24 hierarchical spheres(400~(-1)000 nm) consist of ultrathin nanosheets(~9 nm) have small crystallite sizes(D_(200)=10.0, 12.3, 12.1 nm), uniform mesoporous distribution(2~(-1)0 nm) and high specific surface area(124.0, 142.0, 110.4 m~2/g). XPS result indicates N atoms(actual n_N/n_(Ti) = 0.054, 0.080) are successfully incorporated into interstitial sites of TiO_2 crystal lattices. UV-vis DRS shows the bandgap energies(3.18, 3.04, 3.03 e V) of samples are reduced with increasing nN/nTi. Pt nanoparticles(theoretical loading: 1.71 wt%) are then loaded onto the surface of x NT-(001)-24 hierarchical spheres by in situ photodeposition method. 0.12NT-(001)-24 exhibits the highest efficiency for photocatalytic hydrogen production of 1.8 mmol·h~(-1)·g~(-1), much higher than P_(25) and the previously reported 0.4 wt% Pt/TiO_2(1.33 mmol h~(-1) g~(-1))[3] and N-TiO2(0.15 mmol h~(-1) g~(-1)),[4] owing to its large percentage of(001) facets, highest specific surface area, and narrow band gap.
引文
[1]Yang H.G.,Sun C.H.,Qiao S.Z.,Zou J.,et al,Nature,2008,453:638-641.
    [2]Zhou,X.,Peng,F.,Wang,H.,Yu,H.,et al,Chem.Commun.,2012,48(4):600-602.
    [3]Li H.Y,Yu H.W.,Sun L.,Zhai J.L.,et al,Nanoscale,2015,7:1610-1615.
    [4]Liu G,Yang H.G.,Wang X.W,Lu G.Q.,et al,J.Am.Chem.Soc.,2009,131:12868-12869.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700