基于聚酰胺-胺(PAMAM)树状分子的新型复合纳滤膜表面荷电性能的研究
详细信息    查看官网全文
摘要
以聚砜超滤膜为基膜,使用不同代数的聚酰胺-胺(PAMAM)与均苯三甲酰氯(TMC)的界面聚合反应制备了复合纳滤膜.通过傅里叶变换红外光谱仪(FTIR-ATR)进行膜表面结构分析,并研究了膜制备条件对其荷电性能及分离性能的影响.结果表明:聚酰胺-胺(PAMAM,G0)浓度为0.20%时,其截留率达到最大值91.2%,通量为最低值6.32L/(m~2·h).于不同代数的PAMAM单体制备NF膜,界面聚合时间控制在120 s时,纳滤膜的盐截留率达到最大,通量也较稳定.当PAMAM(G2)的浓度从0.25%(wt.)增加到2%(wt.)时,Zeta电位从-10.8 mV下降到-6.5 mV,即纳滤膜的电性向正电方向移动,当TMC浓度由0.1%增加到0.5%时,Zeta电位从-1.0 mV下降到-10.5 mV,膜表面的电负性将增加.增大PAMAM与TMC的比值或缩短界面聚合的时间,将利于制备荷正电的纳滤膜.
Composite NF membrane was prepared by interfacial polymerization with different generation poly(amidoamine)(PAMAM) and trimesoyl chloride(TMC) on the substrate of PSF UF membrane.The resulted membranes were characterized with FTIR-ATR technology to analysis the surface structure,and investigate the ZETA potential and separation performance influenced by the preparation conditions.The results indicated that the highest rejection rate reached 91.2%and the lowest flux was 6.32 L/(m~2 · h)when the concentration was 0.20%for PAMAM(GO).For different generation PAMAM,the interfacial polymerization should be controlled as 120 s,the salt rejection rate reached the highest and the flux kept stable.The concentration of PAMAM(G2) increased from 0.25%(wt.) to 2%(wt.),the ZETA potential decreased from —10.8 mV to — 6.5 mV,which means that the membrane tends to be more positive.Meanwhile the concentration of TMC increased from 0.l%to 0.5%,the zeta potential decreased from —1.0 mV to —10.5 mV,which means the membrane tends to be more negative.Improve the ratio of PAMAM to TMC or shortenthe interfacial polymerization time will benefit to prepare positive nanofiltration membrane.
引文
[1]Dai Y,Jian X G,Zhang S H.Thin film composite(TFC)membranes with improved thermal stability from sulfonatedpoly(phthalazinone ether sulfone ketone)(SPPESK)[J].J Membr Sci,2002,207:189-197.
    [2]高从堦,陈益棠.纳滤膜及其应用[J].中国有色金属学报,2004,14(5):310-316.
    [3]张弘,何旭敏,夏海平.浅谈压力驱动膜在冶金工业上的应用[J].功能材料,2002,33(6):588-590.
    [4]Bellona C,Drewes J E,Xu P.Factors affecting the rejection of organic solutes during NF/RO treatment-a literature review[J].Water Res,2004,38:2795-2809.
    [5]王晓琳;涂丛慧;方彦彦;等.纳滤膜孔结构、荷电性质、分离机理及动电性质研究进展[J].2011,31(3):127-133.7-8.
    [6]Tang C Y,Kwon Y N,Leckie J O.Effect of membrane chemistry and coating layer on physiochemical properties of thin film composite polyamide RO and NF membranes.Ⅱ.Membrane physiochemical properties and their dependence on polyamide and coating layers[J].Desalination,2009,242:168-182.
    [7]Ba C,Langer J,Economy J.Chemical modification of P84 copolyimidemem-branes by polyethylenimine for nanofiltration[J].J Membr Sci,2009,327:49-58.
    [8]Li L C,Wang B G,Tan H M,et al.A novel nanofiltration membrane prepared with PAMAM and TMC by in situ interfacial polymerization on PEK-C ultrafiltration membrane[J].J Membr Sci,2006,269:84-93.
    [9]金丽梅,于水利,时文歆等.基于树状分子聚酰胺-胺(PAMAM)的复合纳滤膜制备及性能研究[J].高校化学工程学报,2012,6(26):1037-1042.
    [10]Freger V.Kinetics of film formation by interfacial polycondensation[J].Langmuir,2005,21:1884-1894.
    [11]Saha N K,Joshi S.V.Performance evaluation of thin film composite polyamide nano?Itration membrane with variation in monomer type[J].J Membr Sci,2009,342:60-69.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700