慢病毒载体介导的RNAi抑制牛整联蛋白亚基αv基因表达的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
受体在病毒与宿主细胞的相互作用过程中起着极为重要的作用。口蹄疫病毒感染宿主细胞的第一步是病毒识别并结合存在于宿主细胞表面的受体,然后在受体的介导下,病毒才能够进入宿主细胞并在其中完成核酸的复制及病毒粒子的装配。整联蛋白是一类由α亚基和β亚基以非共价键结合形成的异源二聚体跨膜糖蛋白,能介导细胞与细胞、细胞与细胞外基质之间的相互作用,在细胞的增殖、分化、移行、生长等许多方面发挥重要作用。该蛋白家族拥有24个蛋白成员,其中,ανβ1、ανβ3、ανβ6、ανβ8是目前公认的FMDV的受体,这四种整联蛋白拥有一个共同的亚基αν。RNAi是由双链RNA介导的序列特异性RNA降解作用。它通过双链RNA的介导,特异性阻抑相关基因的表达,从而导致转录后水平的基因沉默。慢病毒载体是理想的真核细胞基因转移工具,被广泛应用于相关的RNAi研究领域,例如抗病毒研究、遗传性疾病的治疗、基因治疗。利用慢病毒载体稳定转染并整合宿主基因组的特性可以使设计好的RNA干扰片段在目的细胞系中持续表达,达到对靶基因持续干扰的效果。
     本实验根据本课题组以前克隆的牛源整联蛋白αv基因(Genban登录号:DQ871215),按照siRNA设计原则,运用在线siRNA设计软件设计3个针对integrin-αv的siRNA靶点序列αν-2270、αν-1716、αν-483和一个siRNA阴性对照si0。运用实时荧光定量PCR技术筛选出高效的干扰片段αν-483,将αν-483的核苷酸序列交由生物公司合成其对应的双链cDNA,双链cDNA通过定向克隆连接至U6进入载体(U6 entry vector),构建出进入载体U6-αν483,U6-αν483与pLenti6/BLOCK-iT~(TM)载体系统中的表达质粒通过LR同源重组反应形成表达载体DEST-αν483。在生长状态良好的20代次之内的293FT细胞中,转染DEST-αν483及包装Mix中的三个包装质粒pLP1,pLP2和pLP/VSVG,72h之后收集慢病毒液,命名为plenti6/αv483。用pk-15进行慢病毒滴度的测定,结果显示plenti6/αv483的滴度为14.2×10~(-6) TU/ml,达到了转染细胞所需的滴度要求。用plenti6/αv483来转染牛肾细胞MDBK,在杀稻瘟菌素的抗性压力之下筛选出了四株单克隆的阳性细胞系,分别为1B8、1F5、2B9、2E6。经核酸水平的实时荧光定量PCR和细胞水平的cell-ELISA及间接免疫荧光实验鉴定,四株细胞系中整联蛋白的表达量均有不同程度的下降,其中1F5细胞株中整联蛋白表达量下调的幅度最大。
     本研究筛选了具有高效干扰牛整联蛋白αv亚基基因的siRNA,以此为依据构建了表达具有干扰效果shRNA的慢病毒载体,并运用构建好的慢病毒载体筛选出了整联蛋白表达量下降的稳定转染细胞系。对通过下调病毒受体的表达来降低宿主对病毒敏感性的研究进行了初步探索。
Viral receptor plays a significant role in the interaction between virus and its cellular receptors. The attachment of foot-and-mouth-disease virus to the receptor on the surface of host cells is the first stage of virus infection, through which virus can entry the cell. Then virus completes the replication of its genome and the assembly of the viral particles. Integrins are a large family of heterodimeric transmembrane glycoproteins composed ofαandβsubmint that interact noncovalently at th cell surface. They mediate cell-cell interaction and the binding of cells to the extracellular matrix,and they play a crucial role in cell division, differentiation, migration, and survival. The protein family has 24 members. But onlyανβ1、ανβ3、ανβ6、ανβ8 four members have been identified as receptors for foot-and-mouth disease virus at present, and they have the same subunitαν. RNA interference refers to the inhibition of gene expression by dsRNA. It is a post transcriptional gene silencing mechanism, by which double stranded RNA specifically suppresses the expression of coherent sequences. As a good eukaryotic cells gene transfer vector, lentivirus-based vectors are generally applied in RNAi related research, such as antiviral research, therapy of hereditary diseases and gene therapy. Considering lentiviral vector can stably transfect host cells and even integrate into the host genomes, it can be used to express the designed siRNA in host cell. Thus continuously downregulating the express of the target gene.
     According to the sequence of bovine integrin published in Genbank, we designed three siRNAs targeting integrinανsubunit by the online software of designing siRNA namedαν-2270、αν-1716、αν-483. Moreover, a negative control named si0 is also made. The most efficient siRNA(αν-483) was selected by real-time RT-PCR. Authorized a biotechnology company to synthetize the corresponding ds oligo cDNA sequence ofαν-483 and the cloned the ds oligo into the U6 entry vector, thus construst the entry vector U6-αν483. After the LR recombination reaction between the entry vector U6-αν483 and the expression vector in the pLenti6/BLOCK-iT~(TM) system, the sequence of the U6 RNAi cassette in U6-αν483 has been transferred into the destination vector and the expression vector named DEST-αν483 was constructed. Transfected the DEST-αν483 and the three packaging plasmids pLP1,pLP2 and pLP/VSVG in the packaging mix into well-grown 293FT and harvested virus(named plenti6/αv483)-containing supernatants 72 hours posttransfection. After Titering the plenti6/αv483 lentiviral stock using pk-15 cell line, we figured the titer of the lentiviral construct out: 14.2×10~(-6) TU/ml. Then MDBK cells were infected by plenti6/αv483 and were continually seeded in the medium at the optimal blasticidin regulatory concentration for two weeks to obtain the blasticidin resistant colonies. At last, four resistant cells lines named 1B8、1F5、2B9、2E6 were selected and then cultured for positive identification. After the identification by real-time RT-PCR in the nucleic acid level and the cell-ELISA、IIF in the protein level, we confirmed that the expression of integrin in these four cells lines all had different degree of decline. Furthermore, the downregulating expression of integrin in 1F5 cell line is the most significant.
     The experiment had constructed the lentiviral vector which express the shRNA targeting the bovine integrinανsubunit successfully and then obtained blasticidin resistant cells whose genome had been integrated by the lentiviral vector. We had carried out the preliminary study of anti-virus by downregulating the expression of the viral receptor.
引文
1.陈伟,何军林.小干扰RNA的设计[J].国际药学研究杂志, 2010, 37 (2): 133-135.
    2.陈香梅,徐开林,潘秀英,等.携带绿色荧光蛋白基因的逆转录病毒载体的构建及其介导的T细胞基因转移研究[J ] .中国实验血液学杂志,2005 ,13 (4) :641~644.
    3.何菲,邹凡文. RNA干扰技术的研究进展[J].生物技术通报, 2010, 11 (7): 68-72.
    4.李跃萍,宋丽萍,邱曙东,等.慢病毒载体在肿瘤基因治疗中的应用[J].现代肿瘤医学,2006 ,14 (12) :1615~1617.
    5.李振宇,徐开林,潘秀英,等.慢病毒载体介导绿色荧光蛋白基因在小鼠T淋巴细胞中的表达[J ] .中国实验血液学杂志,2007 ,15(1) :125~128.
    6.吕学诜,吕仁杰,吕超.基因敲除与基因沉默[J].黑龙江医药科学, 2009, 32 (5): 65-66.
    7.田云,任裕其,屈源泉,等.伪狂犬病毒荧光定量PCR检测方法的建立[J].广东畜牧兽医科, 2009, 34(4): 31-33.
    8.徐世永.慢病毒载体法高效转基因鸡制备技术研究[D] .南京:南京农业大学,2007.
    9.张敬之,郭歆冰,谢书阳,等.用慢病毒载体介导产生绿色荧光蛋白( GFP)转基因小鼠[J] .自然科学进展,2006 ,16 (5) :571~577.
    10. Arrighi JF, PionM, Wiznerowicz M et al. Lentivirus-mediated RNA interference of DC-SIGN expression inhibits human immunodeficiency virus transmission from dendritic cells to T cells. Jounal of Virology, 2004,78(20):10848~10855.
    11. Baranowski E., Ruiz-Jarabo C.M.,Sevilla N., et al. Cell recognition by foot-and-mouth disease virus that lacks the RGD integrin-binding motif: flexibility in aphthovirus recepter usage. J virol. 2000, 74: 164-647.
    12. Berinstein A, Roivainen M, Hovi T, et al. Antibodies to the vitronectin receptor(integrinαvβ3) inhibit binding and infection of foot-and-mouth disease virus to cultured cells[J]. J Virol, 1995, 69(4):2664~2666.
    13. Bernfield M., Gotte M., Park P.W., et al. Functions of cell surface heparin sulfate proteoglycans. Ann Rev Biochem. 1999, 68: 729~777.
    14. Berryman S, Clark S, Monaghan P, et al. Early events in integrinανβ6-mediated cell entry of foot-and-mouth disease virus[J]. J Virol, 2005, 79(13):8519~8534.
    15. Brassard J, Gagne M J, Houde A, et al. Development of a real-time TaqMan PCR assay for the detection of porcine and bovine Torque teno virus[J]. J Appl Microbiol. 2010, 108(6): 2191-2198.
    16. Buchschacher G L, Wong-Staal F, et al. Development of Lentiviral Vectors for Gene Therapy for Human Diseases[J]. Blood, 2000, 95, 2499-2504.
    17. Burns J C, Friedmann T, Driever W, et al. Vesicular Stomatitis Virus G Glycoprotein Pseudotyped Retroviral Vectors: Concentration to a Very High Titer and Efficient Gene Transfer into Mammalian and Nonmammalian Cells[J]. Proc. Natl. Acad. Sci. USA . 1993, 90, 8033-8037.
    18. Carvalho, S.D., Rieder E., Baxt B., et al. Tissue culture adaptation of foot-and-mouth disease virus selects viruses that bind to heparin and are attenuated in cattle. J Virol. 1997, 71: 5115-5123.
    19. Chen W, Yan W, Du Q, et al. Adenovirus-mediated RNA interference against foot-and-mouth disease virus infection both in vitro and in vivo[J]. Journal of Virology, 2006, 80: 3559-3566.
    20. Chen W, Yan W, Du Q, et al. RNA interference targeting VP1 inhibits foot-and-mouth disease virus replication in BHK-21 cells and suckling mice[J]. Journal of Virology, 2004, 78(13): 6900-6907.
    21. Cong W, Cui S Q, Chen J I, et al. Construction of a multiple targeting RNAi plasmid that inhibits target gene expression and FMDV replication in BHK-21 cells and suckling mice[J]. Vet Res Commun, 2010, 34:335–346.
    22. Dechamma H J, Sarika S, Kumar C, et al. The plasmid constructs producing shRNA corresponding to the conserved 3D polymerase of Foot and Mouth Disease virus protects guinea pigs against challenge virus [J]. Vet Res Commun, 2009, 33:263–271.
    23. Duque H, Baxt B. Foot-and-mouth disease virus receptors: comparison of bovineανintegrin utilization by type A and O viruses[J]. J Virol, 2003, 77(4):2500~2511.
    24. Duque H, LaRocco M, Golde WT, et al. Interactions of foot-and-mouth disease virus with soluble bovineαvβ3 andαvβ6 integrins[J]. J Virol, 2004, 78(18):9773~9781.
    25. Emi N, Friedmann T, Yee J K. Pseudotype Formation of Murine Leukemia Virus with the G Protein of Vesicular Stomatitis Virus[J]. J. Virol. 1991, 65, 1202-1207.
    26. Fire A, Xu S, Montgomery M K, et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans[J]. Nature, 1998,391(6669): 806-811.
    27. Fox G., Parry N.R., Barnett P.V., et al. Cell attachment site on foot-and-mouth disease virus includes the amino acid sequence RGD (arginine-glycine-aspartic acid). J Gen Virol. 1989, 70: 625-637.
    28. Fry E., Lea S.M., Jackson T., et al. The structure and function of a foot-and-mouth disease virus-oligosaccharide receptor complex. EMBOJ. 1999, 18: 543-554.
    29. Goldman M J, Lee P S, Yang J S, et al.Lentiviral vectors for gene therapy of cystic fibrosis[J].Hum GeneThera, 1997, 8: 2261-2268.
    30. Hynes RO. Integrins: bidirectional, allosteric signaling machines[J]. Cell, 2002, 110(6):673~ 687.
    31. Hynes, R. O. Integrins: Versatility, modulation, and signaling in cell adhesion [J]. Cell, 1992, 69:11 -25.
    32. Jackson T, Clark S, Berryman S, et al. Integrinανβ8 functions as a receptor for foot-and-mouth disease virus: role of theβ-chain cytodomain in integrin-mediated infection[J].Journal of virology,2004,78(9):4533-4540.
    33. Jackson T, King AM, Stuart DI, et al. Structure and receptor binding[J]. Virus Res, 2003, 91(1): 33~46.
    34. Jackson T, Sharma A, Ghazaleh RA, et al. Arginine-glycine-aspartic acid specific binding by foot-and-mouth disease viruses to the purified integrinαvβ3 in vitro[J]. J Virol, 1997, 71(11): 8357~8361.
    35. Jackson T, Sheppard D, Denyer M, et al. The epithelial integrinαvβ6 is a receptor for foot-and- mouth disease virus[J]. J Virol, 2000, 74(11):4949~4956.
    36. Jackson T., Ellard F.M., Abu-Ghazaleh R., et al. Efficient infection of cells in culture by type Ofoot-and-mouth disease virus requires binding to cell surfaceheparan sulfate. J Virol. 1996, 70 : 5282-5287.
    37. Kahana R, Kuznetzova L, Rogel A, et al. Inhibition of foot-and-mouth disease virus replication by small interfering RNA[J]. Gen Virol, 2004,85(Pt 11): 3212-3217.
    38. Ke Lv, Yingjun Guo, Yiliang Zhang, et al. Transient inhibition of foot-and-mouth disease virus replication by siRNAs silencing VP1 protein coding region[J]. Research in Veterinary Science, 2009, 86:443-452.
    39. Koistinen P, Heino J. The selective regulation ofανβ1 integrin expression is based on the hierarchical formation ofαν-containing heterodimers[J]. J Biol Chem, 2002, 277(27):24835~ 24841.
    40. Lee SK, Dykxhoorn DM, Kumar P, et al. Lentiviral delivery of short hairpin RNAs protects CD4T cells from multiple clades and primary isolates of HIV. Blood, 2005, 106 (3) :818~826
    41. Li M, Rossi JJ. Lentiviral vector delivery of siRNA and shRNA encoding genes into cultured and primary hematopoietic cells[J]. Methods in Molecular Biology, 2005, 30(9): 261~272.
    42. Liu M, Chen W, Ni Z, et al. Cross-inhibition to heterologous foot-and-mouth disease virus infection induced by RNA interference targeting the conserved regions of viral genome[J].Virology, 2005, 336(1): 51-59.
    43. Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-⊿⊿C t method[J]. Methods, 2001,25(11):402-408.
    44. Lois C, Hong EJ, Pease S, Brown EJ, Baltimore D. Germline transmission and tissue-specific expression of transgenes deliv-ered by lentiviral vectors. Science 2002;295:868–72.
    45. Luo BH, Carman CV, Springer TA. Structural basis of integrin regulation and signaling[J]. Annu Rev Immunol, 2007, 25(6):619~647.
    46. Lv K, Guo Y J, Zhang Y L, et al. Transient inhibition of foot-and-mouth disease virus replication by siRNAs silencing VP1 protein coding region.[J] .Research in Veterinary Science, 2009, 86:443–452.
    47. Mackow E R, Gavrilovskaya I N. Cellular receptors and hantavirus pathogenesis [J]. Curr Top Microbiol Immunol, 2001, 256:91-115.
    48. Mason P.W., Baxt B., Fred B., et al. Antibody-Complexed Foot-and-Mouth Disease Virus, but Not Poliovirus, Can Infect Normally Insusceptible Cells via the Fc Receptor. Virology. 1993, 192: 568-577
    49. Mason P.W., Rieder E., Baxt B., RGD sequence of foot-and mouth disease virus is essential for infecting cells via the natural receptor but can be bypassed by an antibody-dependent enhancement pathway. Proc Natl Acad Sci. 1994, 91:1932–1936.
    50. Miller LC, Blakemore W, Sheppard D, et al. Role of the cytoplasmic domain of theβ-subunit of integrinαvβ6 in infection by foot-and-mouth disease virus[J]. J Virol, 2001, 75(9):4158~4164.
    51. Monaghan P, Gold S, Simpson J, et al. Theαvβ6 integrin receptor for foot-and-mouth disease virus is expressed constitutively on the epithelial cells targeted in cattle[J]. J Gen Virol, 2005, 86(10):2769~2780.
    52. Mu D, Cambier S, Fjellbirkeland L, et al. The integrinαvβ8 mediates epithelial homeostasisthrough MT1-MMP-dependent activation of TGF-1[J]. J Cell Biol, 2002, 157:493~507.
    53. Neff S, Mason PW, Baxt B. High-efficiency utilization of the bovine integrinαvβ3 as a receptor for foot-and-mouth disease virus is dependent on the bovineβ3 subunit[J]. J Virol, 2000, 74(16): 7298~7306.
    54. Neff S, Sa-Carvalho D, Rieder E, et al. Foot-and-mouth disease virus virulent for cattle utilizes the integrinαvβ3 as its receptor[J]. J Virol, 1998, 72(5):3587~3594.
    55. Nishitsuji H, Ikeda T, Miyoshi H, et al. Expression of small hairpin RNA by lentivirus-based vector confers efficient and stable gene-suppression of HIV-1 on human cells including primary non-dividing cells[J]. Microbes Infection. 2004, 6(1) : 76~85.
    56. Paddison PJ,CaudyAA,Hanoon GJ, et a1.Short hairpinRNA5 (shRNAs) induce sequence-specific silencing in mammalian cel1.Genes Dev,2002,16(8):948—958.
    57. Pfeifer A, Ikawa M, Dayn Y, Verma IM. Transgenesis by lentiviral vectors: lack of gene silencing in mammalian embryo-nic stem cells and preimplantation embryos. Proc Natl Acad Sci USA 2002;99:2140–5.
    58. Rieder E., Berinstein A., Baxt B., et al. Propagation of an attenuated virus by design: engineering a novel receptor for a noninfectious foot-and-mouth disease virus. Proc Natl Acad Sci. 1996, 93: 10428-10433.
    59. Rieder E., Henry T., Duque H., et al. Analysis of a foot-and-mouth disease virus type A24 isolate containing an SGD receptor recognition site in vitro and its pathogenesis in cattle. J Virol. 2005, 79:12989-12998.
    60. Robl J M ,Wang Z , Kasinat han P. Transgenic animal productionand animal biotechnology [J] . Theriogenology , 2007 , 67 : 127~133.
    61. Rubinson DA, Dillon CP, Kwiatkowski AV, et al. A lentivirus-based system to functionally silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference[J]. Nature Genetics, 2003, 33(3):401~406.
    62. Sijen T, Vijn I, Rebocho A, et al. Transcriptional and posttranscriptional gene silencing are mechanistically related[J]. Curr Biol 2001, 11:436-440.
    63. Singh B, Rawlings N, Kaur A. Expression of integrinανβ3 in pig, dog and cattle[J]. Histol histopathol, 2001,16(4):1037~1046.
    64. Sompele V D, Preter K D, Pattyn F, et al. Accuraten or malization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes[J]. Genome Biol, 2007, 3(7): 1-11.
    65. Spear P G. Entry of alphaherpesviruses into cells. Semin Virol, 1993, 4:167~180.
    66. Stewart PL, Nemerow GR. Cell integrins: commonly used receptors for diverse viral pathogens [J]. Trends Microbiol, 2007, 15(11):500~506.
    67. Stewart SA, Dykxhoorn DM, Palliser D, et al. Lentivirus-delivered stable gene silencing by RNAi in primary cells[J]. RNA. 2003, 9(4):493~501..
    68. Szulc J,Wiznerowicz M,Sauvain M O,et a1.A versatile tool for conditional gene expression and knockdown [J].Nat Methods,2006,3(2):109—116.
    69. Takada Y, Ye X, Simon S. The integrins[J] . Genome Biolology, 2007, 8: 215.
    70. Thomas A.H., Edward F.P., Integrin-ligand interactions: a year in review. Current Opinion in Cell Biology. 1994, 6: 656-662.
    71. Tiscornia G, SingerO,Verma IM Design and cloning of lentiviral vectors expressing small interfering RNAs[J]. Nature Protocols, 2006, 1(1):234~240.
    72. Wegener KL. Structural basis of integrin activation by talin[J]. Cell, 2007, 128(1):171~182.
    73. Wickham T.J., Mathias P., Cheresh D.A., Integrinsαvβ3 andαvβ5 promote adenovirus internalization but not virus attachment. Cell.1993, 73:309-319.
    74. Wiznerowicz M, Szulc J, Trono D. Tuning silence : Conditional systems for RNA interference[J].Nat Methods,2006,3(9):682—688.
    75. Wong M L, Medrano J F. Real-time PCR for mRNA quantitation[J]. Biol Tech, 2005, 39(5):75-85.
    76. Xiong J.P., Thilo S., Rongguang Z., Crystal Structure of the Extracellular Segment of Integrinαvβ3 in Complex with an Arg-Gly-Asp Ligand. Science. 2002, 296: 151-155.
    77. Yee J K, Miyanohara A, LaPorte P, et al. A General Method for the Generation of High-Titer, Pantropic Retroviral Vectors: Highly Efficient Infection of Primary Hepatocytes[J]. Proc. Natl. Acad. Sci. USA. 1994, 91, 9564-9568.
    78. Yee J K, Moores, J C, Jolly D J, et al. Gene Expression from Transcriptionally Disabled Retroviral Vectors. Proc. Natl. Acad. Sci. USA, 1987, 84, 5197-5201.
    79. Yu S. F, Ruden T V, Kantoff P W, et al. Self-Inactivating Retroviral Vectors Designed for Transfer of Whole Genes into Mammalian Cells[J]. Proc. Natl. Acad. Sci. USA. 1986, 83, 3194-3198.
    80. Zufferey R, Dull T, Mandel R J, et al. Self-inactivating Lentivirus Vector for Safe and Efficient in vivo Gene Delivery[J]. J. Virol. 1998, 72, 9873-9880.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700