IL-24基因靶向杀伤卵巢癌细胞及其影响化疗药物敏感性的体外实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
卵巢癌在女性生殖系统恶性肿瘤中发病率居第三位,死亡率居首位。由于卵巢癌发病具有隐匿性,加上缺乏有效的预防措施和筛选方法,75-80%的患者明确诊断时已是晚期。尽管大多数患者在接受初次手术和化疗后能得到缓解,但复发率仍较高,使得卵巢癌患者的5年存活率始终徘徊于30%左右,因此寻找新的治疗方案迫在眉睫。
     近些年,多种基因治疗策略应用于卵巢癌治疗,包括分子化疗、基因突变补偿、免疫增强、溶瘤病毒、RNAi和多基因联合治疗等,其中有一些已进入临床实验阶段,但有效性和安全性始终限制着基因治疗在临床的广泛应用。为提高基因治疗的安全性,人们开始了基因的靶向治疗研究,即将目的基因通过载体系统高效转入肿瘤细胞,并只在肿瘤细胞表达而发挥杀伤作用,不影响机体的正常组织。同时为了提高基因治疗的有效性,人们不断寻找有效的肿瘤杀伤基因,并联合化学疗法以提高基因治疗的效果。
     近年来,陆续报道了一些卵巢组织的特异性启动子,例如细胞色素P450芳香化酶(P450c19/CYP19)启动子、抑制素α(Inhibinα)启动子和苗勒管抑制物质Ⅱ型受体(MISⅡR)启动子等,但后续研究又发现这些启动子在非卵巢组织上也有表达,缺乏卵巢组织的高度特异性,限制了其在科研和临床上的应用。卵巢特异性启动子(ovarian-specific promoter-1,OSP-1)是在小鼠卵巢组织中特异性表达的逆转录病毒样元件,在多种卵巢肿瘤细胞和正常卵巢细胞中均有较高的活性,而在非卵巢细胞中几乎无活性。一些体内外研究证实该启动子可以启动肿瘤杀伤基因在卵巢癌细胞内特异性表达。所以应用OSP-1为启动子,可实现肿瘤治疗基因在卵巢肿瘤组织的靶向表达,最大限度地降低对其他组织的毒副作用,增强卵巢癌基因治疗的安全性。
     理想的治疗基因应该对肿瘤细胞有选择性的生长抑制和凋亡作用,同时有抗肿瘤血管生成作用和强烈的旁观者效应,即转导细胞对非转导细胞的细胞毒作用,从而扩大了肿瘤的杀伤效果及抑制肿瘤的转移和扩散,和其他治疗措施(放疗、化疗)联合应用还能产生协同效应,从而能够从多方面补偿由于基因转染效率低而带来的肿瘤基因治疗效果低下的缺陷。白介素24(interleukin-24, IL-24)就是集以上优点于一身的多功能肿瘤抑制基因,被喻为肿瘤的“魔法子弹”。基于该基因治疗肿瘤的良好的前期实验基础,本研究拟应用该基因进行卵巢癌基因治疗。但目前IL-24的生理功能还不清楚,为获得良好治疗效果而应用大剂量IL-24究竟会对全身系统造成什么样的副反应更是个未知数,如何在巩固和加强IL-24抗肿瘤能力的同时又最大限度地降低临床副反应,提高安全性,是IL-24能否在临床得到广泛应用的关键,因此本研究在拟应用IL-24进行卵巢癌基因治疗时,采用基因靶向卵巢癌细胞表达的基因靶向治疗策略,使IL-24基因只在卵巢癌细胞内表达,从而使该基因集中在肿瘤组织的局部表达,避免该基因对全身系统可能造成的副作用。同时检测IL-24能否增强卵巢癌细胞对化疗药紫杉醇、顺铂的敏感性并探讨其机制,为IL-24安全有效地用于卵巢癌临床治疗提供实验基础。本实验研究内容如下:1构建靶向卵巢癌细胞特异性表达的真核基因表达载体
     方法:应用基因合成方法合成OSP-1启动子,通过基因重组方法将该启动子片段插入到真核基因表达载体pcDNA3.0内,替换该载体内的巨细胞病毒启动子与增强子序列,从而构建成由OSP-1启动基因表达的pcDNA3.0-OSP-1载体。在此基础上将报告基因β半乳糖苷酶基因(β-gal)克隆入pcDNA3.0-OSP-1载体的OSP-1启动子下游,构建成由OSP-1启动报告基因表达的pcDNA3.0-OSP-1--β-gal载体。将该报告基因载体应用脂质体介导的基因转染方法分别转入人卵巢癌细胞株SKOV3细胞、人肝癌细胞株HepG2细胞及人成纤维细胞株BJ细胞中,72h后应用β半乳糖苷酶细胞原位染色法观察β半乳糖苷酶基因在三组细胞内的表达。
     结果:pcDNA3.0-OSP-1-β-gal载体转染的三组细胞,只有SKOV3细胞表达β半乳糖苷酶,而其他两组细胞没有表达。
     结论:本研究构建的靶向卵巢癌细胞特异性表达的真核基因表达载体具有启动外源基因在卵巢癌细胞内特异性表达的功能。
     2 IL-24基因在卵巢癌细胞内的特异性表达
     方法:应用RT-PCR方法从外周血单个核细胞内调取人IL-24基因cDNA片段,将获得PCR产物克隆入T载体,该载体经测序鉴定获得的IL-24基因序列与核酸数据库序列一致后,应用基因重组技术将IL-24基因片段分别克隆入pcDNA3.0及pcDNA3.0-OSP-1载体,构建成pcDNA3.0-IL-24表达载体和pcDNA3.0-OSP-1-IL-24表达载体。将上述载体应用脂质体介导的基因转染技术分别转入人卵巢癌细胞株SKOV3细胞、人肝癌细胞株HepG2细胞及人成纤维细胞株BJ细胞中,并应用G418进行基因转染的稳定筛选。对基因稳定表达的细胞应用RT-PCR检测IL-24基因在细胞内的InRNA表达水平,应用ELISA方法检测细胞上清中IL-24基因蛋白含量。
     结果:pcDNA3.0-IL-24表达载体转染的三组细胞中,IL-24基因mRNA表达水平与细胞上清中IL-24基因蛋白含量明显高于各组的未转染细胞;pcDNA3.0-OSP-1-IL-24表达载体转染的三组细胞中,只有SKOV3细胞的IL-24基因mRNA表达水平与细胞上清中IL-24基因蛋白含量明显高于本组的未转染细胞,其他两组细胞无明显差异。
     结论:本研究构建的pcDNA3.0-OSP-1-IL-24表达载体可实现IL-24基因在卵巢癌细胞内的特异性表达。
     3 IL-24基因靶向抑制卵巢癌细胞增殖的研究
     方法:将基因转染的各组细胞以1×104每孔接种于24孔培养板,通过细胞计数方法计数生长8天的细胞数量,绘制生长曲线,从而判断IL-24对细胞生长的影响;通过流式细胞术检测细胞周期分布情况。取pcDNA3.0-OSP-1-IL-24质粒稳定转染的SKOV3细胞培养第6天收集的细胞上清以不同稀释浓度作用于SKOV3细胞,分别于24h,48h,72h应用MTT法进行细胞活性检测。
     结果:pcDNA3.0-IL-24表达载体转染的三组细胞中:BJ细胞生长曲线与本组未转染细胞相比无差异。而SKOV3细胞与HepG2细胞的生长在第5天开始明显受到抑制,与本组未转染细胞相比均有明显差异。pcDNA3.0-OSP-1-IL-24表达载体转染的三组细胞中:只有SKOV3细胞的生长在第6天开始受到明显抑制,与本组未转染细胞相比有明显差异,其他两组细胞无明显差异。流式细胞术检测的细胞周期显示,在SKOV3细胞组:转染pcDNA3.0-IL-24与pcDNA3.0-OSP-1-IL-24质粒载体的细胞与基因未转染的细胞相比G1期细胞数明显增多,S期细胞明显减少。MTT检测结果分析显示pcDNA3.0-OSP-1-IL-24质粒载体稳定转染SKOV3细胞的培养上清对于SKOV3细胞的生长有抑制能力,随着浓度的减少,抑制能力下降。
     结论:通过本研究构建的pcDNA3.0-OSP-1-IL-24表达载体获得的IL-24基因表达产物可特异性地抑制卵巢癌细胞的增殖,并使G1期细胞增多。其分泌表达的IL-24可有效抑制基因未转染的SKOV3细胞生长,具有抗肿瘤的旁观者效应。
     4 IL-24基因对卵巢癌细胞化疗药物敏感性的影响
     方法:将紫杉醇与顺铂两种化疗药物分别作用于SKOV3细胞,稳定转染pcDNA3.0-IL-24的SKOV3细胞及稳定转染pcDNA3.0-OSP-1-IL-24的SKOV3细胞,72h后应用MTT检测细胞活性,根据检测的吸光值计算化疗药物对细胞生长的抑制率,并计算化疗药物对各组细胞抑制的IC50%值。应用实时定量PCR检测各组细胞ERCC1、TUBB3基因的表达。
     结果:转染IL-24的SKOV3细胞对紫杉醇和顺铂的敏感性与未转染的SKOV3细胞相比有显著提高,其IC50%值分别降低了6倍与10倍。荧光定量PCR结果显示转染IL-24的SKOV3细胞的ERCCl基因与TUBB3基因表达与未转染的SKOV3细胞相比,分别下降10倍与4倍。
     结论:转染IL-24基因可以有效提高SKOV3细胞对于紫杉醇、顺铂的敏感性,其机制可能与IL-24降低卵巢癌细胞内TUBB3基因与ERCC1基因的表达有关。
     通过上述研究,本实验成功构建了IL-24基因靶向卵巢癌细胞特异性表达的真核表达载体pcDNA3.0-OSP-1-IL-24,体外实验实现了IL-24基因在卵巢癌细胞内的特异性表达与肿瘤杀伤作用,并确定转染IL-24基因能有效提高卵巢癌细胞对紫杉醇与顺铂敏感性。本研究取得的研究成果将为提高卵巢癌基因治疗的安全性与有效性以及将IL-24基因联合化疗应用于卵巢癌临床治疗提供了有力的体外实验依据。
Ovarian cancer has a third morbidity in the female reproductive system malignancies, and the mortality rate is the first. Due to lacking of effective preventive measures and screening methods to Ovarian cancer, which invades hidingly,75%-80% of patients present with advanced stage disease while diagnosed. Although the majority of patients who received initial surgery and chemotherapy could be eased, the recurrence rate is still high, which makes 5-year survival rate is always at around 30%. Therefore, finding new therapy strategies of ovarian cancer is urgent for the truth of lacking of an effective treatment.
     Recent years, several gene therapy strategies have been used in the treatment of ovarian cancer, such as molecular chemotherapy, mutation compensation, immune enhancement, oncolytic virus, RNAi and multi-gene therapy, etc, some of which have been applied in clinical trials, but the efficacy and safety of gene therapy has always been the limites of clinical applications in a wide range. In order to improve the safety of gene therapy, people began gene targeted therapy, the aim gene is highly transfered into tumor cells by vector system, and only kill the tumor cells without affecting the normal tissue. Meanwhile, in order to improve the efficacy of gene therapy, people are constantly looking for effective tumor-killing genes, as well as which is combined with chemotherapeutics to enhance the effectiveness of gene therapy.
     These years, some ovarian tissue specific promoters have been reported one after another, such as cytochrome P450 aromatase (P450c19/CYP19) promoter, inhibin a promoter and Mullerian inhibiting substance typeⅡreceptor (MISⅡR) promoter, etc. On the following study, researchers found that these promoters also express in non-ovarian tissues, and their non-highly specific to ovarian tissue limits the application in researches and clinical trials. Ovarian-specific promoter-1(OSP-1) is a retro virus-like elements, which expresses specifically in the mouse ovary tissue, acts highly in majority ovarian cancer cells and normal ovarian cells but none in non-ovarian cells. Some vivo and vitro studies confirmed that the promoter can start tumor-killing genes expressing specifically in ovarian cancer cells. Therefore, specific expression of tumor therapy gene in ovarian cancer tissue can be achieved by OSP-1 promoter, which can minimize side effects to other organizations and enhance the safety of gene therapy for ovarian cancer.
     The ideal therapy gene should inhibit the growth of tumor cells selectively as well as result in cell apoptosis, while it has anti-angiogenic effect and strong bystander effect, which means transduced cells have cytotoxicity on non-transduced cells, so that expanding the anti-tumor effect and inhibiting metastasis and diffusion of tumor. Combinating with other treatments (radiotherapy or chemotherapy), the gene can create synergy, which can improve the efficacy of gene transfer in many ways, so that change the low effect of tumor gene therapy. Interleukin-24 (IL-24) is a multi-functional tumor suppressor gene, which has these advantages mentioned above. It has been hailed as the tumor's "magic bullet", based on the good preliminary experiments of IL-24 gene therapy for Cancer, In this study, IL-24 gene therapy is to be applied for ovarian cancer At present, the physiological function of IL-24 is not clear, what will happen to human system after receiving high dose IL-24 therapy is unknown. How to consolidate and strengthen the anti-tumor capacity of IL-24 and minimize the side effects to improve security at the same time is the key to widely clinical application of IL-24. Therefore, our study plans to adopt gene-targeting therapy in the application of IL-24 gene therapy for ovarian cancer, so that IL-24 gene only expresses in the ovarian cancer cells, concentrating on tumor tissue to avoid the potential side effects to human system. Meanwhile, we want to detect whether IL-24 gene can enhance the sensitivity of ovarian cancer cells to chemotherapeutic drugs or not, such as paclitaxel and cisplatin, as well as explore the mechanism, so that we can try to provide experimental basis for IL-24 gene therapy for ovarian cancer safely and efficiently in clinical. This study was as follows:
     1. Construct eukaryotic expression vector targeting ovarian cancer cell
     Methods:Compose OSP-1 promoter through gene synthesis method, insert the promoter fragment into the eukaryotic expression vector named pcDNA3.0 by genetic recombination method, which replaces the cytomegalovirus promoter and enhancer sequences in the vector, so that pcDNA3.0-OSP-1 drived by OSP-1 was constructed. On this basis, clone the report gene namedβ-galactosidase gene (β-gal) into the vector, ensure it is in the downstream of OSP-1 promoter to construct pcDNA3.0-OSP-1--β-gal vector, of which report gene is drived by OSP-1. Then we transfer pcDNA3.0-OSP-1--β-gal vector into ovarian cancer cell line SKOV3, human hepatoma cell line HepG2 and human fibroblast cell line BJ cells by Liposomes, and obeserve the expression of (3-gal in the three groups of cells byβ-galactosidase staining cells in situ afer 72h.
     Result:In these three groups of cells, only SKOV3 cells expressβ-galactosidase, while the other two groups not.
     Conclusion:The pcDNA3.0-OSP-1--β-gal vector can drive foreign gene expressing specifically in ovarian cancer cells.
     2. Specific expression of IL-24 gene in ovarian cancer cells
     Method:Human IL-24 cDNA fragments was amplified from peripheral blood mononuclear cells by RT-PCR, clone the products of RT-PCR into T-vector, then identified the results by DNA sequencing. We clone the IL-24 gene into pcDNA3.0 and pcDNA3.0-OSP-1 vector by genetic recombination method respectively, construct pcDNA3.0-IL-24 and pcDNA3.0-OSP-1-IL-24 expression vectors. These two expression vectors are transferred into ovarian cancer cell line SKOV3, human hepatoma cell line HepG2 and human fibroblast cell line BJ cells by Liposomes, after the stable selection of G418, we detect the expressing level of IL-24 gene mRNA in cells by RT-PCR and the protein product of IL-24 gene in cell supernatant by ELISA.
     Result:In the three groups of cells transfected with pcDNA3.0-IL-24 expression vector, the expressing levels of IL-24 gene mRNA in cells and the protein product of IL-24 gene in cell supernatant are highly more than nontransfected cells, as the same as the SKOV3 cells transfected with pcDNA3.0-OSP-1-IL-24 expression vectors, but the other two groups had no differences between transfected cells and not.
     Conclusion:The pcDNA3.0-OSP-1-IL-24 expression vectors constructed in this study can achieve specific expression in ovarian cancer cells.
     3. Inhibition of IL-24 gene targeting of ovarian cancer cells
     Method:Plate the transfected cells in 24-well culture plates with the dose of 1×104 cells per well, count the number of cells in 8 days by cell counting method. Then describe the growth curve to identify the influence of IL-24 gene on cells, and detect the cell cycle distribution by flow cytometry. Dilute the supernatant collected from the SKOV3 cells to different concentrations, which were stably transfected with pcDNA3.0-OSP-1-IL-24 plasmids and cultured for 6 days,then deal SKOV3 cells with the supernatant。After 24 hours,detect the cells activity by MTT, as well as 48 hours and 72 hours later.
     Result:In the three groups of cells transfected with pcDNA3.0-IL-24 expression vector, there is no difference between transfected cells and nontransfected cells in the growth curve of BJ cells. While, the growth of SKOV3 and HepG2 cells were significantly inhibited since the 5th day, compared with nontransfected cells, there are distinct differences. In the three groups transfected with pcDNA3.0-OSP-1-IL-24 expression vector, only the growth of SKOV3 cells was significantly inhibited since the 6th day compared to nontransfected cells, and the other two groups had no differences. The result of flow cytometry showed the G1 phase cells of SKOV3 increased mostly and the S phase cells of SKOV3 decreased mostly in the two groups transfected with pcDNA3.0-IL-24 and pcDN A3.0-OSP-1-IL-24 expression vectors comparing to nontransfected cells. The result of MTT showed that the supernatant of the SKOV3 cells stably transferred with pcDNA3.0-OSP-1-IL-24 plasmids could inhibit the growth of SKOV3 cells.The inhibition capability depended on the concentration of the supernatant.
     Conclusion:The expression production of pcDNA3.0-OSP-1-IL-24 can specifically inhibits the proliferation of ovarian cancer cells, and increases the G1 phase cells. The IL-24 product expressed by pcDNA3.0-OSP-1-IL-24 plasmids can effectively inhibit the growth of non-transfected SKOV3 cells, which play the role of anti-tumot bystander effect.
     4. Influence of IL-24 gene on the sensitivity of ovarian cancer cells to chemotherapeutic drugs
     Method:We use paclitaxel and cisplatin respectively to deal with SKOV3 cells, SKOV3 cells stably transfected with pcDNA3.0-IL-24 and pcDNA3.0-OSP-1-IL-24 respectively, then detect the cells activity by MTT after 72 hours and calulate the cell inhibition rate by chemotherapeutics according to the detected result, as well as the IC50% value of cells inhibiton. Detected the expression of ERCC1and TUBB 3 gene by fluorescence quantitative PCR.
     Result:The sensitivity of SKOV3 cells transfected with IL-24 gene to paclitaxel and cisplatin were increased evidently comparing to nontransfected cells, and their IC50% values were reduced by 6 times and 10 times respectively, Comparing to nontransfected cells, the expression of ERCC1 and TUBB3 gene mRNA of transfecred SKOV3 cells reduced by 10 times and 4 times respectively.
     Conclusion:Transfecting IL-24 gene can enhance the senstivity of SKOV3 cells to paclitaxel and cisplatin, and the machanism maybe down-regulating the expression of TUBB3 gene and ERCCl gene.
     Above all, we successfully constructed eukaryotic expression vector pcDNA3.0-OSP-1-IL-24 targeting ovarian cancer cells, and achieved the specific expression and anti-tumor function of IL-24 gene in ovarian cancer in vitro, and confirmed that transfecting IL-24 gene to ovarian cancer cells can effectively increase their sensitivity of paclitaxel and cisplatin. This study provid strong experimental evidences in viro for improving the safety and efficacy of ovarian cancer gene therapy and applying IL-24 gene trerapy combinating with chemotherapy in Clinical treatment of ovarian cancer.
引文
[1]Bergelson JM, Cunningham JA, Droguell G, et al. Isolation of a common receptor for Coxsackie B viruses and adenoviruses 2 and 5 [J]. Science,1997,275 (5304):1320-1323.
    [2]Wickham TJ, Mathias P,Cheresh DA, et al. Integrins alpha v beta 3 and alpha v beta 5 promote adenovirus internalization but not virus attachment [J]. Cell,1993,73 (2):309-319.
    [3]Zhang LQ, Mei YF, Wadell G.Human adenovirus serotypes 4 and 11 show higher binding affinity and infectivity for endothelial and carcinoma cell lines than serotype 5 [J]. Gen. Virol,2003;84,(3):687-695.
    [4]Dmitriev I, Krasnykh V, Miller CR, et al. An adenovirus vector with genetically modified fibers demonstrates expanded tropism via utilization of a coxsackievirus and adenovirus receptor-independent cell entry mechanism [J]. J Virol.1998; 72(12):9706-9713.
    [5]Hemminki A, Belousova N, Zinn KR, et al. An adenovirus with enhanced infectivity mediates molecular chemotherapy of ovarian cancer cells and allows imaging of gene expression. Mol [J]. Ther,2001,4(3):223-231.
    [6]Hemminki A, Zinn KR, Liu B, et al. In vivo molecular chemotherapy and noninvasive imaging with an infectivity-enhanced adenovirus [J]. J Natl Cancer Inst,2002,94(10):741-749.
    [7]Haisma HJ, Grill J, Curiel DT, et al. Targeting of adenoviral vectors through a bispecific single-chain antibody [J]. Cancer Gene Ther,2000,7(6):901-904.
    [8]Wickham TJ, Tzeng E, Shears LL II, et al. Increased in vitro and in vivo gene transfer by adenovirus vectors containing chimeric fiber proteins [J]. J Virol,1997,71 (11):8221-8229.
    [9]Krasnykh V, Belousova N, Korokhov N, et al. Genetic targeting of an adenovirus vector via replacement of the fiber protein with the phage T4 fibritin [J]. J Virol,2001,75 (9) 4176-4183.
    [10]Shinozaki K, Suominen E, Carrick F, et al. Efficient infection of tumor endothelial cells by a capsid-modified adenovirus[J]. Gene Ther,2006,13(1):52-59.
    [11]Huang S, Kamata T, Takada Y, et al. Adenovirus interaction with distinct integrins mediates separate events in cell entry and gene delivery to hematopoietic cells [J]. J Virol,1996, 70(7):4502-4508.
    [12]Roelvink PW, Kovesdi I, Wickham TJ. Comparative analysis of adenovirus fiber-cell interaction:adenovirus type 2 (Ad2) and Ad9 utilize the same cellular fiber receptor but use different binding strategies for attachment [J]. J Virol,1996,70(11):7614-7621.
    [13]Einfeld DA, Brough DE, Roelvink PW, et al. Construction of a pseudoreceptor that mediates transduction by adenoviruses expressing a ligand in fiber or penton base [J]. J Virol, 1999,73(11):9130-9136.
    [14]Vigne E, Mahfouz I, Dedieu J F, et al. RGD inclusion in the hexon monomer provides adenovirus type 5-based vectors with a fiber knob-independent pathway for infection [J]. J Virol, 1999,73(6):5156-5161.
    [15]Furcinitti PS, van Oostrum J, Burnett RM. Adenovirus polypeptide IX revealed as capsid cement by difference images from electron microscopy and crystallography [J]. EMBO J,1989,8(12):3563-3570.
    [16]Dmitriev IP, Kashentseva EA, Curiel DT. Engineering of adenovirus vectors containing heterologous peptide sequences in the C terminus of capsid protein IX [J]. J Virol, 2002,76(14):6893-6899.
    [17]Hall FL, Liu L, Zhu NL, et al. Molecular engineering of matrix-targeted retroviral vectors incorporating a surveillance function inherent in von Willebrand factor [J]. Hum Gene Ther,2000,11(7):983-993.
    [18]Etienne-Julan M, Roux P, Bourquard P, et al. Cell targeting by murine recombinant retroviruses[J]. Bone Marrow Transplant,1992,9 Suppl 1:139-142.
    [19]邓继先,沈伟.用慢病毒载体制备转基因动物的研究进展[J].中国生物工程杂志,2004,24(9):16-19.
    [20]Kobinger GP, Weiner DJ, Yu QC, et al. Filovirus-pseudotyped lentiviral vector can efficiently and stably transduce airway epithelia in vivo.Nat [J]. Biotechnol,2001,19(3): 225-230.
    [21]Mazarakis ND, Azzouz M, Rohll JB, et al. Rabies virus glycoprotein pseudotyping of lentiviral vectors enables retrograde axonal transport and access to the nervous system after peripheral delivery [J]. Hum Mol Genet,2001,10(19):2109-2121.
    [22]Lim FY, Kobiger GP, Wner DJ, et al. Human Fetal Trachea-Scid Mouse Xenografts: Efficacy of Vesicular Stomatitis Virus-G Pseudotyped Lentiviral-Mediated Gene Transfer [J]. J Pediatr Surg,2003,38(6):834-839.
    [23]Harland J, Papanastassiou V, Brown SM. HSV1716 persistence in primary human glioma cells in vitro [J]. Gene Ther,2002,9(17):1194-1198.
    [24]Muruve DA. The innate immune response to adenovirus vectors [J]. Hum Gene Ther, 2004,15(12),1157-1166.
    [25]Li C, Bowles DE, van Dyke T, et al. Adeno-associated virus vectors:potential applications for cancer gene therapy[J]. Cancer Gene Ther,2005,12(12):913-925.
    [26]Girod A, Ried M, Wobus C, et al. Genetic capsid modifications allow efficient re-targeting of adeno-associated virus type 2 [J]. Nat Med,1999,5(9):1052-1056.
    [27]Grifman M, Trepel M, Speece P, et al. Incorporation of tumor-targeting peptides into recombinant adeno-associated virus capsids [J]. Mol Ther,2001,3(6):964-975.
    [28]Mansouri S, Cuie Y, Winnik F, et al. Characterization of folate-chitosan-DNA nanoparticles for gene therapy[J]. Biomaterials,2006,27(9):2060-2065.
    [29]Scott ES, Wiseman JW, Evans MJ, et al. Enhanced gene delivery to human airway epithelial cells using an integrin-targeting lipoplex [J]. J Gene Med,2001,3 (2):125-134.
    [30]Kunath K, Merdan T, Hegener O, et al. Integrin targeting using RGD-PEI conjugates for in vitro gene transfer [J]. J Gene Med,2003,5 (7):588-599.
    [31]Chowdhury S, Chester KA, Bridgewater J, et al. Efficient retroviral vector targeting of carcinoembryonic antigen-positive tumors [J]. Mol Ther,2004,9(1):85-92.
    [32]Douglas JT, Rogers BE, Rosenfeld, et al. Targeted gene delivery by tropism-modified adenoviral vectors [J]. Nat. Biotechnol,1996,14(11):1574-1578.
    [33]Miller CR, Buchsbaum DJ, Reynolds PN, et al. Differential susceptibility of primary and established human glioma cells to adenovirus infection:targeting via the epidermal growth factor receptor achieves fiber receptor-independent gene transfer [J].Cancer Res,1998,58(24): 5738-5748.
    [34]Goldman CK, Rogers BE, Douglas JT, et al. Targeted gene delivery to Kaposi's sarcoma cells via the fibroblast growth factor receptor [J]. Cancer Res,1997,57(8):1447-1451.
    [35]Bartlett JS, Kleinschmidt J, Boucher RC, et al. Targeted adeno-associated virus vector transduction of nonpermissive cells mediated by a bispecific F(ab'gamma)2 antibody [J]. Nat Biotechnol,1999,17(2):181-186.
    [36]Watkins SJ, Mesyanzhinov W, Kurochkina LP, et al. The'adenobody'approach to viral targeting:specific and enhanced adenoviral gene delivery [J]. Gene Ther,1997,4(10): 1004-1012.
    [37]Heideman DA, van Beusechem VW, Offerhaus GJ, et al. Selective gene transfer into primary human gastric tumors using epithelial cell adhesion molecule-targeted adenoviral vectors with ablated native tropism [J]. Hum Gene Ther,2002,13(14):1677-1685.
    [38]Reddy JA, Abburi C, Hofland H, et al. Folate-targeted, cationic liposome-mediated gene transfer into disseminated peritoneal tumors [J]. Gene Ther,2002,9 (22):1542-1550.
    [39]Hood JD, Bednarski M, Frausto R, et al. Tumor regression by targeted gene delivery to the neovasculature [J]. Science,2002,296(5577):2404-2407.
    [40]Kwon BS, Wakulchik M, Haq AK, et al. Sequence analysis of mouse tyrosinase cDNA and the effect of melanotropin on its gene expression[J].Biochem Biophys Res Commun, 1988,153(3):1301-1309.
    [41]Kliippel M, Beermann F, Ruppert S, et al. The mouse tyrosinase promoter is sufficient for expression in melanocytes and in the pigmented epithelium of the retina. Proc Natl Acad Sci USA,1991,88(9):3777-3781.
    [42]Ganss R, Montoliu L, Monaghan AP, A cell-specific enhancer far upstream of the mouse tyrosinase gene confers high level and copy number-related expression in transgenic mice [J]. EMBO J,1994,13(13):3083-3093.
    [43]Artuc M, Nurnberg W, Czarnetzki BM, et al. Characterization of gene regulatory elements for selective gene expression in human melanoma cells [J]. Biochem Biophys Res Commun,1995,213(2):699-705.
    [44]Lee CH, Liu M, Sie KL, et al. Prostate-specific antigen promoter driven gene therapy targeting DNA polymerase-alpha and topoisomerase Ⅱ alpha in prostate cancer [J]. Anticancer Res,1996,16(A4):1805-1811.
    [45]张更,王禾,张波等.前列腺特异性抗原启动子调控促凋亡基因caspase-7载体的构建及其对前列腺癌细胞的特异性杀伤作用[J].第四军医大学学报,2003,24(8): 711-714.
    [46]Sarkis C, Serguera C, Petres S, et al. Efficient transduction of neural cells in vitro and in vivo by a baculovirusderived vector [J]. Proc Natl Acad Sci U S A,2000,97(26): 14638-14643.
    [47]Li Y, Wang X, Guo H, et al. Axonal transport of recombinant baculovirus vectors [J]. Mol Ther,2004,10(6):1121-1129.
    [48]Chao-Yang Wang, Feng Li, Yi Yang, et al. Recombinant baculovirus containing the diphtheria toxin A gene for malignant glioma therapy [J]. Cancer Res,2006,66 (11): 5798-5806.
    [49]Lin JH, Zhao H, Sun TT. A tissue specific promoter that can drive a foreign gene to express in the suprabasal urothelial cells of transgenic mice [J]. Proc Natl Acad Sci U S A,1995, 92(3):679-683.
    [50]Selvakumaran M, Bao R, Crijns AP, et al. Ovarian epithelial cell lineage-specific gene expression using the promoter of a retro virus-like element [J]. Cancer Res 2001,61(4): 1291-1295.
    [51]Bao R, Selvakumaran M, Hamilton TC. Targeted Gene Therapy of Ovarian Cancer Using an Ovarian-Specific Promoter[J].Gynecol Oncol,2002,84(2):228-234.
    [52]Kaneko S, Hallenbeck P, Kotani T, et al. Adenovirus-mediated gene therapy of hepatocellular carcinoma using cancer-specific gene expression [J]. Cancer Res,1995,55(22): 5283-5287
    [53]Ido A, Nakata K, Kato Y, et al. Gene therapy for hepatoma cells using a retrovirus vector carrying herpes simplex virus thymidine kinase gene under the control of human alpha-fetoprotein gene promoter[J]. Cancer Res,1995,55(14):3105-3109.
    [54]Gold P, Freedman SO. Demonstration of tumor-specific antigens in human colonic carcinomata by immunological tolerance and absorption techniques [J]. J Exp Med,1965,121: 439-462.
    [55]Baranov V, Yeung MM, Hammarstrom S. Expression of carcinoembryonic antigen and nonspecific cross-reacting 50-kDa antigen in human normal and cancerous colon mucosa: comparative ultrastructural study with monoclonal antibodies [J]. Cancer Res,1994,54(12): 3305-3314.
    [56]Richards CA, Austin EA, Huber BE. Transcriptional regulatory sequences of carcinoembryonic antigen:identification and use with cytosine deaminase for tumor-specific gene therapy [J]. Hum Gene Ther,1995,6(7):881-893.
    [57]Cao G, Kuriyama S, Gao J, et al. Comparison of carcinoembryonic antigen promoter regions isolated from human colorectal carcinoma and normal adjacent mucosa to induce strong tumor-selective gene expression [J]. Int J Cancer,1998,78(2):242-247.
    [58]Cao G, Kuriyama S, Gao J, et al. Effective and safe gene therapy for colorectal carcinoma using the cytosine deaminase gene directed by the carcinoembryonic antigen promoter [J]. Gene Ther,1999,6(1):83-90.
    [59]高振强,高志萍,张涛等.肿瘤特异表达的单纯疱疹病毒胸腺激酶基因对人肺腺癌的实验治疗[J].中国科学(c辑),1997,27(4):360-365.
    [60]Tanaka T, Kanai F, Okabe S, et al. Adenovirus-mediated prodrug gene therapy for carcinoembryonic antigen-producing human gastric carcinoma cells in vitro [J].Cancer Res, 1996,56(6):1341-1345.
    [61]Ambrosini G, Adida C, Altieri DC. A novel anti-apoptosis gene, surviving, expressed in cancer and lymphoma [J]. Nat Med,1997,3(8):917-921.
    [62]Bao R, Connolly DC, Murphy M, et al. Activation of cancer-specific gene expression by the survivin promoter [J]. J Natl Cancer Inst,2002,94(7):522-528.
    [63]Chen JS, Liu JC, Shen L, et al. Cancer-specific activation of the survivin promoter and its potential use in gene therapy [J]. Cancer Gene Ther,2004,11(11):740-747.
    [64]黄淑华,彭芝兰,王和.hTERT启动子调控的CD基因对卵巢癌细胞株的选择性杀伤作用研究[J].四川医学,2008,28(7):696-698.
    [65]Garver R, Goldsmith K, Rodu B, et al. Strategy for achieving selective killing of carcinomas [J]. Gene Ther,1994; 1(1):46-50.
    [66]Hough C, Sherman-Baust C, Pizer E, et al. Large-scale serial analysis of gene expression reveals genes differentially expressed in ovarian cancer [J]. Cancer Res,2000,60(22): 6281-6287.
    [67]Hough C, Cho K, Zonderman A, et al. Coordinately up-regulated genes in ovarian cancer [J]. Cancer Res,2001,61(10):3869-3876.
    [68]Barker SD, Coolidge CJ, Kanerva A, et al. The secretory leukoprotease inhibitor (SLPI) promoter for ovarian cancer gene therapy [J]. J Gene Med,2003,5(4):300-310.
    [69]Fire A, Xu S, Montgomery MK, et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans[J].Nature,1998,391(6669):806-811.
    [70]McManus MT, Sharp PA. Gene silencing in mammals by small interfering RNAs [J]. Nat Rev Genet,2002,3(10):737-747.
    [71]Carthew RW, Sontheimer EJ. Origins and mechanisms of miRNAs and siRNAs [J]. Cell,2009,136(4):642-655.
    [72]Uchida H, Tanaka T, Sasaki K, et al. Adenovirus-mediated transfer of siRNA against survivin induced apoptosis and attenuated tumor cell growth in vitro and in vivo[J]. Mol Ther, 2004,10(1):162-171.
    [73]Wannenes F, Ciafre SA, Niola F, et al. Vector-based RNA interference against vascular endothelial growth factor-A significantly limits vascularization and growth of prostate cancer in vivo [J]. Cancer Gene Ther,2005,12(12):926-934.
    [74]Jiang H, Lin JJ, Su zz, et al. Subtraction hybridization identifies a novel melanoma differentiation associated gene,mda-7, modulated during human melanoma differentiation, growth and progression [J]. Oncogene,1995,11(12):2477-2486.
    [75]Caudell EG, Mumm JB, Poindexter N, et al. The protein product of the tumor suppressor gene, melanoma differentiation-associated gene 7, exhibits immunostimulatory activity and is designated IL-24 [J]. J Immunol,2002,168 (12):6041-6046.
    [76]Jiang H, Su ZZ, Lin JJ, et al. The melanoma differentiation associated gene mda-7 suppresses cancer cell growth [J].Proc Natl Acad Sci U S A,1996,93(17):9160-9165.
    [77]Chaiken IM, Williams WV. Identifying structure-function relationships in four-helix bundle cytokines:towards de novo mimetics design [J]. Trends Biotechnol,1996,14(10): 369-375.
    [78]Huang EY, Madireddi MT, Gopalkrishnan RV, et al. Genomic structure, chromosomal localization and expression profile of a novel melanoma differentiation associated (mda-7) gene with cancer specific growth suppressing and apoptosis inducing properties [J]. Oncogene,2001, 20 (48):7051-7063.
    [79]Blumberg H, Conklin D, Xu WF, et al. Interleukin-20:discovery, receptor ident-ification, and role in epidermal function[J]. Cell,2001,104(1):9-19.
    [80]Gallagher G, Dickensheets H, Eskdale J, et al. Cloning, expression and initial characterization of interleukin-19 (IL-19), a novel homologue of human interleukin-10 (IL-10) [J]. Genes Immun,2000,1(7):442-450.
    [81]Mhashilkar AM, Schrock RD, Hindi M, et al. Melanoma differentiation associated gene-7 (mda-7):a novel anti-tumor gene for cancer gene therapy [J]. Mol Med,2001,7(4): 271-282.
    [82]Wang M, Tan Z, Zhang K, et al. Interleukin 24(MDA-7/MOB-5)signals through two heterodimeric receptors, IL-22R1/IL-20R2 and IL-20R1/IL-20R2 [J]. J Biol Chem,2002, 277(9):7341-7347.
    [83]Soo C, Shaw WW, Freymiller E, et al. Cutaneous rat wounds express c49a, a novel gene with homology to the human melanoma differentiation associated gene, mda-7 [J]. J Cell Biochem,1999,74(1):1-10.
    [84]Madireddi MT, Su ZZ, Young CS, et al. Mda-7, a novel melanoma differentiation associated gene with promise for cancer gene therapy [J]. Adv Exp Med Biol,2000,465: 239-261.
    [85]Schaefer G, Venkataraman C, Schindler U, et al. Cutting edge:FISP(IL-4 induced secreted protein), a novel cytokine like molecule secreted by Th-2 cells [J]. J Immunol,2001, 166(10):5859-5863.
    [86]Moore KW, de Waal Malefyt R, Coffman RL, et al. Interleukin-10 and the inter-leukin-10 receptor [J]. Annu Rev Immunol,2001,19:683-765.
    [87]Xie MH, Aggarwal S, Ho WH et al. Interleukin (IL)-22, a novel human cytokine that signals through the interferon receptorrelated proteins CRF2-4 and IL-22R [J]. J Biol Chem, 2000,275(40):31335-31339.
    [88]Kotenko SV, Izotova LS, Mirochnitchenko OV, et al. Identification of the functional interleukin-22 (IL-22) receptor complex:the IL-10R2 chain (IL-10Rbeta) is a common chain of both the IL-10 and IL-22 (IL-10-related T cell-derived inducible factor, IL-TIF) receptor complexes [J]. J Biol Chem,2001,276(4):2725-2732.
    [89]Dumoutier L, Louahed J, Renauld JC. Cloning and characterization of IL10-related T cell derived inducible facter (IL-TIF), a novel cytokine structurally related to IL-10 and inducible by IL-9 [J]. J Immunol,2000,164(4):1814-1819.
    [90]Dumoutier L, Van Roost E, Colau D, et al. Human interleukin-10-related T cell-derived inducible factor:molecular cloning and functional characterization as an hepatocyte-stimulating factor [J]. Proc Natl Acad Sci USA,2000,97(18):10144-10149.
    [91]Madireddi MT, Dent P, Fisher PB. Regulation of mda-7 gene expression during human melanoma differentiation [J]. Oncogene,2000,19(10):1362-1368.
    [92]Kunz S, Wolk K, Witte E, et al. Interleukin (IL)-19, IL-20 and IL-24 are produced by and act on keratinocytes and are distinct from classical ILs [J]. Exp Dermatol,2006,15(12): 991-1004.
    [93]Ellerhorst JA, Prieto VG, Ekmekcioglu S, et al. Loss of MDA-7 expression with progression of melanoma [J]. J Clin Oncol.2002,20(4):1069-1074.
    [94]Ekmekcioglu S, Ellerhorst J, Mhashilkar AM, et al. Down-regulated melanoma differentiation associated gene (mda-7) expression in human melanomas [J]. Int J Cancer,2001, 94(1):54-59.
    [95]Lebedeva Ⅳ, Su ZZ, Chang Y, et al. The cancer growth suppressing gene mda-7 induces apoptosis selectively in human melanoma cells [J]. Oncogene,2002,21(5):708-718.
    [96]Parrish-Novak J, Xu W, Brender T, et al. Interleukins 19,20, and 24 signal through two distinct receptor complexes. Differences in receptor-ligand interactions mediate unique biological functions [J]. J Biol Chem,2002,277(49):47517-47523.
    [97]Wolk K, Kunz S, Asadullah K, et al. Cutting edge:immune cells as sources and targets of the IL-10 family members? [J]. Immunol,2002,168(11):5397-5402.
    [98]Garn H, Schmidt A, Grau V, et al. IL-24 is expressed by rat and human macrophages [J]. Immunobiology,2002,205(3):321-334.
    [99]Wahl C, Miiller W, Leithauser F, et al. IL-20 receptor 2 signaling down-regulates antigen-specific T cell responses [J]. J Immunol,2009,182(2):802-810.
    [100]Sarkar D, Su ZZ, Park ES, et al. A cancer terminator virus eradicates both primary and distant human melanomas [J]. Cancer Gene Ther,2008 15(5):293-302.
    [101]Zhang KJ, Wang YG, Cao X, et al. Potent antitumor effect of interleukin-24 gene in the survivin promoter and retinoblastoma double-regulated oncolytic adenovirus [J]. Hum Gene Ther,2009,20(8):818-830.
    [102]Zhong S, Yu D, Wang Y, et al. An armed oncolytic adenovirus ZD55-IL-24 com-bined with ADM or DDP demonstrated enhanced antitumor effect in lung cancer [J]. Acta Oncol,2010,49(1):91-99.
    [103]Wang CJ, Zhang H, Chen K, et al. Ad.mda-7 (IL-24) selectively induces apoptosis in hepatocellular carcinoma cell lines, suppresses metastasis, and enhances the effect of doxorubicin on xenograft tumors [J]. Oncol Res,2010,18(11-12):561-574.
    [104]Zhang X, Kang X, Shi L, et al. mda-7/IL-24 induces apoptosis in human HepG2 hepatoma cells by endoplasmic reticulum stress [J]. Oncol Rep,2008,20(2):437-442.
    [105]Li J, Shi L, Zhang X, Kang X, et al. Recombinant adenovirus IL-24-Bax promotes apoptosis of hepatocellular carcinoma cells in vitro and in vivo [J].Cancer Gene Ther,2010, 17(11):771-9.
    [106]Xiao CW, Xue XB, Zhang H, et al. Oncolytic adenovirus-mediated MDA-7/IL-24 overexpression enhances antitumor activity in hepatocellular carcinoma cell lines [J].Hepatobiliary Pancreat Dis Int,2010,9(6):615-621.
    [107]Xue XB, Xiao CW, Zhang H, et al. Oncolytic adenovirus SG600-IL24 selectively kills hepatocellular carcinoma cell lines [J]. World J Gastroenterol,2010,16(37):4677-4684.
    [108]Yang YJ, Chen DZ, Li LX, et al. Targeted IL-24 gene therapy inhibits cancer recurrence after liver tumor resection by inducing tumor cell apoptosis in nude mice [J]. Hepatobiliary Pancreat Dis Int,2009,8(2):174-178.
    [109]Jia J, Li S, Gong W, et al. mda-7/IL-24 induces apoptosis in human GBC-SD gallbladder carcinoma cells via mitochondrial apoptotic pathway [J]. Oncol Rep,2011,25(1): 195-201.
    [110]Ni QC, Yang L, Zhang CH, et al. Effects of adenoviral-mediated melanoma differentiation associated gene-7/IL-24 on growth and apoptosis of breast cancer cells [J].Zhonghua Yi Xue Za Zhi,2008,88(42):3008-3011.
    [111]Sarkar D, Su ZZ, Vozhilla N, et al. Dual cancer-specific targeting strategy cures primary and distant breast carcinomas in nude mice [J]. Proc Natl Acad Sci U S A,2005, 102(39):14034-14039.
    [112]Lebedeva IV, Su ZZ, Vozhilla N, et al. Mechanism of in vitro pancreatic cancer cell growth inhibition by melanoma differentiation-associated gene-7/interleukin-24 and perillyl alcohol [J]. Cancer Res,2008,68(18):7439-7447.
    [113]Pan XT, Zhu QY, Li DC, et al. Effect of recombinant adenovirus vector mediated human interleukin-24 gene transfection on pancreatic carcinoma growth [J].Chin Med J (Engl), 2008,121(20):2031-2036.
    [114]Pan X, Sheng W, Zhu Q, et al. Inhibition of pancreatic carcinoma growth by adenovirus-mediated human interleukin-24 expression in animal model [J].Cancer Biother Radiopharm,2008,23(4):425-434.
    [115]Dash R, Richards JE, Su ZZ, et al. Mechanism by which Mcl-1 regulates cancer-specific apoptosis triggered by mda-7/IL-24, an IL-10-related cytokine [J]. Cancer Res, 2010,70(12):5034-5045.
    [116]Bhutia SK, Dash R, Das SK, et al. Mechanism of autophagy to apoptosis switch triggered in prostate cancer cells by antitumor cytokine melanoma differentiation-associated gene 7/interleukin-24 [J]. Cancer Res,2010,70(9):3667-3676.
    [117]Dash R, Dmitriev I, Su ZZ, et al. Enhanced delivery of mda-7/IL-24 using a serotype chimeric adenovirus (Ad.5/3) improves therapeutic efficacy in low CAR prostate cancer cells [J]. Cancer Gene Ther,2010,17(7):447-456.
    [118]Fan JK, Wei N, Ding M, et al. Targeting Gene-ViroTherapy for prostate cancer by DD3-driven oncolytic virus-harboring interleukin-24 gene [J]. Int J Cancer,2010,127(3): 707-717.
    [119]Mahasreshti PJ, Kataram M, Wu H, et al. Ovarian cancer targeted adenoviral-mediated mda-7/IL-24 gene therapy [J]. Gynecol Oncol,2006,100(3):521-532.
    [120]Leath CA 3rd, Kataram M, Bhagavatula P, et al. Infectivity enhanced adenoviral-mediated mda-7/IL-24 gene therapy for ovarian carcinoma [J]. Gynecol Oncol,2004,94(2): 352-362.
    [121]Wei N, Fan JK, Gu JF, et al. Double-regulated oncolytic adenovirus-mediated interleukin-24 overexpression exhibits potent antitumor activity on gastric adenocarcinoma [J]. Hum Gene Ther,2010,21(7):855-864.
    [122]Chang S, Yang J, Chen W, et al. Antitumor activity of an adenovirus harboring human IL-24 in colon cancer [J]. Mol Biol Rep,2011,38(1):395-401.
    [123]Park MA, Hamed HA, Mitchell C, et al. A Serotype 5/3 Adenovirus Expressing MDA-7/IL-24 Infects Renal Carcinoma Cells and Promotes Toxicity of Agents That Increase Ros and Ceramide Levels [J].Mol Pharmacol,2011,79(3):368-380.
    [124]Liu J, Sheng W, Xie Y, et al. The in vitro and in vivo antitumor activity of adenov-irus-mediated interleukin-24 expression for laryngocarcinoma [J]. Cancer Biother Radiopharm, 2010,25(1):29-38.
    [125]Shan Y, Sheng W, Xie Y, et al. Adenovirus mediated IL-24 gene expression inhibits growth of human glioma cell in vitro [J]. Sheng Wu Gong Cheng Xue Bao,2009,25(2): 279-286.
    [126]Hamed HA, Yacoub A, Park MA, et al. Inhibition of multiple protective signaling pathways and Ad.5/3 delivery enhances mda-7/IL-24 therapy of malignant glioma [J].Mol Ther, 2010,18(6):1130-1142.
    [127]Liu JQ, Yang CM, Ding W, et al. Mechanisms of enhanced antileukemia activity of conditionally replicating adenovirus (CRAd) ZD55 by interleukin-24 [J]. Zhejiang Da Xue Xue Bao Yi Xue Ban,2010,39(3):231-235.
    [128]Yang C, Tong Y, Ni W, et al. Inhibition of autophagy induced by overexpression of mda-7/interleukin-24 strongly augments the antileukemia activity in vitro and in vivo [J].Cancer Gene Ther,2010,17(2):109-119.
    [129]Han Y, Miao J, Sheng W, et al. Interleukin 24 inhibits growth and induces apoptosis of osteosarcoma cells MG-63 in vitro and in vivo [J]. Sheng Wu Gong Cheng Xue Bao,2009, 25(10):1538-1545.
    [130]Sarkar D, Su ZZ, Lebedeva IV, Sauane M, et al. Proc Natl Acad Sci U S A. mda-7 (IL-24) Mediates selective apoptosis in human melanoma cells by inducing the coordinated overexpression of the GADD family of genes by means of p38 MAPK [J].2002,99(15): 10054-10059.
    [131]Sauane M, Gopalkrishnan RV, Lebedeva I, et al. J Cell Physiol. Mda-7/IL-24 induces apoptosis of diverse cancer cell lines through JAK/STAT-independent pathways [J].2003, 196(2):334-345.
    [132]Sainz-Perez A, Gary-Gouy H, Portier A, et al. High Mda-7 expression promotes malignant cell survival and p38 MAP kinase activation in chronic lymphocytic leukemia [J]. Leukemia,2006,20(3):498-504.
    [133]Dent P, Yacoub A, Grant S, et al. MDA-7/IL-24 regulates proliferation, invasion and tumor cell radiosensitivity:a new cancer therapy? [J]. J Cell Biochem,2005,95(4):712-719.
    [134]Mhashilkar AM, Stewart AL, Sieger K, et al. MDA-7 negatively regulates the beta-catenin and PI3K signaling pathways in breast and lung tumor cells [J]. Mol Ther,2003, 8(2):207-219.
    [135]Gopalan B, Litvak A, Sharma S, et al. Activation of the Fas-FasL signaling pathway by MDA-7/IL-24 kills human ovarian cancer cells [J].Cancer Res.2005,65(8):3017-3024.
    [136]Chen J, Chada S, Mhashilkar A, et al. Tumor suppressor MDA-7/IL-24 selectively inhibits vascular smooth muscle cell growth and migration [J]. Mol Ther,2003,8(2):220-229.
    [137]Gopalkrishnan RV, Sauane M, Fisher PB.Cytokine and tumor cell apoptosis inducing activity of mda-7/IL-24. Int Immunopharmacol [J].2004,4(5):635-647.
    [138]Lebedeva IV, Su ZZ, Sarkar D, et al. Melanoma differentiation associated gene-7, mda-7/interleukin-24, induces apoptosis in prostate cancer cells by promoting mitochondrial dysfunction and inducing reactive oxygen species [J].Cancer Res,2003,63(23):8138-8144.
    [139]Sieger KA, Mhashilkar AM, Stewart A, et al. The tumor suppressor activity of MDA-7/IL-24 is mediated by intracellular protein expression in NSCLC cells [J]. Mol Ther, 2004,9(3):355-367.
    [140]Gupta P, Walter MR, Su ZZ, et al. BiP/GRP78 is an intracellular target for MDA-7 /IL-24 induction of cancer-specific apoptosis. Cancer Res [J].2006,66(16):8182-8191.
    [141]Lebedeva IV, Sarkar D, Su ZZ, et al. Bcl-2 and Bcl-x(L) differentially protect human prostate cancer cells from induction of apoptosis by melanoma differentiation associated gene-7, mda-7/IL-24 [J]. Oncogene,2003,22(54):8758-8773.
    [142]Lebedeva IV, Su ZZ, Sarkar D, et al. Induction of reactive oxygen species renders mutant and wild-type K-ras pancreatic carcinoma cells susceptible to Ad.mda-7-induced apoptosis [J]. Oncogene,2005,24(4):585-596.
    [143]Lebedeva IV, Washington I, Sarkar D, et al. Strategy for reversing resistance to a single anticancer agent in human prostate and pancreatic carcinomas [J]. Proc Natl Acad Sci U S A,2007,104(9):3484-3489.
    [144]Ramesh R, Mhashilkar AM, Tanaka F, et al. Melanoma differentiation-associated gene 7/interleukin (IL)-24 is a novel ligand that regulates angiogenesis via the IL-22 receptor [J]. Cancer Res,2003,63(16):5105-5113.
    [145]Saeki T, Mhashilkar A, Swanson X, et al. Inhibition of human lung cancer growth following adenovirus-mediated mda-7 gene expression in vivo [J].Oncogene,2002,21(29): 4558-4566.
    [146]Ramesh R, Ito I, Gopalan B, et al. Ectopic production of MDA-7/IL-24 inhibits invasion and migration of human lung cancer cells [J].Mol Ther,2004,9(4):510-518.
    [147]Chada S, Bocangel D, Ramesh R, et al. mda-7/IL24 kills pancreatic cancer cells by inhibition of the Wnt/PI3K signaling pathways:identification of IL-20 receptor-mediated bystander activity against pancreatic cancer [J].Mol Ther,2005 11(5):724-733.
    [148]Wang CJ, Xue XB, Yi JL, et al. Melanoma differentiation-associated gene-7, MDA-7/IL-24, selectively induces growth suppression, apoptosis in human hepatocellular carcinoma cell line HepG2 by replication-incompetent adeno virus vector [J].World J Gastro-enterol,2006,12(11):1774-1779.
    [149]Sarkar D, Lebedeva IV, Gupta P, et al. Melanoma differentiation associated gene-7 (mda-7)/IL-24:a'magic bullet'for cancer therapy? [J]. Expert Opin Biol Ther,2007,7(5): 577-586.
    [150]Su ZZ, Lebedeva IV, Sarkar D, et al. Ionizing radiation enhances therapeutic activity of mda-7/IL-24:overcoming radiation-and mda-7/IL-24-resistance in prostate cancer cells overexpressing the antiapoptotic proteins bcl-xL or bcl-2 [J]. Oncogene,2006,25(16): 2339-2348.
    [151]Yacoub A, Mitchell C, Hong Y, et al.MDA-7 regulates cell growth and radiosen- sitivity in vitro of primary (non-established) human glioma cells [J]. Cancer Biol Ther,2004, 3(8):739-751.
    [152]Yacoub A, Mitchell C, Lebedeva IV, et al. mda-7 (IL-24) Inhibits growth and enhances radiosensitivity of glioma cells in vitro via JNK signaling [J]. Cancer Biol Ther,2003, 2(4):347-353.
    [153]Nishikawa T, Munshi A, Story MD, et al. Adenoviral-mediated mda-7 expression suppresses DNA repair capacity and radiosensitizes non-small-cell lung cancer cells. Oncogene [J].2004,23(42):7125-7131.
    [154]Emdad L, Sarkar D, Lebedeva IV, et al. Ionizing radiation enhances adenoviral vector expressing mda-7/IL-24-mediated apoptosis in human ovarian cancer [J]. J Cell Physiol, 2006,208(2):298-306.
    [155]Chada S, Mhashilkar AM, Liu Y, et al. mda-7 gene transfer sensitizes breast carcinoma cells to chemotherapy, biologic therapies and radiotherapy:correlation with expre-ssion of bcl-2 family members [J]. Cancer Gene Ther,2006,13(5):490-502.
    [156]Pataer A, Bocangel D, Chada S, et al. Enhancement of adenoviral MDA-7-mediated cell killing in human lung cancer cells by geldanamycin and its 17-allyl-amino-17-demethoxy analogue [J]. Cancer Gene Ther,2007,14(1):12-18.
    [157]熊炬,彭芝兰,谭欣等.腺病毒介导mda-7/IL-24基因感染对卵巢癌耐药细胞凋亡的影响.癌症,2007,26(4):371-376.
    [158]Yacoub A, Mitchell C, Lister A, et al. Melanoma differentiation-associated 7 (interleukin 24) inhibits growth and enhances radiosensitivity of glioma cells in vitro and in vivo [J]. Clin Cancer Res,2003,9(9):3272-3281.
    [159]Sauane M, Gopalkrishnan RV, Choo HT, et al. Mechanistic aspects of mda-7/IL-24 cancer cell selectivity analysed via a bacterial fusion protein [J]. Oncogene,2004,23(46): 7679-7690.
    [160]Su Z, Lebedeva IV, Gopalkrishnan RV, et al. A combinatorial approach for selectively inducing programmed cell death in human pancreatic cancer cells [J]. Proc Natl Acad Sci USA,2001,98(18):10332-10337.
    [161]Lebedeva IV, Sarkar D, Su ZZ, et al. Molecular target-based therapy of pancreatic cancer [J].Cancer Res,2006,66(4):2403-2413.
    [162]Xie Y, Zhang H, Sheng W, et al. Adenovirus-mediated ING4 expression suppresses lung carcinoma cell growth via induction of cell cycle alteration and apoptosis and inhibition of tumor invasion and angiogenesis [J]. Cancer Lett,2008,271(1):105-116.
    [163]Xie YF, Sheng W, Xiang J,et al. Adenovirus-mediated ING4 expression suppresses pancreatic carcinoma cell growth via induction of cell-cycle alteration, apoptosis, and inhibition of tumor angiogenesis [J]. Cancer Biother Radiopharm,2009,24(2):261-269.
    [164]盛伟华,谢宇锋,缪竞诚.Ad-ING4-poly(A)-Promoter-IL-24双基因共表达载体构建及表达.中华微生物学和免疫学杂志,2010,30(8):695-703.
    [165]Zhao L, Gu J, Dong A, et al. Potent antitumor activity of oncolytic adenovirus expressing mda-7/IL-24 for colorectal cancer [J]. Hum Gene Ther,2005,16(7):845-858.
    [166]Oida Y, Gopalan B, Miyahara R, et al. Sulindac enhances adenoviral vector expressing mda-7/IL-24-mediated apoptosis in human lung cancer [J]. Mol Cancer Ther,2005, 4(2):291-304.
    [167]McKenzie T, Liu Y, Fanale M, et al. Combination therapy of Ad-mda7 and trastuzumab increases cell death in Her-2/neu-overexpressing breast cancer cells [J]. Surgery. 2004,136(2):437-442.
    [168]Shanker M, Gopalan B, Patel S, et al. Vitamin E succinate in combination with mda-7 results in enhanced human ovarian tumor cell killing through modulation of extrinsic and intrinsic apoptotic pathways [J]. Cancer Lett,2007,254(2):217-226.
    [169]Cunningham CC, Chada S, Merritt JA, et al. Clinical and local biological effects of an intratumoral injection of mda-7 (IL24; INGN 241) in patients with advanced carcinoma:a phase I study [J]. Mol Ther,2005,11(1):149-159.
    [170]Tong AW, Nemunaitis J, Su D, et al. Intratumoral injection of INGN 241, a nonreplicating adenovector expressing the melanoma-differentiation associated gene-7 (mda-7/ IL24):biologic outcome in advanced cancer patients [J]. Mol Ther,2005,11(1):160-172.
    [171]金平,孔北华.多聚乙烯基亚胺介导的卵巢特异性启动子调控下的自杀基因抑制卵巢癌细胞生长的体外研究[J].癌症,2005,24(7):806-811.
    [172]涂春华.卵巢特异性启动子OSP-2的克隆及其在顺铂化疗中调控Survivin保护CHO细胞的研究[D].中山大学,2009.
    [173]于爱芳,辛晓燕,张文红.环氧化酶2启动子调控促凋亡基因BAX在卵巢癌细胞系的特异性高表达[J].中国肿瘤生物治疗杂志,2004,11(2):100-104.
    [174]李红梅,宋天保,于月成等.hTERT基因核心启动子调控的TRAIL基因表达载体的构建及对卵巢癌细胞凋亡的影响[J].细胞与分子免疫学杂志,2006,22(2):243-246.
    [175]朱元方,李攀,康楷等.含hTERT启动子和Fcy::Fur基因重组质粒的构建及其对卵巢癌细胞的体外杀伤作用[J].第三军医大学学报,2009,31(4):297-300.
    [176]宋悦,沈铿,何春霞.人端粒酶逆转录酶启动子-二步转录增强系统调控下的活性半胱氨酸天冬氨酸蛋白酶3的构建及其对卵巢上皮性癌的治疗作用[J].中华妇产科杂志,2007,42(9):617-622.
    [177]宋悦,孔北华,刘培淑等.hTERT启动子调控下HSV-tk/GCV系统对人卵巢癌细胞系Skov3的杀伤作用[J].中国医学科学院学报,2003,25(04):438-442.
    [178]宋悦,沈铿,于靖蓉.人端粒酶逆转录酶启动子调控下活性半胱氨酸蛋白酶-3治疗人卵巢癌[J].中华医学杂志,2007,96(41):2919-2924.
    [179]孔北华,宋悦,马道新等.人端粒酶逆转录酶启动子调控下胞嘧啶脱氨酶胸苷激酶融合基因治疗卵巢癌的体外研究[J].中华妇产科杂志,2004,39(6):392-395.
    [180]黄淑华,彭芝兰,王和.hTERT启动子调控腺病毒介导的CD基因治疗卵巢癌的实验研究[J].河北医学,2007,13(07):757-760.
    [181]郑姝颖,王申五,马丽萍等.HER2启动子在卵巢癌细胞系中控制报告基因特异性表达[J].中华医学遗传学杂志,2000,17(5):313-315.
    [182]卢实,王晓翊,肖蓝等.mdrl启动子调控胞嘧啶脱氨酶-尿嘧啶磷酸核糖转移酶融合基因对卵巢癌裸鼠耐药移植瘤的抑制作用[J].现代妇产科进展,2007,16(1):18-20+83.
    [183]卢实,王晓翊,肖蓝等mdrl启动子调控双自杀基因对卵巢癌SKOV3耐药细胞的靶向杀伤作用[J].中国实用妇科与产科杂志,2007,23(10):763-765.
    [184]蔡俐琼,李敏,卢实等.谷胱甘肽-S-转移酶P1启动子调控的胞嘧啶脱氨酶和尿嘧啶磷酸核糖转移酶融合基因对卵巢癌顺铂耐药细胞的体外杀伤作用[J].中华妇产科杂志,2004,39(7):478-481.
    [185]汪宏波,蔡俐琼,李敏等.谷胱甘肽S-转移酶P1启动子调控胞嘧啶脱氨酶-尿嘧啶磷酸核糖转移酶融合基因对卵巢癌顺铂耐药细胞的体内杀伤作用[J].中华妇产科杂志,2004,39(9):631-633.
    [186]张蓓,刘嘉茵,韩素萍.含survivin启动子重组的条件复制腺病毒联合顺铂对卵巢癌株HO-8910体外作用的实验研究[J].徐州医学院学报,2008,28(2):79-82.
    [187]Ekmekcioglu S, Mumm JB, Udtha M,et al. Killing of human melanoma cells induced by activation of class I interferon-regulated signaling pathways via MDA-7/IL-24 [J].Cytokine, 2008,43(1):34-44.
    [188]Wang X, Ye Z, Zhong J, et al. Adenovirus-mediated I1-24 expression suppresses hepatocellular carcinoma growth via induction of cell apoptosis and cycling arrest and reduction of angiogenesis [J].Cancer Biother Radiopharm,2007,22(1):56-63.
    [189]Xiao CW, Xue XB, Zhang H, et al. Oncolytic adenovirus-mediated MDA-7/IL-24 overexpression enhances antitumor activity in hepatocellular carcinoma cell lines [J].Hepatobiliary Pancreat Dis Int,2010,9(6):615-621.
    [190]Chen WY, Cheng YT, Lei HY, et al. IL-24 inhibits the growth of hepatoma cells in vivo..Genes Immun [J].2005,6(6):493-499.
    [191]Gillespie GY, Grizzle WE, Buchsbaum DJ, et al.. CRAdRGDflt-IL24 virotherapy in combination with chemotherapy of experimental glioma.Cancer Gene Ther [J].2009,16(10): 794-805.
    [192]Yacoub A, Park MA, Gupta P, et al. Caspase-, cathepsin-, and PERK-dependent regulation of MDA-7/IL-24-induced cell killing in primary human glioma cells [J].Mol Cancer Ther,2008,7(2):297-313.
    [193]Yacoub A, Hamed HA, Allegood J, et al. PERK-dependent regulation of ceramide synthase 6 and thioredoxin play a key role in mda-7/IL-24-induced killing of primary human glioblastoma multiforme cells [J].Cancer Res,2010,70(3):1120-1129.
    [194]Yan S, Zhang H, Xie Y, et al. Recombinant human interleukin-24 suppresses gastric carcinoma cell growth in vitro and in vivo [J].Cancer Invest,2010,28(1):85-93.
    [195]Sainz-Perez A, Gary-Gouy H, Gaudin F, et al. IL-24 induces apoptosis of chronic lymphocytic leukemia B cells engaged into the cell cycle through dephosphorylation of STAT3 and stabilization of p53 expression [J].J Immunol,2008,181(9):6051-6060.
    [196]Rahmani M, Mayo M, Dash R, et al. Melanoma differentiation associated gene-7/ interleukin-24 potently induces apoptosis in human myeloid leukemia cells through a process regulated by endoplasmic reticulum stress [J].Mol Pharmacol,2010,78(6):1096-1104.
    [197]Nishikawa T, Ramesh R, Munshi A, et al. Adenovirus-mediated mda-7 (IL24) gene therapy suppresses angiogenesis and sensitizes NSCLC xenograft tumors to radiation [J].Mol Ther,2004,9(6):818-828.
    [198]Ramesh R, Ioannides CG, Roth JA, et al. Adenovirus-mediated interleukin (IL)-24 immunotherapy for cancer.Methods Mol Biol [J].2010,651:241-270.
    [199]Aggarwal S, Takada Y, Mhashilkar AM, et al. Melanoma differentiation-associated gene-7/IL-24 gene enhances NF-kappa B activation and suppresses apoptosis induced by TNF.J Immunol [J].2004,173(7):4368-4376.
    [200]Caudell EG, Mumm JB, Poindexter N, et al. The protein product of the tumor suppressor gene, melanoma differentiation-associated gene 7, exhibits immunostimulatory act-ivity and is designated IL-24[J].J Immunol,2002,168(12):6041-6046.
    [201]Chada S, Mhashilkar AM, Ramesh R, et al. Bystander activity of Ad-mda7:human MDA-7 protein kills melanoma cells via an IL-20 receptor-dependent but STAT3-independent mechanism [J].Mol Ther,2004,10(6):1085-1095.
    [202]Sauane M, Gupta P, Lebedeva Ⅳ, et al. N-glycosylation of MDA-7/IL-24 is dispensable for tumor cell-specific apoptosis and "bystander" antitumor activity [J].Cancer Res, 2006,66(24):11869-11877.
    [203]Xue XB, Chen K, Wang CJ, et al. Adenovirus vector expressing mda-7 selectively kills hepatocellular carcinoma cell line Hep3B.Hepatobiliary Pancreat Dis Int [J].2008,7(5): 509-514.
    [204]Wang C, Xue X, Yi J, et al. Replication-incompetent adenovirus vector-mediated MDA-7/IL-24 selectively induces growth suppression and apoptosis of hepatoma cell Line SMMC-7721 [J].J Huazhong Univ Sci Technolog Med Sci,2008,28(1):80-83.
    [205]Su ZZ, Lebedeva Ⅳ, Sarkar D, et al. Melanoma differentiation associated gene-7, mda-7/IL-24, selectively induces growth suppression, apoptosis and radiosensitization in malignant gliomas in a p53-independent manner [J].Oncogene,2003,22(8):1164-1180.
    [206]Cunningham CC, Chada S, Merritt JA, et al. Clinical and local biological effects of an intratumoral injection of mda-7 (IL24; INGN 241) in patients with advanced carcinoma:a phase I study [J].Mol Ther,2005,11(1):149-159.
    [207]彭桂华,罗静,夏伟瑜等.IL-24对卵巢癌SKOV3细胞侵袭和迁移影响的研究[J].医学临床研究,2008,25(2):293-296.
    [208]Zheng M, Bocangel D, Ramesh R, et al. Interleukin-24 overcomes temozolomide resistance and enhances cell death by down-regulation of O6-methylguanine-DNA methyltransferase in human melanoma cells [J].Mol Cancer Ther,2008,7(12):3842-3851.
    [209]张治国Ad-ING4-IL-24共表达腺病毒对膀胱癌的体外抑癌增效和化疗增敏效应及分子机制[D].苏州大学,2010.
    [210]谢宇锋.腺病毒介导的ING4和IL-24共表达对肝癌的抑瘤增效和化疗增敏效应及分子机制[D].苏州大学,2009.
    [211]熊炬,彭芝兰,谭欣mda-7/IL-24基因对卵巢癌细胞耐药性的影响[J].现代妇产科进展,2007,(2):93-95+99.
    [212]Izutsu N, Maesawa C, Shibazaki M, et al. Epigenetic modification is involved in aberrant expression of class III beta-tubulin, TUBB3, in ovarian cancer cells [J]. Int J Oncol, 2008,32(6):1227-1235.
    [213]Ferlini C, Raspaglio G, Cicchillitti L, et al. Looking at drug resistance mechanisms for microtubule interacting drugs:does TUBB3 work? [J]. Curr Cancer Drug Targets,2007,7 (8): 704-712.
    [214]Raspaglio G, De Maria I, Filippetti F, et al. HuR regulates beta-tubulin isotype expression in ovarian cancer. Cancer Res [J].2010,70(14):5891-5900.
    [215]Orelli B, McClendon TB, Tsodikov OV, et al. The XPA-binding domain of ERCC1 is required for nucleotide excision repair but not other DNA repair pathways[J]. J Biol Chem, 2010,285(6):3705-3712.
    [216]Xie C, Yin RT, Li YL, et al. The protein expression of ERCC1 and survivin in epithelial ovarian carcinoma and their clinical significance [J]. Sichuan Da Xue Xue Bao Yi Xue Ban,2011,42(1):86-89.
    [217]Jiao JW, Wen F. Tanshinone IIA acts via p38 MAPK to induce apoptosis and the down-regulation of ERCC1 and lung-resistance protein in cisplatin-resistant ovarian cancer cells[J]. Oncol Rep,2011,25(3):781-788.
    [218]Steffensen KD, Waldstr(?)m M, Jakobsen A. The relationship of platinum resistance and ERCC1 protein expression in epithelial ovarian cancer [J].Int J Gynecol Cancer, 2009,19(5):820-825.
    [219]Liu GY, Qu QX, Mi RR, et al. Relationship between nucleotide excision repair gene ERCC1 and resistance to cisplatin in ovarian cancer[J].Zhonghua Zhong Liu Za Zhi,2008, 30(3):184-187.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700