铸造纳米硅包覆碳棒锂离子电池负极材料的研究
详细信息    查看官网全文
摘要
微米尺寸纳米结构Si-C复合材料是一种希望的锂离子电池阳极材料。然而大规模、低成本合成高性能纳米Si面临严峻挑战。我们报道了低成本规模化合成Al/Na掺杂富含缺陷Si纳米棒方法,这种独特结构Si纳米棒通过精化熔铸快速凝固共晶铝硅合金、酸蚀Al后获得。为进一步提高导电性,采用强粘附力的多巴胺氧化自聚合随形锚固于纳米Si表面、800℃碳化制备Si包覆C(Si@C)复合材料。Si@C阳极(涂覆量0.9 mg cm~(-2))展示了2200 mAh g~(-1)的可逆容量(100 mA g~(-1)时),1000次循环后依然保持700 mAh g~(-1)可逆比容量(1000 mA g~(-1)时),只具有每次循环0.02%平均衰减率。由于Al_2O_3固体电解质界面膜(SEI)自发形成以及Si小的比表面积(31 m~2g~(-1)),Si@C具有87%高的首次库伦效率。这种优良的电化学性能来源于快速冷却和Al/Na掺杂在纳米Si中形成大量缺陷(层错、孪晶等),它们可以缓释充放电过程中产生的应力应变,降低Si的粉化。
Microsized nanostructured siliconcarbon composite is a promising anode material for high energy Li-ion batteries.However,large-scale synthesis of high-performance nano-Si materials at a low cost still remains a significant challenge.We report ascalable low cost method to synthesize Al/Na-doped and defectabundant Si nanorods that have excellent electrochemical performance with high first-cycle Coulombic efficiency(90%).The uniqueSi nanorods are synthesized by acid etching the refined and rapidlysolidified eutectic AlSi ingot.To maintain the high electronicconductivity,a thin layer of carbon is then coated on the Si nanorods by carbonization of self-polymerized polydopamine(PDA) at 800 C.The carbon coatedSi nanorods(Si@C) electrode at 0.9 mg cm2loading(corresponding to area-specific-capacity of □2.0 mAh cm2) exhibits a reversible capacity of□2200 mAh gl at 100 mA gl current,and maintains □700 mAh gl over 1000 cycles at 1000 mAgl with a capacity decay rate of 0.02%per cycle.High Coulombic efficiencies of 87%in the first cycle and □99.7%after 5 cycles are achieved due to the formation of an artificial A1203 solid electrolyteinterphase(SEI) on the Si surface,and the low surface area(31 m2 gl),which has never been reported before for nano-Si anodes.The excellentelectrochemical performance results from the massive defects(twins,stacking faults,dislocations) and Al/Na doping in Si nanorods induced by rapidsolidification and Na salt modifications;this greatly enhances the robustness of Si from the volume changes and alleviates the mechanical stress/strain ofthe Si nanorods during the lithium insertion/extraction process.Introducing massive defects and Al/Na doping in eutectic Si nanorods for Li-ion batteryanodes is unexplored territory.We venture this uncharted territory to commercialize this nanostructured Si anode for the next generation of Li-ionbatteries.
引文
[1]B.Dunn,H.Kamath,J.M.Tarascon.Electrical energy storage for the grid:A battery of choices.Science,2011,334:928-935
    [2]彭佳悦,刘亚利,黄杰,李泓.锂离子电池基础科学问题(Ⅺ)—锂空气电池与锂硫电池.储能科学与技术,2014,3(5):526-543
    [3]Du,F.H.,Li,B.,Fu,W.,Xiong,Y.J.,Wang,K.X.and Chen,J.S..Surface Binding of Polypyrrole on Porous Silicon Hollow Nanospheres for Li-Ion Battery Anodes with High Structure Stability.Adv.Mater,2014,26(35):6145-6150
    [4]Ge,M.Y.,Lu,Y.H.,Ercius,P.,Rong,J.P.,Fang,X.,Mecklenburg,M.,Zhou,C.W.Large-Scale Fabrication,3D Tomography,and Lithium-Ion Battery Application of Porous Silicon.Nano Lett,2014,14(1):261-268.
    [5]McSweeney,W.,Geaney,H.,Colm..Metal Assisted Chemical Etching of Silicon and theBehavior of Nanoscale Silicon Materials as Li-Ion Battery Anodes.Nano Res,2015,8(5):1395-1442.
    [6]Liu,X.H.,Zheng,H.,Zhong,L.,Huang S,Karki K,Zhang LQ,Liu Y,Kushima A,LiangWT,Wang JW,Cho JH,Epstein E,Dayeh SA,Picraux ST;Zhu T,Li J,Sullivan JP,Cumings J.Wang C,Mao SX,Ye ZZ,Zhang S,Huang JY.Anisotropic Swelling and Fracture of SiliconNanowires during Lithiation.Nano Lett,2011,11(8):3312-3318.
    [7]Soni,S.K.,Sheldon,B.W.,Xiao,X..Thickness Effects on the Lithiation of AmorphousSilicon Thin Films.Scr.Mater,2011,64(4):307-310.
    [8]Sethuraman,V.A.,Chon,M.J.,Shimshak,M.,Srinivasan,V.,Guduru,PR..In Situ Measurements of Stress Evolution in Silicon Thin Films during Electrochemical Lithiation andDelithiation.J.Power Sources,2010,195(15):5062-5066.
    [9]Sethuraman,V.A.,Srinivasan,V.,Bower,A.F.,Guduru,PR..In Situ Measurements ofStress-Potential Coupling in Lithiated Silicon.J.Electrochem.Soc,2011,157(11):A1253-A1261.
    [10]Zhou,W.;Jiang,T.;Zhou,H.;Wang,Y;Fang,J.;Whittingham,M.S.The Nanostructure of the SiAl Eutectic and Its Use in Lithium Batteries.MRS Commun.2013,3,119-121.
    [11]Tian,H.;Tan,X.;Xin,F.;Wang,C;Han,W.Micro-Sized NanoPorous Si/C Anodes for Lithium Ion Batteries.Nano Energy 2015,11,490-499.
    [12]Legrain,F.;Manzhos,S.Aluminum Doping Improves the Energetics of Lithium,Sodium,and Magnesium Storage in Silicon:A First-Principles Study.J.Power Sources 2015,274,65-70.
    [13]Kim,Y.L.;Lee,S.J.;Baik,H.K.;Lee,S.M.Sn2Zr2Ag Alloy Thin Film Anodes.J.Power Sources2003,119121,106-109.
    [14]Wang,X.D.;Li,X.P.;Sun,Z.B.Research Progress of the Lithium Ion Battery Alloy Anode Materials.Battery 2007,37,161-163.
    [15]Zu,F.Q.;Li,X.Y.Functions and Mechanism of Modification Elements in Eutectic Solidification of Al-Si Alloys:A Brief Review.China Foundry 2014,11,287-295.
    [16]Hegde,S.;Prabhu,K.N.Modification of Eutectic Silicon in Al-Si Alloys.J.Mater.Sci.2008,43,3009-3027.
    [17]Liu,X.;Liu,Y;Kushima,A.;Zhang,S.;Zhu,T.;Li,J.;Huang,J.Y In Situ TEM Experiments of Electrochemical Lithiation and Delithiation of Individual Nanostructures.Adv.Energy Mater.2012,2,722-741.
    [18]Liu,R.;Mahurin,S.M.;Li,C;Raymond,R.U.;Juan,C.I.;Gao,H.J.;Stephen,J.P.;Dai,S.Dopamine as a Carbon Source:The Controlled Synthesis of Hollow Carbon Spheres and Yolk-Structured Carbon Nanocomposites.Angew.Chem.,Int.Ed.2011,50,6799-6802.
    [19]Tan,Y;Tang,Y.H.;Pei,L.Z.The Study on Raman Spectra of Si Nanowires.Spectrosc.Spectral Anal.2007,27,725-729.
    [20]Tsu,R.;Shen,H.;Dutta,M.Correlation of Raman and Photoluminescence Spectra of Porous Silicon.Appl.Phys.Lett.1992,60,112-114.
    [21]Julie,C.M.;Zaghib,K.;Mauger,A.Characterization of the Carbon Coating onto LiFeP04 Particles Used in LithiumBatteries.J.Appl.Phys.2006,100,0635111-0635117.
    [22]Gao,P.F.;Fu,J.W;Yang,J.;Lv,R.G;Wang,J.L.;Nuli,Y.N.;Tang,X.Z.Microporous Carbon Coated Silicon Core/Shell Nanocomposite via in Situ Polymerization for Advanced Li-Ion Battery Anode Material.Phys.Chem.Chem.Phys.2009,11,11101-11105.
    [23]Zhang,Y;Xia,X.;Wang,X.;Mai,Y;Shi,S.;Tang,Y;Gu,C;Tu,J.Three-Dimensional Porous Nano-Ni Supported Silicon Composite Film for High-Performance LithiumIon Batteries.J.Power Sources2012,213,106-111.
    [24]Wang,M.S.;Fan,L.Z.;Huang,M.;Li,J.H.;Qu,X.H.Conversion of Diatomite to Porous Si/C Composites as Promising Anode Materials for Lithium-Ion Batteries.J.Power Sources 2012,219,29-35.
    [25]Li,X.L.;Gu,M.;Hu,S.Y.;Kennard,R.;Yan,P.F.;Chen,X.L.;Wang,C.M.;Sailor,M.J.;Zhang,J.G;Liu,J.Mesoporous Silicon Sponge as an Anti-Pulverization Structure for High Performance Lithium-Ion Battery Anod.
    [26]Yi,R.;Dai,F.;Gordin,M.L.;Chen,S.;Wang,D.Micro-sized Si-C Composite with Interconnected Nanoscale Building Blocks as High-Performance Anodes for Practical Application in Lithium-Ion Batteries.Adv.Energy Mater.2013,3,295-300.
    [27]Favors,Z.;Wang,W.;Bay,H.H.;Mutlul,Z.;Ahmed,K.;Liu,C;Ozkan,M.;Ozkan,C.S.;Ozkan,M.Scalable Synthesis ofNano-Silicon from Beach Sand for Long Cycle Life Li-Ion Batteries.Sci.Rep.2014,4,5623-5629.
    [28]Jiang,Z.Y.;Li,C.L.;Hao,S.J.;Zhu,K.;Zhang,P.An Easy Way for Preparing High Performance Porous Silicon Powder by Acid Etching AISi Alloy Powder for Lithium Ion Battery.Electrochim.Acta 2014,115,393-398.
    [29]Ng,S.H.;Wang,J.;Wexler,D.;Chew,S.Y;Liu,H.K.Amorphous Carbon-Coated Silicon Nanocomposites:A Low-Temperature Synthesis via Spray Pyrolysis and Their Application as High-Capacity Anodes for Lithiumlon Batteries.J.Phys.Chem.C 2007,111,11131-11138.
    [30]Shin,H.C;Cho,W.I.;Jang,H.Electrochemical Properties of the Carbon-Coated LiFeP04 as a Cathode Material for Lithium-Ion Secondary Batteries.J.Power Sources 2006,159,1383-1388.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700