高速列车头车空气动力和气动噪声特性分析
详细信息    查看官网全文
摘要
运用声学类比方法,数值分析了高速列车头车简化1:25缩比模型的空气动力与气动噪声特性。采用延迟分离涡模型数值求解Navier-Stokes方程后,获得近场流场,其结果用于基于Ffowcs Williams-Hawkings声类比方法的远场声辐射预测。结果表明,流体通过头车时形成了不同尺度和方向的复杂涡结构,上游几何体周围产生的涡向下游传播并与下游几何体相互作用,从而在下游及头车尾部形成高湍流度尾流区。头车端部车顶与侧墙连接处,转向架和转向架腔体后壁面部位以及头车尾部的涡脱落、流体分离和流体相互作用较为显著,涡结构发展较为集中。相应地,头车前后转向架以及头车车头和车尾,是头车产生气动噪声的主要部位。相比之下,头车端部,特别是前转向架部位,为气动噪声主要声源产生部位。因此,缓和头车端部流体冲击和流体相互作用,将有效降低该部位气动噪声的形成与辐射。
The aerodynamic and aeroacoustic behaviour of flow past a simplified high-speed train leading car at scale 1:25 is studied using a two-stage hybrid method comprising computational fluid dynamics and acoustic analogy.The near-field unsteady flow is obtained by solving the unsteady three-dimensional incompressible Navier-Stokes equations numerically with the delayed detached-eddy model and the results are used to predict the far-field noise through the Ffowcs Williams-Hawkings method.It is found that the unsteady flow past the leading car is characterized by the vortices of various scales and orientations shed from the geometries.The vortices formed behind the upstream geometries are convected downstream and impinge on the downstream bodies, generating a highly turbulent wake behind the leading car.Strong flow separations and vortex sheddings are developed in the junction area of the car roof and side walls, the two bogies and rear car parts.Correspondingly, the front and rear parts of the leading car and the two bogies produce most of the aerodynamic noise.By comparison, the unsteady flow interactings with the front parts of the leading car, especially the leading bogie, are the dominant aerodynamic noise sources.Therefore, the aerodynamic noise from the leading car could be reduced by mitigating the flow interactions in the front and rear parts of the leading car and the two bogies.
引文
[1]THOMPSON D J,LATORRE IGLESIAS E,LIU X W,ZHU J Y,HU Z W.Recent developments in the predi ction and control of aerodynamic noise from high-speed trains.International Journal of Rail Transportation,2015,3(3):119-150.
    [2]MELLET C,LéTOURNEAUX F,POISSON F,TALOTTE C.High speed train noise emission:Latest investigation of the aerodynamic/rolling noise contribution.Journal of Sound and Vibration,2006,293:535-546.
    [3]THOMPSON D J.Railway noise and vibration:mechanisms,modelling and means of control.Elsevier,Oxford,UK,2008.
    [4]LAUTERBACH A,EHRENFRIED K,LOOSE S,WAGNER C.Microphone array wind tunnel measurements of Reynolds number effects in high-speed train aeroacoustics.International Journal of Aeroacoustics,2012,11:411-446.
    [5]GAUTIER P E,POISSON F,LETOURNEAUX F.Noise sources for high speed trains:a review of results in the TGV case.Proceedings of the 9th International Workshop on Railway Noise,Germany,2007:71-77.
    [6]NAGAKURA K.Localization of aerodynamic noise sources of Shinkansen trains.Journal of Sound and Vibration,2006,293:547-556.
    [7]LATORRE IGLESIAS E,THOMPSON D J,SMITH M G,KITAGAWA T,YAMAZAKI N.Anechoic wind tunnel tests on high-speed train.Proceedings of the 7th Forum Acusticum,Krakow,Poland,2014.
    [8]NOGER C,PATRAT J C,PEUBE J,PEUBE J L.Aeroacoustical study of the TGV pantograph recess.Journal of Sound and Vibration,2000,231:563-575.
    [9]TALOTTE C,GAUTIER P E,THOMPSON D J,HANSON C.Identification,modelling and reduction potential of railway noise sources:a critical survey.Journal of Sound and Vibration,2003,267:447-468.
    [10]ZHU J Y,HU Z W,THOMPSON D J.Flow simulation and aerodynamic noise prediction for a high-speed train wheelset.International Journal of Aeroacoustics,2014,13(7&8):533-552.
    [11]ZHU J Y,HU Z W,THOMPSON D J.Flow behaviour and aeroacoustic characteristics of a simplified high-speed train bogie.Proceedings of the Institution of Mechanical Engineers Part F:Journal of Rail and Rapid Transit,2016,230(7):1642-1658.
    [12]ZHU J Y,HU Z W,THOMPSON D J.The effect of a moving ground on the flow and aerodynamic noise behaviour of a simplified high-speed train bogie.International Journal of Rail Transportation,DOI:10.1080/23248378.2016.1212677,Published online:27 Jul 2016.
    [13]MESKINE M,PéROT F,KIM M S,FREED D M,SENTHOORAN S,SUGIYAMA Z,POLIDORO F,GAUTIER S.Community noise prediction of digital high speed train using LBM.AIAA Paper 2013-2015,19th AIAA/CEAS Aeroacoustics Conference,Germany,2013.
    [14]SPALART P R,SHUR M L,STRELETS M KH,TRAVIN A K.Initial noise predictions for rudimentary landing gear.Journal of Sound and Vibration,2011,330,4180-4195.
    [15]FFOWCS WILLIAMS J,HAWKINGS D.Sound generation by turbulence and surfaces in arbitrary motion.Philosophical Transactions of the Royal Society of London A:Mathematical,Physical and Engineering Sciences,1969.264(1151):321-342.
    [16]LIGHTHILL M J.On sound generation aerodynamically.?.General theory.Proceedings of the Royal Society of London,Series A,Mathematical and Physical Sciences,1952,211(1107):564-587.
    [17]FARASSAT F.Derivation of Formulations 1 and 1A of Farassat.NASA/TM-214853,2007.
    [18]BRENTNER K S,FARASSAT F.Modelling aerodynamically generated sound of helicopter rotors.Progress in Aerospace Sciences,2003,39:83-120.
    [19]ZHU J Y.Aerodynamic noise of high-speed train bogies.Ph D Thesis.University of Southampton,2015.
    [20]WELCH P D.The use of fast Fourier transform for the estimation of power spectra:a method based on time averaging over short,modified periodograms.IEEE Trans.Audio Electroacoustics,Vol.AU-15:70-73,1967.
    [21]HU Z W,MORFEY C L,SANDHAM N D.Wall pressure and shear stress spectra from direct numerical simulations of channel flow.AIAA Journal,2006,44(7):1541-1549.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700