大鼠RSA14-44基因功能的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在本研究中,选择RSA14-44基因作为研究对象。RSA14-44基因位于大鼠染色体4q31,该基因是中国协和医科大学医学分子生物学国家重点实验室通过激光捕获显微切割(Laser Capture Microdissection,LCM)技术,构建大鼠初级精母细胞cDNA削减文库,并进一步用斑点杂交(Dot Blotting)分析,通过在互连网上的比对获得的。全长为1124bp,可读编码框自100bp_684bp,编码194个氨基酸,推测其编码蛋白质分子量为21.8Kda。
     首先,我们利用RT-PCR检测了RSA14-44在多个组织中的表达,证明其在睾丸、附睾入脑组织中的呈高表达,这为进一步对其其功能的研究提供了新的思路。
     其次,将RSA14-44 cDNA克隆到pET30a(+)载体,在大肠杆菌中进行了pET30a(+)-14融合蛋白的表达与纯化。以纯化的pET30a(+)-14融合蛋白免疫新西兰大白兔,最后获得了抗pET30a(+)-14融合蛋白的多克隆抗体。利用该抗体进行的免疫组化研究显示,RSA14-44蛋白定位于大鼠睾丸生精上皮组织中的初级精母细胞的细胞质部位和支持细胞,而在已经变形的精子细胞中则未观察到阳性信号。
     最后,我们又构建了包含RSA14-44 cDNA的pAS2-1-14载体,并以其作为诱饵质粒,进行人睾丸cDNA文库的酵母双杂交筛选,获得了一条编码人20S蛋白酶体蛋白PSMB5的cDNA片段,PSMB5蛋白氨基酸序列全长为264个氨基酸,我们所获得的序列编码该3’端蛋白编码框内全部氨基酸(191个氨基酸)。PSMB5蛋白是26S蛋白酶体的一个重要组成部分,是泛素-蛋白酶体体系(Ubiquitin-proteasome system)的核心,主要对细胞内发生错误折叠、突变或非正常的短期存在的蛋白质进行修饰或降解。依据NCBI已有的PSMB5核苷酸序列设计引物,利用PCR技术成功克隆了PSMB5的cDNA编码区的部分序列。将PSMB5 cDNA克隆到表达载体pET-30a(+)和pGEX4T-1中,进行了His-tagged-PSMB5和GST-PSMB5融合蛋白的原核表达,并利用表达蛋白验证了PSMB5和RSA14-44蛋白体外结合。同时,构建了pCDNA-Flag-PSMB5真核融合蛋白克隆,用于转染Hela胞和CHO细胞,进一步在真核细胞体内验证了RSA14-44和PSMB5的结合。将RSA14-44cDNA和PSMB5克隆到pEGFP-N1载体,构建成功绿色荧光融合表达质粒pEGFP-N1-14和pEGFP-N1-PSMB5,将两种质粒载体分别转染CHO细胞后,借助碘化丙啶染色的细胞化学荧光技术和激光共聚焦显微镜观察发现,RSA14-44蛋白都定位在CHO细胞的细胞质,PSMB5在胞质和胞浆中均有表达。将RSA14-44和PSMB5 cDNA分别克隆
    
    博士学位论文
    摘要
    P占外拐J蛋白存在相互作用,为此,我们研究了RSA14一44和尸5外招J相互作用后对泛素
    水解酶酶活性的影响,发现二者单独作用时都可显著提高泛素水解酶酶活性,共同
    转染细胞时极显著地提高了酶活性,这表明两者相互作用可能对生物学功能具有协
    同作用。
     研究中酵母双杂交实验及体内外验证的结果首次表明,RSA14一44和p占外拐J蛋白
    在体内外存在相互作用;从尺SA14一44和只5外拐J蛋白在细胞及组织中的定位,细胞蛋
    白酶体活性分析结果推测,在精子发生过程中,RSA14一44和尸5外招J相互作用,在生
    殖细胞中调节细胞的增殖和分裂,在支持细胞中两者协同来调节精子发育过程中的
    蛋白降解。
    关键词:RsA14一4
    酵母双杂交蛋白表达
    205及265蛋白酶体
RSA14-44 gene was obtained from the cDNA library of rat prirnay by the method of laser capture microdissection (LCM) combined wmVsuppressive subtractive hybridization (SSH). The full-length of RSA-14-44 is 1124 bp, and it contains a 582 bp open reading frame, encoding a 194 aa protein. The sequence has been submitted to Genbank, the accession number is AY149343. The transcription patterns of RSA-14-44 in multiple tissues were analysedbvRT-PCR and the results showed that RSA-14-44 is transcribed in most organs and high eranscrib testis, epididymis and brain. RSA-14-44 was cloned into the prokaryotic expression vector pET30a(+) and the protein of interest was expressed in E.Coli BL21 with a high quantity. The fusion protein was purified by affinity chromatography. Immunohistochemical analysis was performed for the localization of RSA-14-44 protein in rat testis tissues. It was showed that RSA-14-44 protein mainly appears in primary spermatid and sertoli cell, and some signals also existed in the mature sperms For further understanding the biological function of RSA-14-44, RSA-14-44 cDNA (cloned into pAS2-l plasmid) was chosen as the "bait" to screen human testis cDNA library using yeast two-hybrid system and the results showed that the 5 subunit of human 20S proteasome (PSMB5) is capable of binding to RSA-14-44. To confirm the interaction between RSA-14-44 and PSMB5, the protein was expressed as fusion proteins. The recombinant protein was purified with affinity chromatography and the polyclonarbodies of PSMB5 were raised by immunizing the abbit. In turn, the interaction of RSA-14-44 and PSMB5 was confirmed by the in vitro binding and GST-pull down experiments. Then, their interaction in the in vivo system was verified by coimmunoprecipatation. To confirm their interaction in the cell, RSA-14-44 and PSMB5 cDNAs were correspondingly cloned into pEGFP-Nl and pDsRedl-Nl vectors. The colocalization for RSA-14-44 and PSMB5 in CHO cells was also observed. The results demonstrated that RSA-14-44 and PSMB5 were overlay perfectly, suggesting that RSA-14-44 and PSMB5 can interact with each other to function in eukaryotic cells.Previous studies have shown that PSMB5 is related with the enzyme activity of 20S proteasome, so we investlgated the effect of RSA 14-44 and PSMB5 on the activity of 20S and 26S proteasome. It is interesting that the activityof both 20S and 26S proteasome were highly improved in the hela cell trasfected with RSA 14-44 and PSMB5. In addition, the activityof both 20S and 26S proteasome were significatly improved when the cells were cotransfected with RSA 14-44 and PSMB5. It is Wuggested that the overexpression of both RSA 14-44 and PSMB5 can increase the activityof 20S and 26S
    
    proteasome, moreover the activityof both 20S and 26S proteasome were more significantly improved when their cooperation.To find the with their signi ficance of the interaction between RSA14-44 and PSMB5, immunohistpchemical analyst was performed for PSMB5 protein. It was shown that PSMB5 existed in the spermatogonia and Sertoli cells. This is consistent with the results of RS A-14-44. In conclusion, it seems that the interaction betwe there two proteins may play a role in spermatogenesis. It is speculated that the interaction between them may promote the proliferation and division in germ cells, and regulate protein degomeration in sretoli cells. Future experiments need be made to confirm the hypothesis.
引文
1.Dym M.. Spermatogonial stem cells of the testis. Proc Natl Acad Sci U.S.A.91,11287-11289(1994).
    2.Paolo SC.Transcriptional checkpoints determining the fate of male germ cells .cell, 88,163-166(1997).
    3.梁刚,中国协和医科大博士学位论文。应用激光捕获显微切割技术进行人和大鼠 不同阶段生精细胞差异表达基因的研究(2003).
    4.Luo L. Saluiiga RC, Guo H. Bittiier A, Joy KC. Galindo JE, Xiao H, Rogers KE,Wan JS, Jackson MR, Eriander M. Gene expression profiles of laser-captured adjacent neuronal subtypes. Nai Med. 5,117-122(1999).
    5.Suarez-Quian CA, Goldstein SR, Pohida T. Laser Capture Microdissection Of Single Cells From Complex Tissues. Biotechniques. 26(2),328-335(1999).
    6.Bonner RF. Emmert-Buck MR, Cole K, Pohida T, Chuaqui R. GoldsteinS. Liotta LA. Laser capture microdissection: molecular analysis of tissue. Science. 278,1481-1483(1997)
    7.Pappalardo PA, Bonner R. Krizman DB, Emmert-Buck MR, Liotta LA.Microdissection, microchip arrays, and molecular analysis of tumor cells (primary and metaslases). Semin Radial Oncol. 8,217-223(1998).
    8.Simone NL, Remaley AT, Charbonea L. Petricoin EF, Glickman JW, Emmert-Buck MR, Fleisher TA. Liotta LA. Sensitive immunoassay of tissue cell proteins procured by laser capture microdissection. Am J Palhol. 156,445-452(2000).
    9.Hall A Identification of two distinct mechanisms of phagocytosis controlled by different Rho GTPases. Science 279,509–514(1998)
    10.Luo L, Liao YJ, Jan LY .Distinct morphogenetic functions of similar small GTPases: Drosophila Drac1 is involved in axonal outgrowth and myoblast fusion. Genes Dev 8,1787–1803 (1994).
    11.Theadgill R, Bobb K, Ghosh A Regulation of dendritic growth and remodeling by Rho, Rac, and Cdc42. Neuron 19,625–634 (1997).
    12.Yamashita T, Higuchi H, Tohyama M The p75 receptor transduces the signal from myelin-associated glycoprotein to Rho. J Cell Biol 157,565–570(2002)..
    13.Li Z, van Aelst L, Cline HT Rho GTPases regulate distinct aspects of dendritic arbor growth in Xenopus central neurons in vivo.Nat Neurosci 3,217–225 (2000).
    
    14.Van Aelst L, D’Souza-Schorey CRho GTPases and signaling networks. Genes Dev 11,2295–2322. (1997)
    15.Richnau N, Aspenstrom P.Rich, a Rho GTPase-activating protein domain-containing protein involved in signaling by Cdc42 and Rac1.J Biol Chem 276,,35060–35070 (2001).
    16.SaRaste, M., Sibbald, P.R., and Wittinghofer, A.. The P-loop—a common motif in ATP- and GTP-binding proteins. Trends Biochem. Sci. 15, 430-439(1990)
    17.Bos J. L. Ras oncogenes in human cancer: a review. Cancer Res. 49,4682-4689 (1989).
    18.Pereira-Leal, J. and Seabra, M.C., Evolution of the Rab family of small gtp-binding proteins, J.Mol. Biol., 313,889–901(2001).
    19.Chis P. Ponting1 and Robert R. The natural history of protein domains Annual Review of Biophysics and Biomolecular Structure. 31,45-71(2002)
    20.Lowy, D. R. & Willumsen, B. M. Function and regulation of Ras. Annu. Rev. Biochem. 62,851-891(1993).
    21.Yamauchi J., Kaziro Y., and Itoh H. Carboxyl terminal of G protein β subunit is required for association with γ subunit. Biochem Biophys Res Commun. 214(2),694-700(1995)
    22.SaRaste, M., Sibbald, P.R., and Wittinghofer, A. The P-loop—a common motif in ATP- and GTP-binding proteins. Trends Biochem. Sci. 15, 430-439(1990)
    23.Coleman DE and Sprang SR. How G proteins work: a continuing story. Trends. Biochem. Sci. 21,41-44(1996)
    24.Campbell, S. L., Khosravi-Far, R., Rossman, K. L., Clark, G. J. & Der, C. J. Increasing complexity of Ras signaling. Oncogene 17: 1395-1413 (1998)
    25.Erik Sahai and Chistopher J.Marshall. Rho-GTPase and cancer. Nature reviews/ cancer. 2,133-142 (2002)
    26.Hall, A. Rho GTPases and the actin cytoskeleton. Science 279, 509–514 (1998).
    27.Van Aelst, L. & D’Souza-Schorey, C. Rho GTPases and signaling networks.Genes Dev. 11, 2295–2322 (1997).
    28.Kamai, T., Arai, K., Tsujii, T., Honda, M. & Yoshida, K. Overexpression of RhoA mRNA is associated with advanced stage in testicular germ cell tumour. BJU Int.87: 227–231 (2001).
    29.Fritz, G., Just, I. & Kaina, B. Rho GTPases are overexpressed in human tumors. Int. J. Cancer 81, 682–687 (1999).
    
    30.Sherr, C. J. & Roberts, J. M. CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev. 13, 1501–1512 (1999).
    31.Robles, A. I. et al. Reduced skin tumor development in cyclin D1-deficient mice highlights the oncogenic Ras pathway in vivo. Genes Dev. 12, 2469–2474(1998).
    32.Shaulian, E. & Karin, M. AP-1 in cell proliferation and survival. Oncogene 20,2390–2400 (2001).
    33.Albanese, C. et al. Transforming p21Ras mutants and c-Ets-2 activate the cyclin D1 promoter though distinguishable regions. J. Biol. Chem. 270, 23589–23597 (1995).
    34.Hinz, M. et al. NF- B function in growth control: regulation of cyclin D1 expression and G0/G1 to S-phase transition. Mol. Cell. Biol. 19, 2690–2698 (1999).
    35.Coleman, M. L. & Olson, M. F. Rho GTPase signaling pathways in the morphological changes associated with apoptosis. Cell Death Differ.May;9(5):493-504(2002)
    36.Liu, A., Cerniglia, G. J., Bernhard, E. J. & Prendergast, G. C. RhoB is required to mediate apoptosis in neoplastically transformed cells after DNA damage.Proc. Natl Acad. Sci USA 98, 6192–6197 (2001).
    37.Prendergast, G. C. Actin’ up: RhoB in cancer and apoptosis. Nature Rev. Cancer 1, 162–168 (2001).
    38.Subauste, M. C. et al. Rho family proteins modulate rapid apoptosis induced by cytotoxic T lymphocytes and Fas. J. Biol. Chem. 275, 9725–9733 (2000).
    39.Groll, M., Ditzel, L., Lowe, J., Stock, D., Bochtler, M., Bartunik, H. D., and Huber, R.. Structure of 20S proteasome from yeast at 2.4 A resolution. Nature 386, 463-471(1997)
    40.Groll, M., and Clausen, T. Molecular shedders: how proteasomes fulfill their role. Curr Opin Struct Biol 13, 665-673(2003).
    41.Cezary Wo′ jcik and George N. DeMartino. Analysis of Drosophila 26 S Proteasome Using RNA Interference. The Journal of Biological Chemistry 277(8): 6188–6197(2002)
    42.Alroy, I., and Y. Yarden. The ErbB signaling network in mbryogenesis and oncogenesis: signal diversification though combinatorial igand-receptor interactions. FEBS Lett. 410,83–86(1997).
    
    43.Anton, E. S., M. A. Marchionni, K. F. Lee, and P. Rakic. Role of GGF/neuregulin signaling in interactions between migrating neurons and radial glia in the developing cerebral cortex. Development 124:3501–3510. factor receptors: critical mediators of multiple receptor pathways. Curr. Opin. Cell Biol. 11,184–189(1997).
    44.Haugh, J. M., A. C. Huang, H. S. Wiley, A. Wells, and D. A. Lauffenburger. Internalized epidermal growth factor receptors participate in the ctivation of p21(Ras) in fibroblasts. J. Biol. Chem. 274,34350–34360(1999).
    45.Wojcik, C., and DeMartino, G. N. Analysis of Drosophila 26 S proteasome using RNA interference. J Biol Chem 277, 6188-6197(2002).
    46.Wojcik, C., and DeMartino, G. N. Intracellular localization of proteasomes. Int J Biochem Cell Biol 35, 579-589(2003).
    47.Olson MF, Ashworth A, Hall A: An essential role for Rho, Rac, and Cdc42 GTPases in cell cycle progression though G1. Science, 269, 1270-1272(1995)
    48.Schmidt, M., Schmidtke, G. and Kloetzel, PM. - Structure and structure formation of the 20S proteasome. Mol. Biol. Rep. 24, 103-112(1997)
    49.Xie, Y., and Varshavsky, A. Physical association of ubiquitin ligases and the 26S proteasome. Proc Natl Acad Sci U S A 97, 2497-2502(2000).
    50.Rock, K. L., Gramm, C., Rothtein, L., Clark, K., Stein, R., Dick, L., Hwang, D., and Goldberg, A. L. Inhibitors of the proteasome block the degradation of most cell proteins and the generation of peptides presented on MHC class I molecules. Cell 78, 761–771 (1994)
    51.DeMartino, G. N., and Slaughter, C. A. The proteasome, a novel protease regulated by multiple mechanisms J. Biol. Chem. 274, 22123–22126 (1999)
    52.Tanahashi, N., Kawahara, H., Murakami, Y., and Tanaka, K. Rpn9 is required for efficient assembly of the yeast 26S proteasome Mol. Biol. Rep. 26, 3–9(1999)
    56.Voges, D., Zwickl, P., and Baumeister, W. The 26S proteasome: A molecular machine designed for controlled proteolysis. Annu. Rev. Biochem. 68, 1015–1068(1999)
    57.Bochtler, M., Ditzel, L., Groll, M., Hartmann, C., and Huber, R. The proteasome. Annu. Rev. Biophys. Biomol. Struct. 28, 295–317 (1999)
    58.Groll, M., Ditzel, L., Lowe, J., Stock, D., Bochtler, M., Bartunik, H. D., and Huber, R. Structure of 20S proteasome from yeast at 2.4 A resolution. Nature 386, 463–471 (1997)
    
    59.Orlowski, M., and Wilk, S. Catalytic activities of the 20S proteasome, a multicatalytic proteinase complex.Arch. Biochem. Biophys. 383, 1–16(2000)
    60.Lee, C., Schwartz, M. P., Prakash, S., Iwakura, M., and Matouschek, A.ATP-dependent proteases degrade their substrates by processively unraveling them from the degradation signal Mol. Cell 7, 627–637 (2001)
    61.DeMartino, G. N., Moomaw, C. R., Zagnitko, O. P., Proske, R. J., Ma, C. P., Afendis, S. J., Swaffield, J. C., and Slaughter, C. A. PA700 is a 700,000-dalton multisubunit protein that activates multiple proteolytic activities of the 20 S proteasome by a mechanism dependent upon ATP hydrolysis J.Biol. Chem. 269,20878–20884 (1994).
    62.Koehler,A,.Cascio,P,.& Legget,DS,.et al. The axial channel of the proteasome core Particle is gated by the Rpt2 ATPase and controls both substrate entry and product release. Mol Cell 7,1143-1152 (2001)
    63.Frentzel, S., Pesold-Hurt, B., Seelig, A., and Kloetzel, P. M. J. Mol. Biol. 236, 975–981 (1994)
    64.Nandi, D., Woodward, E., Ginsburg, D. B., and Monaco, J. J. EMBO J. 16,5363–5375 (1997)
    65.Griffin, T. A., Slack, J. P., McClusky, T. S., Monaco, J. J., and Colbert, R. A. Mol.Cell. Biol. Res. Commun. 3:256-78 (2000)
    66.Ramos, P. C., Hockendorff, J., Johnson, E. S., Varshavsky, A., and Dohmen, R.J. Cell 92, 489–499 (1998)
    67..Koehler,A,.Cascio,P,.& Legget,DS,.et al. The axial channel of the proteasome core Particle is gated by the Rpt2 ATPase and controls both substrate entry and product release.Mol Cell 7:1143-1152 (2001)
    68.Lundgren J, Masson P, Realini CA, Young P. Use of RNA interference and complementation to study the function of the Drosophila and human 26S proteasome subunit S13. Mol. Cell. Biol. 23(15):5320-30(2003)
    69.Mathew L.Coleman. Chistopher J.Marshall and Michael F.Olson Ras promotes p21Waf1/Cip1 protein stability via a cyclin D1-imposed block in proteasome-mediated degradation. The EMBO Journal 22 (9):2036-2046(2003)
    70.Hall C, Sin WC, Teo M, Michael GJ et al. _2-Chimerin, an SH2-containing GTPase-activating protein for the Ras-related protein p21Rac derived by alternate splicing of the human n-chimerin gene, is selectively expressed in brain regions and testes. Mol Cell Biol 13:4986–4998(1993)
    
    71.Toure A, Morin L, Pineau C et al. Tat1, a novel sulfate transporter specifically expressed in human male germ cells and potentially linked to Rho GTPase signaling. J Biol Chem 276: 20309–20315(2001).
    72.Lui WY, Lee WM,and Cheng CY. Transforming growth factor-_3 perturbs the inter-Sertoli tight junction permeability barrier in vitro possibly mediated via its effects on occludin, zonula occludens-1, and claudin-11. Endocrinology 142:1865–1877(2001).
    73. Lui WY, Lee WM,and Cheng CY. Transforming growth factor- regulates the dynamics of Sertoli cell tight junctions via the p38 mitogen-activated protein kinase pathway. Endocrinology. In press.
    74.Griswold MD. Interactions between germ cells and Sertoli cells in the testis. Biol Reprod 52: 211–216(1995).
    75.Chapin RE, Wine RN, Harris MW, Borchers CH, and Haseman JK. Structure and control of a cell-cell adhesion complex associated with spermiation in rat seminiferous epithelium. J Androl 22: 1030–1052(2001)
    76.C. Wojcik, M. Benchaib, J. Lornage, J. C. Czyba, and J. F. Guerin. Proteasomes in human spermatozoa. international journal of andrology, 23:169-177 (2000)
    77.Kazuhiko Mochida, Laura L. Tres, Abraham L. Kierszenbaum. Structural features of the 26S proteasome complex isolated from rat testis and sperm tail. Mol. Reprod. Dev. 57:176-184(2000).
    78.Patricio Morales, Eduardo Pizarro, Milene Kong, Marcos Jara. Extracellular localization of proteasomes in human sperm. Mol. Reprod. Dev. 68:115-124(2004)
    79.C. Yan Cheng and Dolores D. Mruk. Cell Junction Dynamics in the Testis: Sertoli-Germ Cell Interactions and Male Contraceptive Development。Physiol Rev 82: 825–874(2002)
    80. 金冬雁等译。分子克隆实验指南。科学出版社,(2002)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700