利用生物技术开发一种新乳糖酶及其高效生产途径
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
意义和目的
     牛乳及乳制品含有丰富的优质蛋白质、脂肪、碳水化合物以及几乎全部已知的维生素和多种矿物质,尤其是其钙含量高且钙磷比例适当,易被人体消化吸收,还含有免疫球蛋白等抗病因子,因此牛乳及乳制品是人类改善营养、增强体质不可缺少的理想食品。我国已于2000年11月15日正式启动“学生饮用奶计划”,旨在提高全民营养状况、推动我国农业经济发展。目前世界人均牛乳年消费量为94kg,亚洲人均40kg,而我国仅为7kg,相差甚远,除了经济发展水平以外,一个重要的原因就是在中国人群中有很大一部分患有乳糖不耐受症。乳糖是牛乳中主要糖成分,其含量约为5%左右。许多人(因人种而异,西欧占2-8%,亚洲、非洲占60-90%)体内缺乏乳糖酶,因此他们很难消化牛奶,饮用牛奶后,乳糖在肠道内,被肠道细菌分解发酵,产生大量二氧化碳气体,导致肠道膨胀,并兴奋肠道蠕动,使收缩加强,造成肠鸣和腹泻,这种疾病称为乳糖不耐受症。生产低乳糖乳及乳制品是解决乳糖不耐受症问题的最佳途径。
     β-半乳糖苷酶(β-D半乳糖苷半乳糖水解酶,β-D-galactoside galatohydrolase,EC 3.2.1.23)通常被称为乳糖酶(Lactase)。该酶能将乳糖水解为半乳糖和葡萄糖,并具有半乳糖苷的转移作用。乳糖酶广泛存在于植物、细菌、真菌、放线菌以及动物肠道中。乳糖酶主要用来治疗乳糖不耐受症,处理加工牛乳、乳清,生产低乳糖牛奶和乳制品。近几年随着人们对乳糖不耐受症认识的深入,乳糖酶在食品和乳制品工业中的作用日益显著。但目前乳糖酶并未在中国食品和乳制品工业中得到广泛应用,主要原因是:(1)乳糖酶的单位产量较低;(2)市场上销售的乳糖酶多为胞内酶,酶的耐热性差、适用范围窄;且这种酵母来源(Kluyveromyces lactis、Kluyveromyces fragilis)的胞内酶,需破碎细胞才能得到,提取、纯化工艺繁杂。由于上述等原因致使乳糖酶销售价格过高、应用成本昂贵、适用范围窄,不能满足食品和乳制品工业多方面的需要。
     本论文研究的目的是从本实验室保存的一株产乳糖酶的亮白曲霉(Aspetgillus candidus)中克隆并获得拥有自主知识产权的乳糖酶基因,构建高效表达、有效分泌乳糖酶的重组毕赤酵母生物反应器,以解决乳糖酶单位产量低、胞内酶提取困难的问题。期望利用生物技术开发一条乳糖酶高效生产的新途径。
    
     中国农业科学院博士学住论文
    结论
     1.本研究从一株产乳糖酶的亮白曲霉(ASpergillu candidus冲克隆得到了乳糖
    酶基因组DNA及CDN*序列,序列分析表明,该乳糖酶基因组DNA序列长3458hp,
    其中含有8个内含子,CDNA编码区长3015hp,共编码1005个氨基酸,前19个氨
    基酸为信号肽序列,氨基酸序列中共含有11个潜在的糖基化位点。将不同来源的
    乳糖酶基因与此基因进行比较发现,该基因与绝大多数乳糖酶基因同源性较低;与
    商业化应用的、在本研究中作为对照的 A.o叭ae ATCC 20423的乳糖酶基因组 DNA
    和衍生的氨基酸序列比较,两基因CDNA的同源性为99%,氨基酸的同源性为
    99.5%,二者的基因组DNA序列中有19个碱基不同,内含子区域有5个碱基不同,
    CDNA序列中有 14个碱基不同,其中 3个碱基的变化引起了 3个氨基酸的改变:ZI+,
    T从cry a幻一?U.can&血小 牡0,1U.口W二a一~*U.can”山小989,NU.O炒二ae
    —D(.candidusX但经实验证实,二者在酶学性质上有显著的差异,由此说明我们
    克隆到了一个新基因,我们己将该基因在 GENEBANK中登录,登录号为:EMBL
    ACCESSIONNO.AJ431643。
     2.研究了亮白曲霉的乳糖酶的酶学性质:其最适叫.2,最适温度为60OC,PH
    稳定范围在pH3习之间,比活为706.54U/mg,以ONPG为底物时的义为
    1石7mmol几,七x为3.33卜mo厂L。将亮白曲霉的乳糖酶与商业化应用的、本研究作
    为对照的米曲霉ATCC 20423的乳糖酶进行了酶学性质的比较,结果表明亮白曲霉
    的乳糖酶在热稳定性、金属离子稳定性、比活、(、pH范围方面均优于后者,该乳
    糖酶具有更优越的酶学性质,在工业化生产中具有更广阔的应用前景。
     3.亮白曲霉的乳糖酶基因在大肠杆菌和毕赤酵母中均得到了表达,大肠杆菌
    表达的乳糖酶蛋白分子量约为 11 okD,与理论分子量山 okD湘符;毕赤酵母表达的
    乳糖酶蛋白分子量为120.130kD,二者分子量之间有差别的原因可能是毕赤酵母表
    达系统可对该蛋白进行翻译后的糖基化修饰作用,而原核表达系统不具备该功能。
     毕赤酵母表达系统可高效地表达有生物活性的亮白曲霉的乳糖酶,分泌表达量
    近 6g/L,酶活为 3600U/InL,且目的蛋白占发酵液中总分泌蛋白的 90%以上,发酵
    液中杂蛋白含量很少。因此本研究开辟了一条产量高、分离纯化简便、廉价大规模
    生产乳糖酶的新途径。
     4.初步进行了亮白曲霉的乳糖酶水解新鲜牛奶的应用效果研究。将不同酶量
    的孪糖酶O000U、1500U)分另添力到10mL牛奶中,测定在不同温度下OZ℃、37
    OC、50oC、60oCX不同时间内,乳糖酶对牛奶中的乳糖的水解程度。通过高压液?
The enzyme beta~D-galactosidase(beta-D-galactoside galactohydrolase, EC 3.2.1.23, also referred to as lactase)hydrolysis the disaccharide lactose to glucose and galactose. It is widely distributed various microorganisms such as bacteria, fungi, and also in various plants and animals intestine. Lactase can be used for treatment of "lactose intolerance", and production of low-lactose milk, whey and other dairy products. Although lactase has important applications in the fields of medicine, dairy industry, some problems obstructs large-scale industrial production of lactase. Main problems ate: (l)Low production and Enzymatic activity of lactase; (2)Commercial lactase mainly derived from yeasts(Kluyveromyces lactis <. Kluyveromyces fragilis) with low thermostability and narrow pH range; (3)An intracellular lactase resulting in the high cost due to extraction and purification processes.
    The purposes of our research are: (1) Screening lactase-yielded strain with superior enzymatic characteristics, identifying and isolating the lactase gene from the microorganism. (2) Enhancing production of lactase and reducing production cost via constructing high effective bioreactor of Pichia pastoris which can express and secrete lactase effectively.
    The results obtained as follows:
    1. A lactase-yielded strain Aspergillus candidus is screened. Genomic DNA and cDNA sequences of lactase from Aspergillus candidus are cloned. Sequences analysis reveals that the genomic DNA with the length of 345 8bp containing eight introns, cDNA with the length of 3015bp encoding a polypeptide of 1005 amino acid residues. Signal peptide is consisted of 19 amino acid residues. 11 potential N-glycosylation sites are assumed. Comparing the gene cDNA and the deduced amino acid sequences with the lactase sequences from various organism sources shows a very low homology, and the highest homology of cDN A and the deduced amino acid sequence are observed between the lactase of Aspergillus candidus and from Aspergillus oryzae ATCC 20423 which used as control strain. Homology of cDNA sequence is 99%, and homology of the deduced amino acid sequence is 99.5%. Although only 3 amino acid residues are
    
    
    different in the lactase from A. candidus2, 1(A. oryzae P (A. candidus); 420, l(A. ory~ae)^M(A. candidus); 989, N(^. oryzae-℃D(A. candidus)}, the characteristics of the enzyme exhibits obvious difference from that of A. oryzae. The lactase gene from Aspergillus candidus is a new gene for food and diary industry.
    2. The lactase from Aspergillus candidus shows optimum pH of 5.2, optimum temperature of 60℃, and the stable pH ranging from 3.0 to 9.0. Specific activity is 706.54U/mg. The Km is 1.67mmol/L, Fraax is 3.33umol/L with ONPG as a substrate. The enzymatic characteristics of Aspergillus candidus is superior in many aspects to that of Aspergillus oryzae ATCC 20423 including the thermostability, specific activity, metal ion stability, Km, and pH stable range.
    3. Lactase gene from Aspergillus candidus is expressed in E. coil and Pichia pastoris. By SDS-PAGE, the molecular weight of lactase expressed in E. coil is estimated to be about 11 OkD according with calculated molecular weight. The molecular weight of lactase protein expressed in Pichia pastoris is about 120-13 OkD probably due to glycosylation. Lactase from Aspergillus candidus is expressed in Pichia pastoris efficiently. High-level secreted lactase is about 6g/L with enzymatic activity of 3600U/mL. Therefore, the research open a new and convenient avenue for high-yielded lactase production.
    4. 3000U and 1500U of lactase is added separately in lOmL milk and the lactose content in milk by HPLC at the condition of various temperature (12℃ > 37 ℃ > 50 ℃ .. 60 ℃) and various incubated times is determined. The result shows, (1) lactose hydrolysis rate under the condition of 3000U lactase is higher than that of 1500U at the same temperature and incubated tune. (2) The lactose hydrolysis rate is higher at the higher temperature than that of lower temperature at the same incubated time. The
引文
陈菊凤,卢善发,胡敦孝,多形汉逊酵母外原基因表达系统,生物工程学报,2001,17(3),246-249
    高焕春,乳糖酶的特性及其在乳品工业中的应用,中国乳品工业,1996,24(3),19-21
    G.G.伯奇主编,酶与食品加工,轻工业出版社,1991,p93-110
    龚广予,李明,低乳糖牛乳的研制,上海奶牛,1999,22(3),43-46
    龚笑海,孙册,天野纯子,木幡阳,蚕豆β-半乳糖苷酶的纯化及性质研究,生物化学与生物物理学报,1991,23(2),157-163
    Haddel A.malek A. Majid,谭树华,高向东,吴梧桐,药用乳糖酶酵母菌发酵条件研究,中国药科大学学报,1999,30(5),392-395
    何梅,乳糖酶缺乏和乳糖不耐受,国外医学与卫生学分册,1999,26(6),339-342
    胡学智,功能性低聚糖及其制造概要,工业微生物,1997,1,30-39
    黄北阳,开发低乳制品促进我国乳品产业发展,当代畜牧,2001,3,1-2
    黄伟坤,食品检验与分析,中国轻工业出版社,1989,1,p26-27
    蒋爱民,李素简,王增勇,乳糖酶菌在乳制品生产中的应用,中国奶牛,1993,2,56-57
    李建武,肖能,余瑞元,袁明秀,陈丽蓉,陈雅蕙,陈来同,生物化学试验原理和方法,北京大学出版社,p174-176
    李晶,赵晓祥,沙长清,张淑梅,田洁萍,甲醇酵母基因表达系统的研究进展,生物工程进展,1999,19(2),17-20
    李文英,王绍树,孙建,β-半乳糖苷酶的研制及固定化初探,食品与发酵工业,1990,3,1-11
    李艳,王正祥,诸葛健,酵母作为外源基因表达系统的研究进展,生物工程进展,2001,21(2),10-14
    李玉强,王昌禄,顾晓波,米曲霉β-半乳糖苷酶的性质及其水解作用,中国食品添加
    李育阳,外源基因在酵母中表达产物的分泌,生物工程学报,1987,3(2),81-85
    刘谨,王汉中,丝状真菌外源基因表达系统研究的现状及展望,微生物学通报,2000,27(6),453-457
    
    
    刘文,胡巍,酵母表达基因工程产物特性分析,生物工程进展,2001,21(2),74-76
    吕晓华,刘世贵,高荣,生物技术在乳糖不耐受防治中的应用,中国乳品工业,2002,30(1),44-47
    骆成痒,陈铁涛,透性化乳酸克鲁维酵母细胞乳糖酶的生产方法,中国专利申请号,99100649.6
    马夫侠,张晓东,秦翠霞,低乳糖牛奶的工艺参数研究,食品工业科技,2002,1,50-52
    马孟根,王红宁,巴斯德毕赤酵母表达外源蛋白研究进展,四川农业大学学报,2001,19(3),277-280
    聂东宋,梁宋平,李敏,外源蛋白在巴氏毕赤酵母中高效表达的策略,吉首大学学报(自然科学版),2001,22(3),40-44
    欧阳菁,龙綮新,杨林,王殉章,甲基营养型酵母表达载体系统研究进展,应用与环境微生物,2001,7(5),502-506
    彭毅,步威,康良仪,甲醇酵母表达系统,生物技术通报,2000,1,38-41
    秦燕,宁正祥,β半乳糖苷酶的应用研究进展,食品研究与开发,2000,21(2),3-6
    秦燕,宁正祥,胡新宇,固定化β-半乳糖苷酶催化生成低聚半乳糖,食品与发酵工业,2001,27(11),12-16
    秦燕,宁正祥,吴国杰,乳糖水解时低聚半乳糖的生成及应用,食品与发酵工业,2000,26(5),p67-72
    沈为群,郭杰炎,李永福,陈惠萍,乳酸克鲁维酵母β-半乳糖苷酶的分离纯化及性质研究,生物工程学报,1993,9(4),348-354
    史益敏,颜季琼,费雪南,许以泉,番茄叶片胞外β-半乳糖苷酶的纯化及性质,植物生理学报,1994,20(2),113-120
    谭树华,Hadeel A malek A Majid,高向东,吴梧桐,脆壁克鲁维酵母乳糖酶提取物性质研究,药物生物技术,2000,7(3),153-156
    汤凤霞,葛志军,乔长晟,低乳糖乳制品的生产研究及应用,宁夏农学院院报,2000,21(4),79-82
    相尺孝亮,酶应用手册,上海科学技术出版社,1989,407-414
    谢毅等,乳酸克鲁维酵母(Kluveromces lactis)β-半乳糖苷酶的稳定性研究,复旦学报(自然科学版),1999,38(5),523-528
    
    
    姚斌,范云六,植酸酶的分子生物学与基因工程,生物工程学报,2000,16(1),1-5
    崔蕴霞,明文玉,银巍,任哲,汪健,顾军,人重组白蛋白基因在巴斯得毕赤酵母中的高效表达,微生物学报,2001,41(2),244-247
    尤新,功能性低聚糖,食品工业科技,2001,22(6),1-4
    曾宇,张树政,海枣曲霉β-半乳糖苷酶的催化性质,生物化学杂志,1988,4(2),109-115
    张树政主编,酶制剂工业下册,科学出版社,北京,1984,p818-819
    章如安,杨晟,邱荣德,袁中一,巴斯德毕赤酵母表达体系研究及进展,微生物学报,2000,27(5),371-373
    A Santos, M. Ladero, F. Garcia-Ochoa, Kinetic modeling of lactose hydrolysis by aβ-galactosidase from Kluyverormyces fragilis, Enzyme and Microbial Technology, 1998, 22,558-567
    Barr KA, Hopkins SA, Sreekrishna K, Protocol for efficient secretion of HAS developed from Pichiapastoris, Pharm Eng, 1992, 12, 48-51
    Beccera M, Cerdan E, Gonzales Siso MI, Dealing with different methods for Kluyveromyces lactis β-galactosidase purification, Biol Proced Online, 1998, 1,1-11
    Berka, Randy M., Hucul, John A., Ward, Michael, Increased production of beta.-galactosidase in Aspergillus oryzae, US patent, 5736374, 1998, 4, 7
    Braspenning J, Meschede W, Marchini A, Muller M, Gissmann L, Tommasino M.,Secretion of heterologous proteins from Schizosaccharomyces pombe using the homologous leader sequence of pho1+ acid phosphatase, Biochem Biophys Res Commun,1998, 245(1), 166-171
    Breunig KD, Dahlems U, Das S, Hollenberg CP., Analysis of a eukaryotic betagalactosidase gene: the N-terminal end of the yeast Kluyveromyces lactis protein shows homology to the Escherichia coli lacZ gene product, Nucleic Acids Res, 1984, 12(5),2327-2341
    Brodsky JA, Grootwassink JWD, Development and evaluation of whole-cell yeast lactase for use in dairy processing, Journal of Food Science, 1986, 51(4), 897-905
    Cereghino GP, Cregg JM., Applications of yeast in biotechnology: protein production and genetic analysis., Curr Opin Biotechnol, 1999, 10(5), 422-427
    Clare JJ, Rayment FB, Ballantine SP, Sreekrishna K, Romanos MA., High-level
    
    expression of tetanus toxin fragment C in Pichia pastoris strains containing multiple tandem integrations of the gene, Biotechnology (NY), 1991, 9(5) , 455-60
    Clare JJ, Romanes MA, Rayment FB, Rowedder JE, Smith MA, Payne MM, Sreekrishna K, Kenwood CA., Production of mouse epidermal growth factor in yeast: high-level secretion using Pichia pastoris strains containing multiple gene copies, Gene, 1991, 105(2) , 205-212
    Cregg JM, Vedvick TS, Raschke WC, Recent advances in the expression of foreign genes in Pichia pastoris, Biotechnology (N Y), 1993, 11(8) , 905-10
    de Vrese M, Keller B, Barth CA., Enhancement of intestinal hydrolysis of lactose by microbial beta-galactosidase (EC 3. 2. 1. 23) of kefir, Br J Nutr, 1992, 67(1) , 67-75
    Despreaux CW, Manning RF., The dacA gene of Bacillus stearothermophilus coding for D-alanine carboxypeptidase: cloning, structure and expression in Escherichia coli and Pichia pastoris, Gene, 1993, 131(1) , 35-41
    Diaz M, Pedregosa AM, de Lucas JR, Torralba S, Monistrol IF, Laborda F., Purification and properties of β-galactosidase from Aspergillus nidulans, Microbiologia, 1996, 12(4) , 585-592
    Dijk V, Faber K N, Kiel J A, The methylotrophic yeast Hansenula polymorpha: a versatile cell factory, Enzyme Microb Technol, 2000, 26(9-10) , 793-800
    Dirk H. Van Den Eijnden, Wiliem M.BIanken, Anja Van Vliet, Branch specificity of β-D-galactosidase from Escherichia coli, Carbohydrate research, 1986, 151, 329-335 Faber K H, Harder W Ab G, Veenhuis M, Methylotrophic yeasts as factories for the production of foreign, Yeast, 1995,11(4) , 1331-1344
    Fenton DM, Solvent treatment for β-D-galactosidase release from yeast cells, Enzyme Microb Technol, 1982, 4, 229-232
    Fiedurek J, Szczodrak J., Selection of strain, culture conditions and extraction procedures for optimum production of beta-galactosidase from Kluyveromyces fragilis, Acta Microbiol Pol, 1994, 43(1) , 57-65
    Frank D, Majak, Stephan T, Use of the glyceraldehyde-3-phosphate dehydrogenase promoter for production of functional mammalian membrane transport proteins in the yeast Pichia pastoris, Biochem Bio-phy Res Commun, 1998, 250, 531-536
    G.M.Pastore, Screening of high β-galactosidase-producing fungi and characterizing the
    
    hydrolysis properties of a selected strain, Journal of Food Science, 1979, Vol.44:1577-1579
    Gary R. Craven, Edward Steers, Jr., Christian B. Anfmsen, Purification, composition and molecular weight of the β-galactosidase of Escherichia coli K12, the journal of Biological Chemistry, 1965, 240(6) , 2468-2477
    Gellissen G, Weydemann U, Strasser AW, Piontek M, Janowicz ZA, Hollenberg CP., Progress in developing methylotrophic yeasts as expression systems, Trends Biotechnol, 1992,10(12) , 413-417
    Gemmill T R, Trimble R B, Overview of N-and O-linked oligosaccharide structures found in various yeast sprcies, Biochem Biophys Acta, 1999, 1426(2) , 227-237
    Gerhard Burchhardt,Hubert Bahl, Cloning and analysis of the β-galactosidase-encoding gene from Clostridum thermosulfuogenes EMI, Gene, 1991, 106, 13-19
    Gouka RJ, Punt PJ, van den Hondel CA., Efficient production of secreted proteins by Aspergillus: progress, limitations and prospects, Appl Microbiol Biotechnol, 1997, 47(1) , 1-11
    Hajime Yoshida, Kazumi Araki, Masanobu Kawai, Production of lactase by mutant of Kluyveromyces lactics, Agric. Bio. Chem., 1988, 52(4) , 951-955
    Haruhisa Hirata, Tsuyoshi Fukazawa, Seiji Negoro, Hiropsuke Okada, Structure of a β-galactosidase gene of Bacillus stearothermophilus, Journal of Bacteriology, 1986, 166(3) , 722-727
    Hiroko Nagano, Takashi Kawaguchi, Masashi Omori, Zenya Shoji, Motoo Arai, Molecular cloning and nucleotide sequence of the β-galactosidase gene from Enterobacter cloacae GAO, Biosci. Biotech. Biochem., 1994, 58(10) , 1866-1869
    Huang, Yue, Karatzas, Costas N., Lazaris-Karatzas, Anthoula, Delaquis, Annick, Aspergillus niger beta-galactosidase gene, US patent, 1998, 10,13, 5821350
    I.Rasouli, P.R.Kulkarni, Enhancement of β-galactosidase productivity of Aspergillus niger NCIM-616, Journal of Applied Bacteriology, 1994,77, 359-361
    Ito Y., Sasaki T., Gomi K., Kitamato K., Takahashi K., Kumagai C., Tamura G., β-galactosidase gene, Patent: JP, 1996, 10, 22, 1996275780-A
    James M. Cregg, Kevin J. Barringer, Anita Y. Hessler, Knut R. Madden, Pichia pastoris as a host system for transformations, Molecular and Cellular Biology, 1985, 5(12) ,
    
    3376-3385
    James M. Cregg, Knut R. Madden, Kevin J. Barringer, Gregory P. Thill, Cathy A. Stillman, Functional characterization of the two alcohol oxidase genes from the yeast Pichia pastoris, Molecular and Cellular Biology, 1989, 9(3) , 1316-1323
    John B.Moore, Peter Markiewicz, Jeffrey H. Miller, Identification and sequencing of the thermotoga maritima lacZ gene, part of a divergently transcribed operon, Gene, 1994, 147, 101-106
    Kazuhiro Nakanishi, Ryuichi Matsuno, Kazuyuki Torii, Kazuhiro Yamamoto, Properties of immobilized P-D-galactosidase from bacillus circulans, Enzyme Microb. Technol, 1983, 5(3) , 115-120
    L. Domingues, Teixeira JA, Lima N, Construction of a flocculent Saccharomyces cerevisiae fermenting lactose, Appl Microbiol Biotechnol, 1999, 51,621-626
    L.Domingues, M.-L. Onnela, J.A. Teixeira, N. Lima, M. Penttila, Construction of a flocculent brewer's yeast strain secreting Aspergillus niger β-galactosidase, Appl Microbiol Biotechnol, 2000, 54,97-103
    Lam-Son Phan Tran, Lorand Szabo, Laszlo Fulop, Laszlo Orosz, Tibor Sik, Andras Holczinger, Isolation of a β-galactosidase-encoding gene from Bacillus licheniformis: purification and characterization of the recombinant enzyme expressed in Escherichia coli, Current Microbiology, 1998, 37(1) , 39-43
    Laroche Y, Storme V, De Meutter J, Messens J, Lauwereys M., High-level secretion and very efficient isotopic labeling of tick anticoagulant peptide (TAP) expressed in the methylotrophic yeast, Pichiapastoris, Biotechnology (N Y), 1994, 12(11) , 1119-1124
    Liu Z, Cashion LM, Pu H, Protein expression both in mammalian cell lines and in yeast Pichia pastoris using a single expression plasmid, Biotechniques 1998, 24(2) , 266-268, 270-271
    Lutz Fischer, Christian Scheckermann, Fritz Wagner, Purification and characterization of a thermotolerant β-galactosidase from Thermomyces lanuginsus, Applied and Environmental Microbiology, 1995,4, 1497-1501
    M. Becerra, S. DiaZ Prado, M. I. Gonzalez Siso, M. E. Cerdan, New seretory strategies for Kluyveromyces lactis β-galactosidase, Protein Engineering, 2001, 14(5) , 379-386 M.Becerra, E.Cerdan, M.I. Gonzalez Siso, Heterologous Kluyveromyces lactics β-
    
    galactosidase production and released by Saccharomyces cerevisiae osmotic-remedial thermosensitive autolytic mutants, Biochimica et Biophysica Acta, 1997, 1335, 235-241
    Mahoney R. R., Nickerson TA, Whitaker JR, Selection of strain, growth condition, and extraction procedures for optimum production of lactase from Kluyveromyces fragilis, Journal of Diairy Science, 1976,58(11) , 1620-1625
    Makoto Naoi, Kazutoshi Kiuchi, Tadashi Sato, Alteration of the substrate specifity of Aspergillus oryzae β-galactosidase by modification with polyethylene glycol, Journal of Biochemistry, 1984, 6, 91-102
    Marco Vanoni, Danilo Porro, Enzo Martegani, Lilia Alberghina, Secretion of Escherichia coli β-galactosidase in Saccharomyces cerevisiae using the signal sequence from the glucoamylase encoding STA2 gene, Biochemical and Biophysical Resarch Communications, 1989,164(3) , 1331-1338
    Maria J.Hernaiz, David H.G.Crout, Immobilization/stabilization on eupergit C of the β-galactosidase from B. circulans and an a-galactosidase from Aspergillus oryzae, Enzyme andMicrobial Technology, 2000, 27,26-32
    Martins DB, de Souza Jr CG, Simoes DA, de Morais Jr MA., The beta-galactosidase activity in Kluyveromyces marxianus CBS6556 decreases by high concentrations of galactose, Curr Microbiol, 2002,44(5) , 379-382
    Mayer A F, Hellmuth K, Schlieker H, An expression system marutes: a highly efficient and cost-effective process for phytase production by recombinant strains of Hansenula polymorpha. process in developing methylotrophic yeasts as expression systems, Biotechnol Bioeng, 1999, 63(3) , 373-381
    McGrew JT, Leiske D, Dell B, Klinke R, Krasts D, Wee SF, Abbott N, Armitage R, Harrington K., Expression of trimeric CD40 ligand in Pichia pastoris: use of a rapid method to detect high-level expressing transformants., Gene , 1997,187(2) , 193-200
    Mei M, Whittaker, James W, Expression of recombinant galactose oxidase by Pichia pastoris, Protein Expression and Purification, 2000, 20,105-111
    Minetoki T, Kumagai C, Gomi K, Kitamoto K, Takahashi K., Improvement of promoter activity by the introduction of multiple copies of the conserved region III sequence, involved in the efficient expression of Aspergillus oryzae amylase-encoding genes. Appl Microbiol Biotechnol, 1998, 50(4) , 459-467
    
    Misa Inohara-Ochiai, Torn Nakayama, Masahiro Nakao, Tsuyoshi Fujita, Takashi Ueda, Toshihiko Ashikari, Tokuzo Nishino, Yuji Shibano, Unique primary structure of a thermostable multimetal β-galactosidase from Saccharopolyspora rectivirgula, Biochimica et Biophysica Acta, 1998, 1388, 77-83
    Montesino R, Garcia R, Quintero O, Cremata J A, Variation in N-linked oligosaccharide structures on heterologous proteins secreted by the methylotrophic yeast Pichia pastoris, protein Exp Purif, 1998, 14(2) , 197-207
    Moriaki Akasaki, Motoko Suzuki, Dcuo Funakoshi, Ikuo Yamashina, Characterization of β-galactosidase from a special strain of Aspergillus oryzae, Journal of Biochem., 1976, 80,1195-1200
    Naomi Ohtsu, Hidemasa Motoshima, Kenji Goto, Fuji Tsukasaki, Hiroshi Matsuzawa, Thermostable 3-galactosidase from an extreme thermophile, Thermus sp. A4: enzyme purification and characterization, and gene cloning and sequencing, Biosci Biotechnol Biochem, 1998, 62(8) , 1539-1545
    Naomi Ohtsu, Takashi Tanaka, Purification and properties of a novel thermostable galacto-oligosaccharide-producing β-galactosidase from Sterigmatomyces elviae CBS8119, Applied Environmental Microbiology, 1995, 61(11) , 4026-4030
    Olivier poch, Herve L Hote, Vincent Dallery, Francoise Debeaux, Reinhard Fleer, Regis Sodoyer, Sequence of the Kluveromces lactis β-galactosidase: comparison with prokaryotic enzymes and secondary structure analysis, Gene, 1992,118, 55-63
    Paifer E, Margolles E, Cremata J, Montesino R, Herrera L, Delgado JM., Efficient expression and secretion of recombinant alpha amylase in Pichia pastoris using two different signal sequences, Yeast, 1994, 10(11) , 1415-1419
    R.H.Jacobson, X-J.Zhang, R.F.DuBose, B.W.Matthews, Three-dimensional structure of β-galactosidase from E. coli, Nature, 1994, 369(30) , 761-766
    R.R.Mahoney, T.A.Nickerson, J.R.Whitaker, Selection of strain, growth condition, and extraction procedures for optimum production of lactase from Kluyveromyces fragilis, Journal of Dairy Science, 1974, 58(11) , 1620-1629
    Rech R, Cassini C, Secchi A, Ayub M., Utilization of protein-hydrolyzed cheese whey for production of beta-galactosidase by Kluyveromyces marxianus.,J Ind Microbiol Biotechnol, 1999,23(2) , 91-96
    
    
    Remacle JE, Albrecht G, Brys R, Braus GH, Huylebroeck D., Three classes of mammalian transcription activation domain stimulate transcription in Schizosaccharomyces pombe, EMBOJ, 1997, 16(18) , 5722-5729
    Robert C. Dikson, Lesley R. Dickson, Jennifer S. Markin, Purification and properties of an inducible β-galactosidase isolated from the yeast Kluyveromyces lactis, Journal of Bacteriology, 1979,1, 51-61
    Romanes MA, Clare JJ, Beesley KM, Rayment FB, Ballantine SP, Makoff AJ, Dougan G, Fairweather NF, Charles IG., Recombinant Bordetella pertussis pertactin (P69) from the yeast Pichia pastoris: high-level production and immunological properties, Vaccine, 1991,9(12) , 901-906
    Ronald P. De Vries, Hetty C. Van den Broeck, Ester Dekkers, Paloma Manzanares, Leo H. De Graaff, Jaap Visser, Differential expression of three a-galactosidase genes and a single β-galactosidase gene from Aspergillus niger, Applied Environmental Microbiology, 1999, 65(6) , 2453-2460
    Rubio-Teixeira M, Castrillo JI, Adam AC, Ugalde UO, Polaina J, Highly efficient assimilation of lactose by a metabolically engineered strain of Saccharomyces cerevisiae, Yeast, 1998, 14, 827-837
    Rusynyk RA, Still CD., Lactose intolerance , J Am Osteopath Assoc, 2001, 101(4 Suppl Pt 1) , 10-12
    S.shubhada, P.V.Sundaram, Borate ion-assisted stabilization of β-galactosidase from Aspergillus oryzae by polyhydroxy compounds in water-miscible organic solvents, Enzyme Micro. Technol, 1993, 15(10) , 881-886
    Savaiano D A, Levitt M D, Milk intolerance and microbecontaining dairy foods, J Dairy Sci, 1987, 70, 397-406
    Scorer CA, Buckholz RG, Clare JJ, Romanes MA., The intracellular production and secretion of HIV-1 envelope protein in the methylotrophic yeast Pichia pastoris., Gene 1993, 136(1-2) , 111-119
    Shen S, Suiter G, Jeffries TW, Cregg JM, A strong nitrogen source-regulated promoter for controlled expression of foreign genes in the yeast Pichia Pastoris, gene, 1998, 216, 93-102
    Shigeta S, Ono K, Oka S. Purification and characterization of a sea squirt beta-
    
    galactosidase, J Biochem (Tokyo), 1991, 110(1) , 136-140
    Siegel r S, Buckholz R G, Thill G P, Wondrack L M, Production of epidermal growth factor in methlotrophic yeasts, International Patent Application, 1990, WO 90/10697
    Siegel. R S, Buckolz RG, Thill GP, Wondrack LM, Production of epidermal growth factor in methylotrophic yeasts, International Patent, Punl No. WO 90/10697,1990
    Sierkstra L N, Verbakel J M A, Verrips C T, Optimisation of a host/vector system for heterologous gene expression by Hansenula polymorpha, Curr Genet, 1991, 19(2) , 81-87
    Singh A, Lugovoy JM, Kohr WJ, Perry LJ., Synthesis, secretion and processing of alpha-factor-interferon fusion proteins in yeast, Nucleic Acids Res, 1984,12(23) , 8927-8938
    Sreekrishna K, Brankamp RG, Kropp KE, Blankenship DT, Tsay JT, Smith PL, Wierschke JD, Subramaniam A, Birkenberger LA., Strategies for optimal synthesis and secretion of heterologous proteins in the methylotrophic yeast Pichia pastoris, Gene, 1997, 190(1) , 55-62
    Sreekrishna K, Brankamp RG, Kropp KE, Blankenship DT, Tsay JT, Smith PL, Wierschke Sreekrishna K, Nelles L, Potenz R, Cruze J, Mazzaferro P, Fish W, Fuke M, Holden K, Phelps D, Wood P, High-level expression, purification, and characterization of recombinant human tumor necrosis factor synthesized in the methylotrophic yeast Pichia pastoris, Biochemistry, 1989, 28(9) , 4117-4125
    Sreekrishna, K., R. C. Dickson, Construction of strains of Saccharomyces cerevisiae that grow on lactose, PROC. Natl. Acad. Sci. USA, 1985, 82, 7909-7913
    Stawomir Dabrowski, Jadwiga Maciunska, Jozef Synowiecki, Cloning and nucleotide sequence of the thermostable @-galactosidase gene from Pyrococcus woesei in Escherichia coli and some properties of the isolated enzyme, Molecular Biotechnology, 1998, 10(3) , 217-222
    Sundaram Ramakrishnan Brian S.Hartley, Fermentation of Lactose by Yeast Cells Secreting Recombinant Fungal Lactase, Applied and Environmental Microbiology, 1993, 59(12) , 4230-4235
    Tohda H, Okada H, Giga-Hama Y, Okayama H, Kumagai H., A copy-number-controlled expression vector for the fission yeast Schizosaccharomyces pombe, Gene, 1994, 150(2) ,
    
    275-280
    Topete M, Casas LT, Galindo E., Beta-Galactosidase production by Kluyveromyces marxianus cultured in shake flasks, Rev Latinoam Microbiol, 1997, 39(3-4) , 101-107 V.Ganeva, B.Galutzav, N.Eynard, J.Teissie, Electroinduced extration of β-galactosidase from Kluyveromyces lactics, Appl Microbiol Biotechnol, 2001,56,411-413
    Vassilis gekas and Miguel Lopez-Leiva, Hydrolysis of lactose: a literature review, Process Biochemistry, 1985, 2, 2-12
    Vella M, Greenwell P., Purification and partial characterization of β-galactosidase from Tritrichomonasfoetus, Glycoconj J,1997,14(7) , 883-887
    Vijay Kumar, Sundaram Ramakrishnan, tuula T.Teeri, Jonathan K.C. Knowles, Brain S. Hartley, Saccharomyces cerevisiae Cells secreting an Aspergillus niger β-galactosidase grow on whey permeate, Bio/Technology, 1992,10(1) , 82-85
    Wang D, Sakakibara M., Lactose hydrolysis and beta-galactosidase activity in sonicated fermentation with Lactobacillus strains., Ultrason Sonochem, 1997,4(3) , 255-261
    Waterham HR, Digan ME, Koutz PJ, Lair SV, Cregg JM., Isolation of the Pichia pastoris glyceraldehyde-3-phosphate dehydrogenase gene and regulation and use of its promoter, Gene, 1997,186(1) , 37-44
    Wegner G H, Biochemical conversions by yeast fermentation at high cell dendities, USA Patent, 1983, No, 4414329
    Widmer F, Leuba JL., β-Galactosidase from Aspergillus niger. separation and characterization of three multiple forms, Eur JBiochem, 1979,100(2) , 559-567
    Willemiek H.M.van Casteren, Mirjana Eimermann, Lambertus A.M.van den Broek, Jean-Paul Vincken, Henk A. Schols, Alphons G.J. Voragen, Purification and characterization of a β-galactosidase from Aspergillus aculeatus with activity towards (modified) exopolysacchandes from Lactococcus lactis subsp. cremoris B39 and B891, Carbohydrate Research, 2000, 329(1) , 75-85
    Y. K. Park, M. S. S. De Santi, G. M. Pastore, Production and characterization of β-galactosidase from Aspergillus oryzae, Journal of Food Science, 1979, 44(1) , 100-103
    Y.C. Lee, Victoria Wacek, Galactosidase from Aspergillus niger, Archives of Biochemistry and Biophysics, 1970, 138,264-271
    Yang ST, Tang IC, Lactose hydrolysis and oligosaccharide formation catalyzed by beta-
    
    galactosidase Kinetics and mathematical modeling, Ann N Y Acad Sci, 1988, 542, 417-422
    Yoshiyuki Ito, Takashi Sasaki, Cloning and characterization of the gene encoding a novel β-galactosidase from Bacillus circulans, Biosci. Biotech. Biochem., 1997, 61(8) , 1270-1276
    Yuji Tanaka, Akihiro Kagamishi, Akira Kiuchi, Tadao Horiuchi, Purification and properties of β-galactosidase from Aspergillus oryzae, J. Biochem., 1975, 77, 241-247
    Zaid Mozaffar, Kazuhiro Nakanishi, Ryuichi Matsuno, Tadashi Kamikubo, Purification and properties of β-galactosidase from Bacillus circulans, Agric. Biol Chem., 1984, 48(12) , 3053-3061
    Zoltan Nagy, Tunde Kiss, Attila Szentirmai, Sandor Biro, β-galactosidase of Penicillium chrysogenum: production, purification, and characterization of the enzyme, Protein Expression and Purification, 2001, 21(1) , 24-29

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700