A Comparative Proteomic Analysis of Parthenogenetic Lines and Amphigenetic Lines of Silkworm
详细信息    查看官网全文
摘要
Parthenogenetic strains of silkworm serve as an effective system for sex-control in silkworms. To determine the molecular mechanism of silkworm parthenogenesis, protein profiles from newly hatched silkworm of a parthenogenetic lines with high pigmentation rate and hatching rate were compared with amphigenetic lines using proteomics approach, including by two-dimensional electrophoresis(2-DE), matrix-assisted laser desorption/ionization time-of-flight mass spectrometry(MALDI-TOF/TOF MS), and bioinformatics analysis. Several proteins were expressed differentially between the parthenogenetic and amphigenetic lines, and seven of nine interesting proteins were identified successfully using MALDI-TOF/TOF MS analysis. The identified proteins were muscular protein-20, odorant binding protein-LOC100301497, glutathione S-transferase delta, translationally controlled tumor protein homolog, cuticular protein RR-1 motif 19, beta-actin, actins, and muscle-type A1 actins. These proteins may be associated with the regulation of growth, development, and reproductive processes of silkworm parthenogenetic lines.
Parthenogenetic strains of silkworm serve as an effective system for sex-control in silkworms. To determine the molecular mechanism of silkworm parthenogenesis, protein profiles from newly hatched silkworm of a parthenogenetic lines with high pigmentation rate and hatching rate were compared with amphigenetic lines using proteomics approach, including by two-dimensional electrophoresis(2-DE), matrix-assisted laser desorption/ionization time-of-flight mass spectrometry(MALDI-TOF/TOF MS), and bioinformatics analysis. Several proteins were expressed differentially between the parthenogenetic and amphigenetic lines, and seven of nine interesting proteins were identified successfully using MALDI-TOF/TOF MS analysis. The identified proteins were muscular protein-20, odorant binding protein-LOC100301497, glutathione S-transferase delta, translationally controlled tumor protein homolog, cuticular protein RR-1 motif 19, beta-actin, actins, and muscle-type A1 actins. These proteins may be associated with the regulation of growth, development, and reproductive processes of silkworm parthenogenetic lines.
引文

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700