TC11热加工过程中组织演变的规律及裂纹形成的机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
TC11钛合金是一种重要的航空和宇航材料,属于两相组织α+β热强钛合金,其相变点约为998~1020℃,具有屈服强度高、疲劳强度大等特点,可在500℃以上长期使用,是航空航天发动机零部件的理想材料。但由于其在锻造过程中容易出现破裂、起皱等现象,这些问题严重阻碍了TC11钛合金的应用。而目前通用的试错型的经验方法,无法从根本上解决这些问题。因此,可以有效的对断裂缺陷进行预测将会大大提高TC11合金锻件的质量和生产效率,促进其发展和应用。本文在TC11合金的热变形行为研究的基础上,通过连续损伤力学伤理论推导出了可以预测材料断裂的损伤演化模型,同时通过微观分析得到了TC11微观组织及其结构参数对材料断裂的影响以及其断裂的微观机理。
     本文通过对TC11钛合金热模拟实验研究,得到了材料在高温变形条件下的真实应力应变曲线、探讨了变形工艺参数(如变形温度、应变速率等)对材料流动应力的影响并建立了材料的高温本构方程。在此基础上,基于连续损伤力学理论,并考虑变形温度与应变速率对高温变形损伤的作用,建立了材料高温变形条件下的损伤演化模型。通过高温单向拉伸实验确定了模型参数,并利用所建立的模型进行了TC11钛合金等温压缩变形断裂的预测,预测结果表明,该模型能够很好的预测TC11合金在低应变速率变形时的断裂行为。
     研究了材料的微观组织及其结构参数对材料断裂性能的影响及断裂机理。通过改变热处理条件得到了不同的微观组织结构,并分析了TC11钛合金微观组织随热处理条件的演化规律以及α片层厚度、α相百分含量等微观结构参数随热处理条件的变化规律。进而通过拉伸实验,得到了不同微观结构参数在不同变形工艺条件下的关系曲线,分析了力学性能、损伤演化速率随微观组织参数(α片层厚度、α相百分含量等)的变化规律。最后,通过金相显微观察、扫描电镜观察等微观分析的方法观察了TC11合金由于变形所产生的微观缺陷,研究了材料断裂的微观机理。研究发现,导致TC11钛合金断裂的根本原因是由于α+β两相变形不协调,导致孔洞在两相边界处产生,然后孔洞连接并沿着β晶粒边界扩展,最终导致材料的断裂。
As an important aerospace material, TC11 alloy is aα+βdual phase titanium alloy with the phasetransfer temperature between 998 and 1020℃. Because of its excellent properties such as high strength andfatigue resistance, it becomes an ideal material to make parts of aerospace engine. However, the applicationof TC11 alloy was so limited now because of the easily occurred defects such as fracture and fold duringforging process and the problem cannot be solved completely only by the present try- and -error method.So possible effective prediction of fracture can improve the efficiency and quality of the forged TC11 alloyparts and then promote the development and application of TC11 alloy. In this work, a damage evolutionmodel based on continuum damage mechanics theory was proposed to be used for fracture prediction. Andthe effect of microstructure and the microstructure parameters on the fracture process was analyzed. Thenthe fracture mechanism of TC11 alloy was discussed.
     First the stress-strain curves were obtained by physical simulation experiments and the effects ofdeformation conditions (temperature. strain rate)on the deformation behaviors were discussed and then theconstitutive equation was established. On this basis, the damage evolution model at high temperature wasestablished based on the continuum damage mechanics theory considering the effects of deformationconditions (temperature、strain rate) on damage evolution. Then the parameters of the model weredetermined by hot tensile tests. Finally, the proposed model was used to predict the fracture behaviorsduring upset forging. The results indicated that the model can predict the fracture successfully.
     The effects of the microstructure and the microstructure parameters on the fracture process werediscussed and fracture mechanism of TC11 alloy was studied. First, different microstructures were obtainedby changing heat treatment conditions and the microstructure evolution was analyzed. Then the relationshipbetween the volume fraction and size ofαphase and the heat treatment conditions were built up. Therelationship between the microstructure parameters and the mechanical properties were also discussed asthe damage evolution rate was proposed. At last, the facture mechanism of TC11 alloy was investigatedbased on some micro telescope observation. It is found that incompatibility of deformation between theαandβphases could be the main cause of fracture. It begins with some cavities and then those cavitiescoalescence and growth and finally the fracture happen.
引文
[1] 王金友等著.航空用钛合金.上海:上海科学技术出版社,1985.
    [2] 吴书云等.现代工程合金.北京:国防工业出版社,1983.
    [3] 莱茵斯C,皮特尔斯M著.陈振华译.钛与钛合金.北京:化学工业出版社,2005.
    [4] 肖纪美.金属的韧性与韧化.上海:上海科学技术出版社,1980.
    [5] 李兆霞.损伤力学及其应用.北京:科学出版社,2002.
    [6] 夏蒙棼.统计细观损伤力学和损伤演化诱致突变.力学进展,1995,25(1):1-40.
    [7] 杨帆.一个描述脆性材料非线性行为的损伤力学模型.力学学报,1995,27(6):681-690
    [8] 冯西桥,余寿文.脆性材料的各向异性损伤及其测量方法.清华大学学报,1995,35(2):6-11.
    [9] 黄再兴.本构关系对连线介质损伤力学基本方程适定性的影响——一维弹性损伤情况.航空学报,2000,21(2):124—127.
    [10] 赵爱红,虞吉林.准脆性材料的细观损伤演化模型.清华大学学报,2002,40(5):88—91.
    [11] 冯西桥,余寿文.计算微裂纹损伤材料有效模量的一种简单方法.力学学报,2001,33(1):102—108.
    [12] Tang H, Beuth J K. The present of the damage evolution criterion. Proc.Structural. Intermetallics. 2001: 355—3621
    [13] 陈剑虹,王国珍.TiAl金属间化合物解理断裂行为的研究[J].甘肃工业大学学报,1999,25(3):1—5.
    [14] Ritchie R R, Knott J F, Rice J R. Proceedings of the conference on the physical basis of yield and fracture. Journal of the Mechanic and Solids. 1986, 34: 477-479.
    [15] Chen J H, Wang G Z etal. Inter Journal of Fracture. 83 (2): 121—123.
    [16] Chen J H, Cao R, Z.Wang, J.Zhang. Study on notch fracture of TiAI alloys at room temperature. Metallurgical and Materials TransA. 2003, 34 (1): 2820—2829.
    [17] Chen J H, Cao R, Zhang J, Wang GZ. Fracture behavior of notched specimens of TiA1 alloys. Journal of Materials Science. 2007, 42(8): 134-137.
    [18] Chan K S., Kim Y W. Relationships of slip morphology microcracking and fracture resistance in a lamellar TiAl-alloys. Metallurgical and Materials Transation A. 1994: 1217-1221.
    [19] Kim Y W. Effects of microstructure on the deformation and fracture of γ-TiAl alloys. Materials Science and EngineeringA. 1995: 519—533.
    [20] Chan K S., Kim Y M. Rate and environment effects on fracture of a two-phase TiAl alloy. Metallurgical TransA. 1993, 24: 113-125.
    [21] Arata J M., Kumar K S, Curtin W A. Crack growth in lamellar titanium aluminide. International Journal of Fracture. 2001 (1): 163—189.
    [22] Hazzledine P M, Kad R K. Yield and fracture of lamellar γ/α TiAl alloy. Materials Science and EngineeringA. 1995: 340-346.
    [23] Madan H, Mendiratta G, Robert L. Notch fracture in γ-Titanium Aluminides. Metallurgical and Materials TransA. 1996, 27(12): 3903.
    [24] Lineberger L. Titanium aerospace alloy. Advanced Materials&Process, 1998, (5): 45-46
    [25] Inui H, Nakamura A, Yamaguchi M. Room temperature tensile deformation of polysynthetically twinned (PST) cryctals of TiAl. Acta Material. 1992,40(11): 3095-3104.
    [26] Lu Y H, Zhang Y G. In-situ SEM study of fracture mechanism in fully lamellar TiAI alloy. Rare Metal Materials and Engineering. 2001, 30: 24—26.
    [27] Lu Y H, Zhang Y G. The two fold effects of grain in boundary on fracturebehaviors in fully lamellar TiAi alloys. Materials and Engineering. 2001: 11—14
    [28] Simkin B A, Crimp MA. A factor to microcrack nucleation at boundaries in TiAI. Scripta Materialia. 2003, 49: 149—154.
    [29] 欧文沛,黄伯云.TiAl基合金高温动态损伤的研究.矿冶工程.1997,17(1):68-70.
    [30] Liu C T, Schneibel J H, Maziasz P J. Tensile properties and fracture toughness of TiAl alloys with controlled microstmcture. Interrnetallics, 1996, 4: 429-440.
    [31] Liu C T, Schneibel J H. Tensile properties and fracture toughness of γ-Ti alloys with controlled microstructure. Inter metallics, 1997, 8: 521-535.
    [32] Chan K S, Kim Y M. Effects of lamellar spacing and colony size on the fracture resistance of a full-lamellar TiAl alloy. Acta Matal Mater. 1995, 43 (2): 439-451.
    [33] Yamaguchi M, Inui H, Yokoshima S. Recent progress in our understanding of deformation and fracture of two-phase and single-phase TiAl alloys. Materials Science and Engineering. 1996: 25-31.
    [34] Parrini. H. Influence of the on the plastic deformation in TiAl. Metallurgical TransA. 1999, 30: 2865.
    [35] Chan K S, Kim Y M. Influence of microstructure on crack-tip micromechanicas and fracture behaviors of a two-phase TiAl alloy. Metallurgical Trans A. 1992: 1663.
    [36] 韩冰.7075铝合金高温塑性变形行为研究.广东工业大学学报,2003,15(5):8—10.
    [37] 陈胜晖.基于微观组织演变的钛合金本构关系模型及应用(硕士学位论文),西安:西北工业大学,2004.
    [38] 汪大年主编.《金属塑性成形原理》西安交通大学.北京:机械工业出版社,101—103.
    [39] 许树勤,陈志英,张善元.镦粗试验中鼓度与摩擦的相关性研究.锻压技术,2004,29(5):46-48.
    [40] 牛济泰 编著.材料和热加工领域的物理模拟技术.北京:国防工业出版社
    [41] 龚羽,郑芳,焦四海.热模拟圆柱形压缩试样上金相观测点的选取.理化检验—物理分册.2004.40(6)
    [42] 王少林,阮雪榆,俞新陆等.运用热模拟压缩试验确定精确的金属流动方程.中国机械工程,1996.7(6):101-102.
    [43] 鲍俊瑶,徐超.TC11钛合金高温塑性本构方程研究[J].安徽建筑工业学院学报(自然科学版),1999.7(4):41—45
    [44] 刘文娟.Al-8.4Zn-2.2Mg-2.4Cu合金高温塑性变形行为研究(硕士学位论文).广州:广东工业大学.2004.
    [45] 罗子健,杨旗,姬婉华.考虑变形热效应的本构关系建立方法[J].中国有色金属学报,2000.10(6):804—808.
    [46] 聂雷.TC4合金的热模锻过程设计与质量控制.西北工业大学学报,2002.24—25
    [47] 杨立斌,张辉,彭大暑等.7050铝合金高温流变行为的研究.热加工工艺,2002.(1):1-2
    [48] 蔡大勇.GH169及GH696高温合金热加工工艺基础研究.燕山大学.2003.1:16-24.
    [49] Cockroft M G, Latham D J. A simple criterion for fracture for ductile-fracture of metals. National Engineering Laboratory, Report No. 240, 1966.
    [50] Wu S C, Liang H. A kinetic equation for ductile damage at large plastic strain. J. Mat.Pro.Tech. 1990,21:295-302.
    [51] Oyane M, Sato T, Okimoto K, etal. Criteria for ductile fracture and their applications. Journal of Mechanical Work and Technoloyg, 1980, 4: 65.
    [52] Lemaitre J. A continuous damage mechanics model for ductile fracture [J]. J Eng Mater and Technol, 1985, 107(1): 83—89.
    [53] Elgueta M, Cortes C. Application of continuum damage theory in metal forming processes [J]. J Mater Process Technol, 1999, 95: 122—127.
    [54] J.勒迈特.损伤力学教程.北京:科学出版社,1996,13-29.
    [55] Lemaitre J. A Course on Damage Mechanics [M]. Berlin, Springer-Verlag, 1992.
    [56] 余天庆,钱济成.损伤理论及其应用.北京:国防工业出版社,1993,46-51.
    [57] Wang L Y, Liu X F. Damage evolution of metallic materials during high temperature plastic d eformation. Trans. Nonferrous Met. Soc. China, 2002, 12(3): 379-382.
    [58] 程羽,郭成.SiC颗粒增强Al基复合材料成形极限的研究.塑性工程学报,2001,3(8):1-3.
    [59] 鲍丽索娃EA.钛合金金相学.北京:国防工业出版社,1986.
    [60] Lineberger L. Titanium aerospace alloy. Advanced Materials&Process, 1998, (5): 45.
    [61] 李晓芹.锻造加热温度对TC11合金组织性能的影响.热加工工艺,1999,(3):30-32.
    [62] 庞韵虹,周义刚,俞汉清.TC11钛合金盘的显微组织断裂形态及断裂韧性间的关系.金属科学与工艺,1991,10(2):73-78.
    [63] 曹晓卿.显微组织对TC11钛合金机械性能的影响.太原理工大学学报,2001,32(1):61-63.
    [64] 唐光昕,朱张校.TC11钛合金在不同热处理条件下的组织分析.稀有金属,2002,26(2):146-148.
    [65] 曾卫东,周义刚.冷速对TC11钛合金β加工显微组织和力学性能的影响.金属学报,2002,38(12):1273-1276
    [66] 庞韵虹,周义刚,余汉清.TC11钛合金盘的显微组织断裂形态及断裂韧性间的关系。金属科学与工艺,1991,10(2):73-78.
    [67] 刘锡江,张宝昌.显微组织和拉伸塑性对TC11合金低周疲劳性能的影响.航空材料学报,1992,12(2): 47-54.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700