人ZNF268基因在早期胚胎发育中的特性和功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
早期胚胎是细胞生长、发育、分化最旺盛时期,大多数基因都处于活化状态,是发现和分离有重要功能新基因的极好材料。尽管小鼠等模式动物,对于我们认识哺乳类动物早期胚胎发育提供了许多重要信息,但它与人类存在着必然的差异。为此,我们根据实际情况和条件选择人早期胚胎为材料,进行人早期胚胎中表达的新基因的分离和功能研究。
     在构建早期人胚胎cDNA文库的基础上,应用杂交筛选和表达标签(EST)分析技术从3-5周龄人胚胎cDNA文库中得到一个克隆子L30,应用5’RACE技术,克隆了其全长cDNA。经过对全长cDNA序列的测定及其结构特征的分析,证实L30为一个新的锌指蛋白基因,国际命名委员会命名其为ZNF268。为了研究ZNF268的生物学功能,我们分别在mRNA和蛋白质水平研究了ZNF268在不同器官和组织中的表达图谱,为进一步深入研究奠定基础。
     以~(32)P标记的ZNF268cDNA特异片段(3’UTR)作为探针,通过Northern杂交技术,检测了ZNF268在42种正常人成体器官和组织以及8种晚期胎儿器官中的表达。结果显示,除阳性对照外,检测的所有样品中均无明显的杂交信号。同时,从早期人胚胎(3-5周龄及3月龄)提取总RNA与ZNF268探针进行杂交,均得到了3.8kb的杂交条带。Northern结果表明ZNF268mRNA仅特异性表达于早期人胚,而在成人组织中不表达。
     为了进一步在翻译水平研究ZNF268蛋白的表达,我们
    
    构建了ZNF268重组原核表达载体,纯化在大肠杆菌中表达
    的产物,制备了特异的zNF268抗体paZNF268ab。以
    paZNF268ab抗体为依托,用Western印迹法检测出在4月
    龄人胚胎肝脏组织中,有分子量为108KDa的ZNF268蛋白
    的特异表达信号。进一步利用免疫组织化学方法检测
    ZNF268蛋白在5周至7月龄人胚肝中的表达。结果显示
    ZNF268蛋白在不同发育时期的人胎肝中表现出不同的表达
    水平,其表达量随着胚龄增加、即胚肝分化发育成熟而下
    降。由此可见ZNF268可能参与调控早期人胚肝的分化和发
    育。免疫组织化学的结果还显示,ZNF268在早期的造血干、
    祖细胞中表达。因此ZNF268也可能参与早期造血细胞的分
    化发育,从而与早期人胚造血相关。
     大多数锌指蛋白做为转录调控因子,在细胞中的表达
    集中于细胞核中。而用免疫组织化学方法检测ZNF268蛋白
    表达产物的定位时,发现ZNF268蛋白集中于细胞质中。为
    了进一步确认ZNF268蛋白在细胞中的表达定位,构建了与
    绿色荧光蛋白融合的部分及全长ZNF268表达载体,对在
    COS7细胞中表达的不同ZNF268片段融合EGFP的蛋白质进
    行细胞内定位。结果证实ZNF268蛋白的表达主要定位于细
    胞质中。这一结果表明ZNF268不同与大多数的锌指蛋白,
    其发挥功能可能是通过胞质内的调控途径。同时这一结果
    为确定ZNF268的靶向物及研究ZNF268的功能奠定了基础。
     在研究ZNF268表达产物的细胞内定位时,我们还观察
    到ZNF268KRAB盒的表达产物定位于细胞核中。CZHZ型锌指
    蛋白的KRAB盒具有和其它因子相互作用而介导转录抑制
    的功能。ZNF268的KRAB盒保守性很高,可能同样是一个
    转录抑制因子。细胞内定位的结果显示ZNF268的KRAB盒
    
    主要集中于细胞核中,这与其它转录抑制因子定位于细胞
    核中是一致的。为了研究ZNF268KRAB盒的功能,构建了一
    系列含有ZNF268KRAB盒不同片段的真核表达载体;与含有
    CAT基因的报告载体共转染细胞,分析ZNF268KRAB盒的转
    录抑制活性。结果证实ZNF268的KRAB盒确实具有转录抑
    制作用;并且KRAB一A是一个强抑制子,KRAB一B对KRAB一A
    有协同作用。
     在确证了ZNF268有转录抑制功能的基础上,我们希望
    寻找ZNF268功能作用的靶向物。采用酵母双杂交技术,用
    ZNF268蛋白作为“诱饵”,筛选18~24周龄(约4一6月龄)
    的人胚肝文库。经过营养缺陷型筛选、X一a一gal和X一p一gal
    筛选、及体外免疫共沉淀验证,得到一个与ZNF268蛋白相
    互作用的蛋白质AHSG。研究表明,AHSG参与人胚肝的发育。
    ZNF268蛋白与AHSG蛋白的互作说明,ZNF268可能通过与
    AHSG协同作用而参与调控人胚肝的发育。同时,AHSG不仅
    仅表达于肝脏,在骨髓生血基质中也有表达,并与多种血
    液疾病相关,提示ZNF268潜在的与早期人胚造血的关系,
    以及在某些特定情况下可能与某种疾病相关。
     总之,本研究从转录和翻译水平分析了ZNF268在人早
    期胚胎中的表达特征;研究了ZNF268的细胞内定位并分析
    了其作用的靶向物。研究结果初步阐明了这一新的锌指蛋
    白基因在人早期胚胎中的功能。
Embryogenesis is a complex process that requires accurate temporal and spatial regulation of gene expression and function. Alteration of this regulation may lead to congenital abnormality and inheritable genetic diseases. Although various animal models have provided some information of early mammalian development, vital differences between human and other animals argue for studies on human development.
    In an effort to identify and functional characterize genes important for human development, we previously constructed a cDNA library from 3-week-old human embryos. By using a differential hybridization strategy, we were able to isolate, from this library, many genes expressed in the early human embryos, among which, a novel zinc finger gene, ZNF268.
    To determine whether ZNF268 is involved in human embryogenesis, we first analyzed its expression by Northern blot hybridization on RNA from human embryos and adult human tissues. The ZNF268 probe detected an mRNA of 3.8 kb in length in human embryos. While the mRNA was present in all embryos analyzed, but no ZNF268 mRNA was detectible in all adult human tissues
    
    
    analyzed. Those imply ZNF268 play a role specifically during early embryogenesis.
    To investigate the expression of ZNF268 protein, we first generated an anti~ZNF268 antibody specifically. Western blot analysis indicated that ZNF268 was expressed in the fetal liver, but not in the heart, kidney, brain and spleen. To further investigate ZNF268 expression in development, immunohistochemical analysis was carried on tissue sections of human embryos of various ages. Again, the anti-ZNF268 antibody specifically detected the protein in the liver of a human embryo as early as 5 week old but not in other areas of the embryo. The protein level in the liver hepatocytes remained high up to 4 month old but drastically reduced by 6 month old and to non-detectible levels by 7 months. These results suggest that ZNF268 is involved in the development of fetal liver in early human fetuses. In addition, Immunohistochemistry analysis also indicated that ZNF268 expression was found in the hematopoietic stem/progenitor cells. This make a suggestion that ZNF268 may involve in the development of the blood cells in early human embryo and may have a function in early human hematopoiesis.
    The immunohistochemical analysis of ZNF268 expression in embryonic liver also revealed, at high resolution, that the protein was localized in the
    
    cytoplasm of hepatocytes through out development (5 weeks to 4 months). To further investigate the subcelluar distribution of ZNF268 protein, we expressed the fused EGFP zinc finger protein in COS7 cells. Examination result showed that ZNF268 was predominantly, if not exclusively, a cytoplamic protein, belonging to the small group of cytoplamic zinc figure proteins but distinct from other krtlppel-Iike zinc finger proteins.
    To examine whether the ZNF268 KRAB possesses transcriptional represser activity, KRAB-A, KRAB-B and KRAB-AB were fused in-frame to the GAL4 expression vector pBXGl respectively. Then they were co-expressed with reporter plasmid pG5SV-BCAT which containing five GAL4-binding elements. Both KRAB-AB and KRAB-A decreased the expression level of the reporter gene in a dose-dependent manner. The KRAB-B suppressed transcription of the reporter gene not as significant as the other two; KRAB-AB repressed the reporter gene distinctly than KRAB-A. In conclusion, KRAB domain of ZNF268 has transcription repressing activity, and ZNF268 may act as a represser.
    To study the interact protein of ZNF268, we constructed the "Bait" with ful 1 cDNA of ZNF268, and screened in the human liver cDNA library of 18-24 weeks. Now we identified a interact protein AHSG (alpha2-Heremans Schmid Glycoprotein). AHSG may
    
    play roles in the development of liver, brain and may involve in bone mineralization and in the immune response. The interaction between ZNF268 and AHSG indicate that AHSG, recruiting ZNF268, play a role in early liver development. Otherwise, AHSG also expressed serum, bone marrow hemopoieti
引文
Abdollahi A, Pisarcik D, Roberts D, Weinstein J, Cairns P, Hamilton TC (2003) LOT1 (PLAGL1/ZAC1), the Candidate Tumor Suppressor Gene at Chromosome 6q24-25, Is Epigenetically Regulated in Cancer. J. Biol. Chem. 278: 6041-6049
    Adjaye J, Bolton V, Monk M (1999) Developmental expression of specific genes detected in high-quality cDNA libraries from single human preimplantation embryos. Gene 237: 373-383
    Agata Y, Matsuda E, Shimizu A (1999) Two novel Kruppel-associated box-containing zinc-finger proteins,KRAZ1 and KRAZ2, repress transcription through functionalinteraction with the corepressor KAP-1 (TIF1β/KRIP-1). J.Biol. Chem. 274: 16412-16422
    Aran A, Cassuto H, Reshef L (1995) Cooperation between transcription factors regulates liver development. Biol Neonate 67: 387-396
    Banerjee SS, Feinberg MW, Watanabe M, Gray S, Haspel RL, Denkinger DJ, Kawahara R, Hauner H, Jain MK (2003) The Kruppel-like factor KLF2 inhibits peroxisome proliferator-activated receptor-gamma expression and adipogenesis. J. Biol. Chem. 278: 2581-2584
    Bardwell V J, Treisman R, et al. (1994) The POZ domain: a
    
    conserved protein-protein interaction motif. Genes Dev.8: 1664-1677
    Bellefroid E J, Poncelet D A, Lecoq P J, et al. (1991) The evolutionarily conserved Kruppel associated box domain defines a subfamily of eukaryozic multifingered proteins. PNAs. 88: 3608-3612
    Bellefroid EJ, Marine J-C, Mazera AG, et al. (1995) Emergence of the ZNF91 kruppel-associated box-containing zinc finger gene family in the last common acestor of Anthropoidea. PNAs. 92: 10757-10761
    Bellefroid EJ, Sahin M, Poncelet DA, Riviere M, Bourguignon C, Martial JA, Morris PL, Pieler T, Szpirer C, Ward DC (1998) Kzfl-a novel KRAB zinc finger protein encoding gene expressed during rat spermatogenesis. Biochim. Biophys. Acta. 1398: 321-329
    Bentley D (1999) Coupling RNA polymerase Ⅱ transcription with pre-mRNA processing. Curr. Op. Cell Biol. 11: 347-351
    Bickmore WA, Oghene K, Little MH, Seawright A, van Heyningen V, Hastie ND (1992) Modulation of DNA binding specificity by alternative splicing of the Wilms tumor wtl gene transcript. Science 257: 235-237
    Bray P, Lichter P, Thiesen B J, et al. (1991)
    
    
    Characterization and mapping of human genes encoding zinc finger proteins. PNAs. 88: 9563-9567
    Brown, DD. 1984 cell 37: 359-365
    Bushmeyer S, Park K, Atchison ML (1995) Characterization of functional domain within the multifunctional transcription factor, YY1. J. Biol. Chem. 270: 30213-30220
    Caceres JF & Kornblihtt AR (2002) Alternative splicing: multiple control mechanisms and involvement in human disease. Trends Genet. 18: 186-193
    Carl M, Akagi Y, Weidner S, Isaka Y, Imai E, Rupprecht HD (2003) Specific inhibition of Egr-1 prevents mesangial cell hypercellularity in experimental nephritis. Kidney Int. 63: 1302-1312
    Casademunt E, Carter BD, Benzel I, Frade JM, Dechant G., Barde YA (1999) the zinc finger protein NRIF interacts with the neurotrophin receptor p75NTR and participates in programmed cell death. EMBO J. 18(21): 6050-6061
    Chen X, Hamon M, Deng Z, et al. (1999) Identification and characterization of a zinc finger gene (ZNF213) from 16p13.3. BBA 1444: 218-230
    Chen Z, Centola M, Chen X, et al. (1998) Identification of
    
    two Kruppel-related zinc finger genes (ZNF200 and ZNF210) from human chromosome 16p13.3. Genomics 53: 97-103
    Clemens KR, Wolf V, McBryant SJ, Zhang P, Liao X, Wright PE, Gottesfeld JM (1993) Molecular basis for specific recognition of both RNA and DNA by a zinc finger protein.Science 260: 530-533
    Collins C, Rommens JM, Kowbel D, et al. (1998) Positional cloning of ZNF 217 and NABC 1: Genes amplified at 20q13.2 and overexpressed in breast carcinoma. PNAs. 95: 8703-8708
    Cote F, Boisvert F- M, Grondin B, Bazinet M, Goodyer CG, Bazett-jones DP, Aubry M (2001) Alternative promoter usage and splicing of ZNF74 multifinger gene produce protein isoforms with a different repressor activity and nuclear partitioning. DNA Cell Biol. 20: 159-173
    Cramer P, Caceres JF, Cazalla D, Kadener S, Muro AF, Baralle FE, Kornblihtt AR (1999) Coupling of transcription with alternative splicing: RNA pol Ⅱ promoters modulate SF2/ASF and 9G8 effects on an exonic splicing enhancer. Mol. Cell 4: 251-258
    Dang DT, Pevsner J, Yang VW, et al. (2000) The biology of the mammalian Kruppel-like family of transcription factors J.J. Bioche. Cell Bio. 32: 1103-1121
    
    
    Darlington GJ (1999) Molecular mechanisms of liver development and differentiation. Curr. Opin. Cell Biol. 11: 68-682
    David JA, Louise Van Der W, Akila M, et al. (2001) ZNF265-a novel spliceosomal proein able to induce alternative splicing. 154: 25-32
    Dredge BK, Polydorides AD, Darnell RB (2001) The splice of life: alternative splicing and neurological disease. Nat. Rev. Neurosci. 2: 43-50
    Dua K, Williams TM, Beretta L (2001) Translational control of the proteome: relevance to cancer. Proteomics 1: 1191-1199
    Duncan SA (2000) Transcriptional regulation of liver development. Dev Dyn 219: 131-142
    El-Baradi T, Pieler T (1991) Zinc finger proteins: what we know and what we would like to know. Mech Dev. 35: 155-169
    Ficzycz A, Eskiw C, Meyer D, Marley KE, Hurt M, Ovsenek N (2001) Expression, activity, and subcellular localization of the Yin Yang 1 transcription factor in Xenopus oocytes and embryos. J. Biol. Chem. 276: 22819-22825
    Ficzycz A, Ovsenek N (2002) The Yin Yang 1 trancription
    
    factor associates with ribonucleoprotein (mRNP) complexes in the cytoplasm of Xenopus. J. Biol. Chem. 277: 8382-8387
    Fox AH, Liew CK, Holmes M, Kowalski K, Mackay JP, Crossley M (1999) Transcriptional cofactors of the FOG family interact with GATA proteins by means of multiple zinc fingers. EMBO J. 18: 2812-2822
    Friedman JR, Fredericks WJ, Jensen DE, Speicher DW, Huang XP, Neilson EG., RauscherⅢ FJ (1996) KAP-1, a novel corepressor for the highly conserved KRAB repression domain. Genes Dev. 10: 2067-2078
    Furushima K, Murata T, Matsuo I, et al. (2000) A new murine zinc finger gene, Opr. Mech. Dev. 98: 161-164
    Gaboli M, Kotsi PA, Gurrieri C, et al. (2001) Mzfl controls cell proliferation and tumorigenesis. Genes Dev. 15: 1625-1630
    Gejyo F, Chang JL, Burgi W, Schmid K, Offner GD, Troxler RF, Van Halbeek H, Dorland L, Gerwig GJ, Vliegenthart JF (1983) Characterization of the B-chain of human plasma alpha 2HS-glycoprotein, The complete amino acid sequence and primary structure of its heteroglycan. J Biol. Chem. 258: 4966-4971
    Gou DM, Huang J, Li WX, et al. (1999) Construction of early
    
    human cDNA libraries and screening objective genes. Acta Biochim. Biophys. Sin. 31: 643-647
    Graveley BR (2001) Alternative splicing increasing diversity in the proteomic world. Trends Genet. 17: 100-107
    Greisman H A, Pabo C O, et al. (1997) A general strategy for selecting high-atfinity zinc finger proteins for diverse DNA target sites. Science 275: 657-661
    Grondin B, Bazinet M, Aubry M, et al. (1996) The KRAB zinc finger gene ZNF74 encodes an RNA-binding protein tightly associated with the nuclear matrix. J Biol Chem. 271: 15458-15467
    Gogos J A, Jin J, Wan H, et al. (1996) Recognition of diverse sequences by class Ⅰ zinc fingers: asymmetries and indirect effects on specificity in the interaction between CF2Ⅱ and A+T-rich elements. PNAs. 93: 2159-2164
    Haber DA, Housman DE (1992) The genetics of Wilms' tumor. Adv Cancer Res. 59: 41-68
    Haber DA, Timmers HT, Pelletier J, Sharp PA, Housman DE (1992b) A dominant mutation in the Wilms tumor gene WT1 cooperates with the viral oncogene ElA in transformation of primary kidney cells. PNAs. 89: 6010-6014
    
    
    Harald S, Jurgen K, Jurgen B (2002) Liver-enriched transcription factors in liver function and development. Part Ⅰ: The hepatocyte nuclear factor network and liver-specific gene expression. Pharmacol Rev 54: 129-158
    Hashida T, Goto J, Zhao NO, et al. (1998) Cloning and mapping of ZNF231, a novel brain-specific gene encoding neuronal double zinc finger protein whose expression is enhanced in a neurodegenerative disorder, multiple system atrophy(MSA). Genomics 54: 50-58
    Hidenori T, Hitoshi N, Hiroshi W, et al. (2001) Molecular cloning and characterization of a KRAB-containing zinc finger protein, ZNF317, and its isoforms. Bioch. Biophy. Res. Commu. 288: 771-779
    Holmes RID, Wahab AN, Mason MR, et al. (1999) Cloning and characterization of ZNF236, a glucose-regulated Kruppel-like zinc-finger gene mapping to human chromosome 18q22-q23. Genomics 60: 105-109
    Hu Z, Gomes I, Horrigan SK, Kravarusic J, Mar B, Arbieva Z, Chyna B, Fulton N, Edassery S, Raza A, Westbrook CA (2001) A novel nuclear protein, 5qNCA (L0C51780) is a candidate for the myeloid leukemia tumor suppressor gene on chromosome 5 band q31. Oncogene 20: 6946-6954
    Hussey JD, Parker JN, Hussey DN, et al. (1997)
    
    
    Characterization of a KRAB family zinc finger gene, ZNF195, mapping to chromosome band 11p15.5. Genomics 45: 451-455
    Ishikawa S, Kai M, Takei Y, et al. Isolation and mapping of a human zinc finger gene(ZNF188) homologous to ZNF187, a serum-response-element binding protein. Cytogenet. Cell Genet, 1997, 77 (3): 185-189
    Kaimer L, Yuan W, Zhu C, et al. (2002) Expression of a novel Krupple-like zinc-finger gene, ZNF382, in human heart. Biochem Biophys Res Commun. 299: 606-612
    Katabay L, Jakab L, Prohaszka Z, Fust G, Benko Z, Telegdy L, Lorincz Z, Zavodszky P, Arnaud P, Fekete B (2002) Human fetuin/alpha2HS-glycoprotein level as a novel indicator of liver cell function and short-term mortality in patients with liver cirrhosis and liver cancer. Eur. J Gastroenterol Hepatol 14: 389-394
    Kalabay L, Cseh K, Jakab L, Pozsonyi T, Benedek S, Fekete S, Telegdy L (1992) Diagnostic value of the determination of serum alpha2-HS-glycoprotein. Orv. Hetil. 133: 1553-1560
    Katoh O, Oguri T, Takahashi T, et al. (1998) ZK1, a novel Kruppel-type zinc finger gene, is induced following exposure to ionizing radiation and enhances apoptotic cell death on hematopoietic cells. Bioch Bioph Res Comm. 249: 595-600
    
    
    Keegan LP, Gallo A, OConnell MA (2001) The many roles of an RNA editor. Nat. Rev. Genet. 2: 869-878
    Kim SS, Chem YM, O' Leary E, Witzgall R, Vidal M, Bonventre JV (1996) A novel member of the RING finger family, KRIP-1, associates with the KRAB-A transcriptional repressor domain of zinc finger proteins. PNAs. 93: 15299-15304
    Klinkenberg M, Huffel SV, Heyninck K, Beyaert R (2001) Functional redundancy of the zinc fingers of A20 for inhibition of NF-κ B activation and protein-protein interactions. FEBS Letters 498: 93-97
    Klocke B, Koster M, Hille S, et al. (1994) The FAR domain defines a new Xenopus lacvis zinc finger protein subfamily with specific RNA omopolymer binding acitivity. BBA 1217: 81-89
    Knochel W, Poting A, Koster M, et al. (1989) Evolutionary conserved modules associated with zinc fingers in Xenopus laevis. PNAs. 86: 6097-6100
    Konig H, Ponta H, Herrlich P (1998) Coupling of signal transduction to alternative pre-mRNA splicing by a composite splice regulator. EMBO J. 17: 2904-2913
    Kowalski K, Czolij R, King GF, Crossley M., Mackay JP (1999) The solution structure of the N-terminal zinc finger of
    
    GATA-1 reveals a specific binding face for the transcriptional co-factor FOG. J. Biomol. NMR 13: 249-262
    Krackhardt AM, Witzens M, Harig S, Hodi FS, Zauls AJ, Chessia M, Barrett P (2002) Identification of tumor-associated antigens in chronic lymphocytic leukemia by SEREX. Blood 100: 2123-2131
    Krishna SS, Majumdar I, and Grishin NV (2003) Structural classification of zinc fingers. Nucleic Acids Research 31(2): 532-550
    Kuramoto K, Uesaka T, Kimura A, et al. (2000) ZK7, a novel zinc finger gene, is induced by vascular endothelial growth factor and inhibits apoptotic death in hematopoietic cells. Cancer Res. 60: 425-430
    Ladomery M (1997) Multifunctional proteins suggest connections between transcriptional and post-transcriptional processes. Bioessays 19: 903-909
    Lander ES, et al. (2001) Initial sequencing and analysis of the human genome. Nature 409: 860-921
    Lee CC, Bowman BH, Yang FM (1987) Human alpha 2-HS-glycoprotein: the A and B chains with a connecting sequence are encoded by a single mRNA transcript. PNAs 84: 4403-4407
    
    
    Lefebvre S, Burglen L, Frezal J, Munimeh A, Melki J (1998) The role of the SMN gene in proximal spinal muscular atrophy. Hum. Mol. Genet. 7: 1531-1536
    Li Xiang-An, gokame K, Okubo K, et al. (1999) Cloning and characterization of a novel human gene encoding a zinc finger protein with 25 fingers. BBA. 1489: 405-412
    Liang Z, Zhu C, Luo K, et al. (2002) Identification and characterization of two novel zinc finger genes, ZNF359 and ZFP28, in human development. Biochem Biophys Res Commun. 295: 862-868
    Liew CK, Kowalski K, Fox AH, Newton A, Sharpe BK, Crossley M., Mackay JP (2000) Solution structures of two CCHC zinc fingers from the FOG family protein U-shaped that mediate protein-protein interactions. Structure Fold. Des. 8: 1157-1166
    Liu C, Levenstein M, Chen J, Tsifrina E, Yonescu R, Griffin C, Civin CI, Small D (1999) SZF1: a novel KRAB-zinc finger gene expressed in CD34 stem/progenitor cells. Exp. Homa. 27: 313-325
    Luo M, Reed R (1999) Splicing is required for rapid and efficient mRNA export in inetazoans. PNAs. 96: 14937-14942
    
    
    Maheswaran S, Park S, Bernard A, et al. (1993) Physical and functional interaction between WTI and p53 proteins. PNAs. 90: 5100-5104
    Margolin iF, Friedman JR, Meyer WK, Vissing H, Thiesen HJR, Rauscher FJ (1994) Kruppel-associated boxes are potent transcriptional repression domains. PNAs 91: 4509-4513
    Mark C, Abrink M, Hellman L, et al. (1999) Comparative analysis of KRAB zinc finger proteins in rodents and man: evidence for several evolutionarily distinct subfamilies of KRAB zinc finger genes. DNA and cell boil. 18: 381-396
    Mathews ST, Chellam N, Srinivas PR, Cintron VJ, Leon MA, Goustin AS, Grunberger G (2000) Alpha2-HSG, a specific inhibitor of insulin receptor autophosphorylation, interacts with the insulin receptor. Mol Cell Endocrinol 164: 87-98
    Matsumoto K, Wassanman KM, Wolffe AP (1998) Nuclear history of a pre-mRNA determines the translational activity of cytoplasmic mRNA. EMBO J. 17: 2107-2121
    Matsuo-Takasaki M, Lim JH, Beanan MJ, et al. (2000) Cloning and expression of a novel zinc finger gene, Fez, transcribed in the forebrain of Xenopus and mouse embryos. Mech. Dev. 93: 201-204
    
    
    Matter N, Marx M, Weg-Remers S, Ponta H, Herrlich P, Konig H (2000) Heterogeneous ribonucleoprotein A1 is part of an exon-soecific splice-silencing complex controlled by oncogenic signaling pathways. J. Biol. Chem. 275: 35353-35360
    Miller J, McLachlan AD, Klug A, et al. (1985) Repetitive zinc-binding domains in the protein transcription factor ⅢA from Xenopus oocytes. EMBO J 4: 1609-1614
    Moosmann P, Georgiev O, Le Douarin B, Bourquin JP, Schaffner W (1996) Transcriptional repression by RING finger protein TIF1 beta that interacts with the KRAB repressor domain of KOX1. Nucleic Acids Res. 24: 4859-4867
    Nagai T, Aruga J, Minowa O, Sugimoto T, Ohno Y, Noda T, Mikoshiba K (2000) Zic2 regulates the kinetics of neurulation. PNAs 97: 1618-1623
    Numoto M, Niwa O, Kaplan J, et al. (1993) Transcriptional repressor ZF5 identifies a new conserved domain in zinc finger proteins. Nucleic Acids Res. 21: 3767-3775
    Ochieng J, Green B (1996) The interactions of alpha 2HS glycoprotein with metalloproteinases. Biochem. Mol. Biol. Int. 40: 13-20
    Odeberg J, Rosok O, Gudmundsson G H, et al. Cloning and
    
    characterization of ZNF189, a novel human Kruppel-like zinc finger gene localized to chromosome 9q22-q31. Genomics, 1998, 50 (2): 213-221
    Ohnishi T, Nakamura O, Arakaki N, Daikuhara Y (1997) Effect of phosphorylated rat fetuin on the growth of hepatocytesin primary culture in the presence of human hepatocyte-growth factor. Evidence that phosphorylated fetuin is a natural modulator of hepatocyte-growth factor. Eur, J Biochem. 243: 753-761
    Park K, Atchison ML (1991) Isolation of a candidate repressor/activator, NF-E1 (YY-1, delta), that binds to the immunoglobulin kappa 3' enhancer and the immunoglobulin heavy-chain mu E1 site. PNAs. 88: 9804-9808
    Pi H, Li Y, Zhu C, et al. (2002) A novel human SCAN/(Cys)2(His)2 zinc-finger transcription factor ZNF323 in early human embryonic development. Biochem Biophys Res Commun. 296: 206-213
    Picard B, Wegnez M (1979) Isolation of a 7S particle from Xenopus laevis oocytes: a 5S RNA-protein complex. PNAs. 76: 241-245
    Pieler T, Theunissen O (1993) TPIIIA: nine fingers-three hands? Trends Biochem. Sci. 18: 226-230
    
    
    Pieler T, Bellefroid E (1994) Perspectives on zinc finger protein function and evolution - an update. Mol. Bio. Rep. 20: 1-8
    Pradet-Balade B, Boulme F, Beug H, Mullner EW, Garcia-Sanz JA (2001) Translation control: bridging the gap between genomics and proteomica? Trends Biochem. Sci. 26: 225-229
    Poncelet DA, Bellefroid EJ, Bastiaens PV, Demoitie MA, Marine JC, Pendeville H, Alami Y, Devos N, Lecocq P, Ogawa T, Muller M, Martial JA (1998) Functional analysis of ZNF85 KRAB zinc finger protein, a member of the highly homologous ZNF91 family. DNA Cell Biol. 17: 931-943
    Proudfoot N (2000) Connecting transcription to messenger RNA processing. Trends Biochem. Sci. 25: 290-293
    Ratziu V, Lalazar A, Wong L, Dang Q, Collins C, Shaulian E, Jensen S, Friedman SL (1998) Zf9, a Kruppel-like transcription factor up-regulated in vivo during early hepatic fibrosis. Proc Natl Acad Sci USA 95: 9500-9505
    Ren J, Davidoff AJ (2002) alpha2-Heremans Schmid glycoprotein, a putative inhibitor of tyrosine kinase, prevents glucose toxicity associated with cardiomyocyte dysfunction. Diabetes Metab. Res. Rev. 18: 305-310
    Rhodes D, Klug A (1993) Zinc fingers. Sci Am. 268(2): 56-65
    
    
    Rijli FM, De lucchini S, Ciliberto G, et al. (1993) A Zn-finger protein, Xfin, is expressed during cone differentiation in the retina of the frog Xenopus laevis. Int J Dev. Biol. 37: 311-317
    Rocchi M, Gentile E, Rosati M, et al. (1999) The human KRAB/FPB containing zinc finger gene ZNF2 maps to chromosome 2q11.2. Cytogenet Cell Genet. 86: 305-306
    Rosenberg UB, Schroder C, Preiss A, et al. (1986) Nature 319: 336-339
    Ryan RF, Schultz DC, Ayyanathan K, Singh PB, Friedman JR, Fredericks WJ, RauscherⅢ FJ (1999) KAP-1 corepressor protein interacts and xolocalizes with heterochromatic and euchromatic HP1 proteins: a potential role for Kruppel-associated box-zinc finger proteins in heterochromatin-mediated gene silencing. Mol. Cell. Biol. 19: 4366-4378
    Sanchez-Garcia I, Rabbitts TH (1994) The LIM domain: a new structural motif found in zinc-finger-like proteins. Trends Genet. 10: 315-320
    Schmidt C, Bladt F, Goedecke S, Brinkmann V, Zschiesche W, Sharpe M, Gherardi E, Birchmeier C (1995) Scatter factor/hepatocyte growth factor is essential for liver development. Nature 373: 699-702
    
    
    Schrem H, Klempnauer J, Borlak J (2002) Liver-enriched transcription factors in liver function and development. PartⅠ: the hepatocyte nuclear factor network and liver-specific gene expression. Pharmacol Rev. 54: 129-158
    Searles MA, Lu D, Klug A (2000) The role of the central zinc fingers of transcription factor ⅢA in binding to 5S rRNA. J. Mol. Biol. 301: 47-60
    Segal D J, Dreier B, Beerli R R, et al. (1999) Toward controlling gene expression at will: selection and design of zinc finger domains recognizing each of the 5' -GNN-3' DNA target sequences. PNAs. 96: 2758-2763
    Skapek SX, Jansen D, Wei TF, McDermott T, Huang WP, Olson EN, Lee EY- HP (2000) Cloning and characterization of a novel Kruppel-associated box family transcriptional repressor that interacts with the retinoblastoma gene product, RB. J. Biol. Chem. 275: 7212-7223
    Shyu AB, Wilkinson MF (2000) The double lives of shuttling mRNA binding proteins. Cell 102: 135-138
    Sun J, Matthias G, Mihatsch MJ, Georgopoulos K, Matthias P (2003) Lack of the transcriptional coactivator OBF-1 prevents the development of systemic lupus erythematosus-like phenotypes in Aiolos mutant mice. J.
    
    Immunol. 170: 1699-1706
    Szweras M, Liu D, Partridge EA, Pawling J, Sukhu B, Clokie C, Jahnen-Dechent W, Tenenbaum HC, Swallow CJ, Grynpas MD, Dennis JW (2002) alpha 2-HS glycoprotein/fetuin, a transforming growth factor-beta/bone morphogenetic protein antagonist, regulates postnatal bone growth and remodeling. J Biol. Chem. 277: 19991-19997
    Theunissen O, Rudt F, Guddat U, Mentzel H, Pieler T (1992) RNA and DNA binding zinc fingers in Xenopus TFIIIA. Cell 71: 679-690
    Tommerup N, Vissing H (1995) Isolation and fine mapping of 16 novel human zinc finger-encoding cDNAs identify putative candidate genes for developmental and malignant disorders. Genomics 27: 259-264
    Tripodis N, Palmer S, Phillips S, et al. (2000) Construction of a High-Resolution 2.5-Mb Transcript Map of the Human 6p21.2-6p21.3 Region Immediately Centromeric of the Major Histocompatibility Complex. Genome Res. 10: 454-472
    Uehara Y, Minowa O, Mori C, Shiota K, Kuno J, Noda T, Kitamura N (1995) Placental defect and embryonic lethality in mice lacking hepatocyte growth factor/scatter factor. Nature 373: 702-705
    
    
    Uehara Y, Mori C, Noda T, Shiota K, Kitamura N (2000) Rescue of embryonic lethality in hepatocyte growth factor/scatter factor knockout mice. Genesis 27: 99-103
    Van der Houven van Oordt W, Diaz-Meco MT, Lozano J, et al. (2000) The MKK(3/6)-p38-signaling cascade alters the subcellular distribution of hnRNP A1 and modulates alternative splicing regulation. J. Cell. Biol. 149: 307-316
    Venter JC, et al. (2001) The sequence of the human genome. Science 291: 1304-1351.
    Wang J, Zhou Y, Yin B, Du G, Huang X, Li G, Shen Y, Yuan J, Qiang B (2001) ASH2L, alternative splicing and downregulation during induced megakaryocytic differentiation of multipotential leukemia cell lines. J Mol. Med. 79: 399-405
    Wilkinson MF, Shyu AB (2001) Multifunctional regulatory proteins that control gene expression in both the nucleus and the cytoplasm. Bioessays 23: 775-787
    Williams AJ, Khachigian LM, Shows T, et al. (1995) Isolation and characterization of a novel zinc-finger protein with repressor activity. J Biol. Chem. 270: 22143-22152
    Witzgall R, O' Leary E, Leaf A, et al. (1994) The kruppel-associated box-A(KRAB-A) domain of zinc finger
    
    proteins mediates transcriptional repression. PNAs. 91: 4514-4518
    Witzgall R, Volk R, Yeung RS, Bonventre JV (1994) Genomic structure and chromosomal location of the rat gene encoding the zinc finger transcription factor kid-1. Genomics 20: 203-209
    Wu GJ, Zheng QP, Zhao SY, et al. (1998) Cloning of the full length cDNA for a novel human zinc finger protein gene-ZNF194. PNAs. 95: 371-375
    Yang F, Chen ZL, Bergeron JM, Cupples RL, Friedrichs WE (1992) Human alpha 2-HS-glycoprotein/bovine fetuin homologue in mice: identification and developmental regulation of the gene. Biochim. Biophys. Acta. 1130: 149-156
    Yano K, Ueki N, Oda T, et a7. (2000) Identification and characterization of Human ZNF274 cDNA, which encodes a novel Kruppel-type zinc-finger protein having nucleolar targeting ability. Genomics 65: 75-80
    Yoshioka Y, Gejyo F, Marti T, Rickli EE, Burgi W, Offner GD, Troxler RF, Schmid K (1986) The complete amino acid sequence of the A-chain of human plasma alpha 2HS-glycoprotein. J Biol. Chem. 261: 1665-1676
    You QM, Veldhoen N, Baudin F, Romaniuk PJ. (1991) Mutations
    
    in 5S DNA and 5S RNA have different effects on the binding of Xenopus transcription factor ⅢA. Biochemistry 30: 2495-2500
    Zaret K (1998) Early liver differentiation: genetic Doentiation and multilevel growth control. Curr. Opin. Genet. Dev. 8: 526-531
    Zollman S, Godt D, Prive GG, et al. (1994) The BTB domain, found primarily in zinc finger proteins, defines an evolutionarily conserved family that includes several developmentally regulated gene in Drosophila. PNAs.91: 10717-10721

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700