斯氏假单胞菌固氮调节基因nifLA的表达调控机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
斯氏假单胞菌(Pseudomonas stutzeri)A1501分离自非豆科作物水稻根际,在无铵和微好氧的条件下能将空气中氮气固定为植物可以吸收利用的铵,是一种潜在的微生物肥料,具有重要的理论研究和实际应用价值。本研究采用基因敲除、酵母双杂交系统及蛋白体外结合技术,对斯氏假单胞菌A1501固氮调节基因nifLA进行了功能鉴定和表达调控机制的研究。
     构建了斯氏假单胞菌A1501的粘粒基因组文库,筛选到两个阳性克隆,分别为XL1,XL2。然后以pUC19为载体,从中筛选到7.7Kb包含nifLA-like的阳性克隆,并完成了核苷酸序列分析(EMBL/GenBank登陆号为:AJ297529)。遗传学分析表明该菌nifL-like及nifA-like与棕色固氮菌(A.vinelandii)在核苷酸序列上的同源性分别为78%、85%,在氨基酸序列上的同源性分别为72%、82%,暂分别命名为nifA及nifL。利用Southern杂交证实nifL在P.stutzeri A1501中为单拷贝。
     将nifHp-lacZ融合基因表达载体转入A1501野生性菌株中,在不同的铵和氧浓度诱导后测定其β—半乳糖苷酶活性,结果表明斯氏假单胞菌A1501的固氮基因表达受铵和氧的调控。为了研究nifLA的固氮调节功能,构建了nifL及nifA突变株及其互补质粒。结果显示nifA突变株及nifL极性突变株的固氮酶活性丧失;nifL非极性突变株仍有部分固氮活性,且对铵和氧不敏感,在高铵下,仍有一定的固氮活性。nifA的组成性表达质粒pVA3仅恢复nifA突变株的三分之一的固氮活性,增强了A1501及nifL非极性突变株的固氮活性。而nifL的组成性表达质粒pVL抑制了A1501及nifL非极性突变株中固氮酶的表达。过量表达的NifA增强了nifHp-lacZ的表达,而过量表达的NifL对nifHp-lacZ的表达没有大的影响,表明在A1501中存在固氮正调节蛋白NifA和负调节因子NifL。
     采用酵母双杂交系统研究NifL和NifA蛋白在表达调控中的相互作用。构建了nifL和nifA全长序列及其不同结构域区段的酵母双杂交质粒。酵母双杂交实验证明NifA的中间结构域与NifL的羧基端之间在酵母体内存在直接的相互作用。构建了pET28a-nifL及pGEX2T-nifA融合表达载体。利用体外沉降方法证实NifL与NifA在细胞外也可以结合,表明斯氏假单胞菌A1501中可能存在一个通过NifL与NifA相互作用关闭nif基因表达的调控机制。
     构建了A1501 nifLAp-lacZ融合表达载体,分别将其转入A1501野生型及ropN~-和ntrC~-突变菌株中。β半乳糖苷酶活性的测定结果表明,nifLA基因的启动子为σ~(54)-依赖型,nifLA正常水平的表达需要σ~(54)因子及NtrC的参与。
     在上述研究的基础上,初步提出了P.stutzeri固氮基因转录调控模式,即固氮负调节因子NifL感受外界氮和氧的信号,与固氮正调节因子NifA互作,控制nif基因系统的表达。这将为今后采用基因工程手段打破联合固氮的氧和铵限制,获得稳定高效的联合固氮效率奠定重要的理论基础。
Pseudomonas stutzeri A1501 (formerly Alcaligenes faecalis A1501), is an associative nitrogen-fixing bacteria, which colonizes the rhizosphere of rice. This strain can fix nitrogen under microaerobic conditions in the free-living state. In this study, we present data on the mechanism of regulation of nitrogen fixation by NifLA in pseudomonas stutzeri A1501.A cosmid library of A1501 was constructed using SuperCosl Cosmid Vector kit, and two transformants containing nifLA-like were screened by colony PCR and Southern hybridization. The 7.7kb DNA fragment containing nifLA-like was subcloned( EMBL/GenBank: AJ297529). The sequence analysis revealed that the highest identity of 72% was observed with NifL of A.vinelandii and 82% with NifA of A.vinelandii. nifL gene is single copy in P.stutzeri A1501.P. stutzeri A1501 nifHp-lacZ fusion vector was transfered into the wild type strain A1501 by tri-parental mating assay, then 6-galactosidase activity was assayed after induced at different ammonium and oxygen concentration. The result suggested that the expression of nifH was repressed by ammonium and oxygen. In order to study the regulation function of nifLA of Pseudomonas stutzeri A1501, nifL or nifA mutants and recombinant plasmids of nifA or nifL (pVA3 and pVL) were constructed, respectively. The nifA mutant and nifL polar-mutant were Nif negative, whereas non-polar nifL mutant displayed some residual nitrogenase activity even under high ammonium and oxygen concentration. By assaying acetylene reduction activity of transconjugants, the results showed that plasmid which expressed nifA from the Km promoter restored 30% nitrogenase activity to the nifA mutant strain, and this plasmid also increased nitrogenase activity of the wild type A1501 and the nifL non-polar mutant. The plasmid which constitutively expressed nifL descreased nitrogenase activity of A1501 and the nifL non-polar mutant. Also overexpressed NifA increased expression of nifHp-lacZ and overexpressed NifL couldn't work on nif gene expression.In order to study the interaction between NifL and NifA, full-length nifA and nifL and different regions encoding the open reading frame of nifLA in P. stutzeri A1501 were amplified by PCR with specific primers and cloned into plasmid pGAD-C(1)and pGBD-C(1). Recombinant plasmids were co-transformed into the expression host S. cerevisiae PJ69-4A by the lithium acetate method, and selected transformants were grown on SD plates lacking His/Ade, Leu, and Trp. An interaction between NifL and NifA in vivo was detected by yeast two-hybrid system, and it was shown that only the C-terminal domain of NifL displayed binding activity to NifA.Contraction of pET28a-nifA and pGEX2T-nifLc fusion expression vector were performed and transformed it into E. coli BL21(DE3) cells. Overexpression in soluble form was achieved with isopropyl β-D-thiogalactoside(IPTG). Interaction between NifA and NifL in vitro was proved using purified NifA and NifLc by binding assay. The result suggested that there existed a regulation mode that nif genes were inactivated by interaction between NifL and NifA.The nifLAp-lacZ fusion vector was constructed and transfered into the wild type strain A1501 and different mutants. The result of β-galactosidase assays suggested the nifLA promoter was dependent on
    NtrC and σ54, not absolutely on NifA and NifL.
引文
1. Allen, L.N. & Hanson, R. S. (1985). Construction of broad-host-range cosmid cloning vectors: identification of genes necessary for growth of Methylobacterium organophilum on methanol. J Bacteriol 161,955-962.
    2. Alvarez-Morales, A., Dixon, R. & Merrick, M. (1984). Positive and negative control of the glnA ntrBC regulon in Klebsiella pneumoniae. EMBO J 3, 501-507.
    3. Anil bali,Gonzalo blanco.Excretion of Ammonium by a nifL mutant of Azotobacter vinelandii fixing nitrogen. App Env Micro,May 1992:1711-1718
    4. Arnott.M.,M.Merrick.1989. Deletion analysis of the nitrogen fixation regulatory gene, nifL of Klebsiella pneumoniae. Arch.Microbiol.l51:180-182.
    5. Aravind, L., and C. P. Ponting. 1997. The GAF domain: an evolutionary link between diverse phototransducing proteins. Trends Biochem. Sci. 22:458-459.
    6. Arconde'guy, T., R. Jack, and M. Merrick. 2001. P(II) signal transduction proteins, pivotal players in microbial nitrogen control. Microbiol. Mol. Biol.Rev. 65:80-105.
    7. Arconde'guy, T., D. Lawson, and M. Merrick. 2000. Two residues in theT-loop of Klebsiella pneumoniae GlnK determine NifL-dependent nitrogen control of nif gene expression. J. Biol. Chem. 275:38452-38456.
    8. Arconde'guy, T., W. C. van Heeswijk, and M. Merrick. 1999. Studies on the roles of GlnK and GlnB in regulating Klebsiella pneumoniae NifL-dependent nitrogen control. FEMS Microbiol. Lett. 180:263-270.
    9. Arsene, E, Katupitiya, S., Kennedy, I. R., Elmerich, C, Use of lacZ fusion to study the expression of nif genes of Azospirillum brasilense in association with plants. Molecular Plant-Microbe Interactions, 1994, 7 (6): 748-757
    10. Arnold, W., Rump, A., Klipp, W., Priefer, U. B. & Puhler, A. (1988). Nucleotide sequence of a 24,206-base-pair DNA fragment carrying the entire nitrogen fixation gene cluster of Klebsiella pneumoniae. J Mol Biol 203, 715-738.
    11. Atkinson, M. R., T. A. Blauwkamp, V. Bondarenko, V. Studitsky, and A. J. Ninfa. 2002. Activation of the glnA, glnK, and nac promoters as Escherichia coli undergoes the transition from nitrogen excess growth to nitrogen starvationJ. Bacteriol. 184:5358-5363.
    12. Austin, S., M. Buck, W. Cannon, T. Eydmann, and R. Dixon. 1994. Purifi-cation and in vitro activities of the native nitrogen fixation control proteins NIFA and NIFL. J. Bacteriol. 176:3460-3465.
    13. Austin, S., N. Henderson, and R. Dixon. 1990. Characterisation of the Klebsiella pneumoniae nitrogen-fixation regulatory proteins NIFA and NIFL in vitro. Eur. J. Biochem. 187:353-360.
    14. Bashan Y,Harrison S K.Enhanced growth of wheat and soybean plants inoculated with Azospirllum brasilense is not necessarily due to general enhancement of mineral uptake.Appl Environ Microbiol, 1990,56:769-775
    15. Barrett, J., P. Ray, A. Sobczyk, R. Little, and R. Dixon. 2001. Concerted inhibition of the transcriptional activation functions of the enhancer-binding protein NIFA by the anti-activator NIFL. Mol. Microbiol. 39:480-494.
    16. Barrios, H., B. Valderrama, and E. Morett. 1999. Compilation and analysis of sigma(54)-dependent promoter sequences. Nucleic Acids Res. 27:4305-4313.
    17. Berger, D. K., F. Narberhaus, and S. Kustu. 1994. The isolated catalyticdomain of NIFA, a bacterial enhancer-binding protein, activates transcription in vitro: activation is inhibited by NIFL. Proc. Natl. Acad. Sci. 91:103-107.
    18. Bergersen, F.J. (1991) Physiological control of nitrogenase and uptake hydrogenase. In Biology and Biochemistry of Nitrogen Fixation, pp. 76-102. Edited by M.J. Dilworth and A.R. Glenn. Amsterdam: Elsevier.
    19. Bibikov, S. I., R. Biran, K. Rudd, and J. Parkinson. 1997. A signal transducer for aerotaxis in Escherichia coll J. Bacteriol. 179:4075-4079.
    20. Blanco, G., M. Drummond, P. Woodley, and C. Kennedy. 1993. Sequence and molecular analysis of the nifL gene of Azotobacter vinelandii. Mol. Microbiol. 9:869-880.
    21. Blauwkamp, T. A., and A. J. Ninfa. 2002. Physiological role of the GlnK signal transduction protein of Escherichia coli: survival of nitrogen starvation. Mol. Microbiol. 46:203-214.
    22. Bongaerts, J., S. Zoske, U. Weidner, and G. Unden. 1995. Transcriptional regulation of the proton translocating NADH dehydrogenase genes (nuoA-N) of Escherichia coli by electron acceptors, electron donors and gene regulators. Mol. Microbiol. 16:521-534.
    23. Bordes, P., S. R. Wigneshweraraj, J. Schumacher, X. Zhang, M. Chaney, and M. Buck. 2003. The ATP hydrolyzing transcription activator phage shock protein F of Escherichia coli: identifying a surface that binds sigma 54. Proc. Natl. Acad. Sci. 100:2278-2283.
    24. Buck, M., M. T. Gallegos, D. J. Studholme, Y. Guo, and J. D. Gralla. 2000. The bacterial enhancer-dependent σ54 transcription factor. J. Bacteriol. 182:4129-4136.
    25. Buchanan-Wollaston V.,M.C.Cannon, 1981,Role of the nifA gene product in the regulation of nif expression in Klebsiella pneumoniae.,Nature,294:776-778
    26. Cannon, W. V., M. T. Gallegos, and M. Buck. 2000. Isomerization of a binary sigma-promoter DNA complex by transcription activators. Nat. Struct. Biol. 7:594-601.
    27. Carlton, J. M., S. V. Angiuoli, B. B. Suh, T. W. Kooij. 2002. Genome sequence and comparative analysis of the model rodent malaria parasite Plasmodium yoelii yoelii. Nature 419:512-519.
    28. Chan, Y.K, Barraquio, W. L., & Knowles, R. (1994). N2-fixing pseudomonads and related soil bacteria. FEMS Microbiol Rev 13, 95-118.
    29. Chaney, M., R. Grande, S. R. Wigneshweraraj, W. Cannon, P. Casaz, M. T. Gallegos, J. Schumacher, S. Jones, S. Elderkin, A. E. Dago, E. Morett, and M. Buck. 2001. Binding of transcriptional activators to sigma 54 in the presence of the transition state analog ADP-aluminum fluoride: insights into activator mechanochemical action. Genes Dev. 15:2282-2294.
    30. Colnaghi, R., P. Rudnick, L. He, A. Green, D. Yan, E. Larson, and C. Kennedy. 2001. Lethality of glnD null mutations in Azotobacter vinelandii is suppressible by prevention of glutamine synthetase adenylylation. Microbiology 147:1267-1276.
    31. Contreras, A., M. Drummond, A. Bali, G. Blanco, E. Garcia, G. Bush, C. Kennedy, and M. Merrick. 1991. The product of the nitrogen fixation regulatory gene nfrX of Azotobacter vinelandii is functionally and structurally homologous to the uridylyltransferase encoded by glnD in enteric bacteria. J. Bacteriol. 173:7741-7749.
    32. Courts, G., G. Thomas, D. Blakey, and M. Merrick. 2002. Membrane sequestration of the signal transduction protein GlnK by the ammonium transporter AmtB. EMBO J. 21:536-545.
    33. David K.Berger,Franz Narberhaus,Sydney Kustu.The isolated catalytic domain of NIFA,a bacterial enhancer-binding protein,activates transcription in vitro:activation is inhibited by NIFL,Proc.Natl.Acad.Sci.,Jan.l994,Vol.91:103-107
    34. de Zamaroczy, M., Delorme, F. & Elmerich, C. (1989). Regulation of transcription and promoter mapping of the structural genes for nitrogenase (nifHDK) of Azospirillum brasilense Sp7. Mol Gen Genet 220, 88-94.
    35. Dean, D.R. & Jacobson, M. R. (1992). Biochemical genetics of nitrogenase. In: Biological Nitrogen Fixation, pp. 763-834. Edited by G. Stacey, R. H. Burris, and H.J. Evans. New York: Chapman and Hall.
    36. Ditta, G., Schmidhauser, T., Yakobson, E., Lu P., Liang, X. W., Finlay, D. R., Guiney, D. & Helinski, D. R. (1985). Plasmids related to the broad host range vector, pRK290, useful for gene cloning and for monitoring gene expression. Plasmid 13,149-53.
    37. Desnoues, N., M. Lin, X. Guo, L. Ma, R. Carreno-Lopez, and C. Elmerich.2003. Nitrogen fixation genetics and regulation in a Pseudomonas stutzeri strain associated with rice. Microbiology 149:2251-2262.
    38. Dixon, R.1998. The oxygen-responsive NIFL-NIFA complex: a novel two-component regulatory system controlling nitrogenase synthesis in γ -proteobacteria. Arch. Microbiol. 169:371-380.
    39. Drummond, M. H., A. Contreras, and L. A. Mitchenall. 1990. The function of isolated domains and chimaeric proteins constructed from the transcriptional activators NifA and NtrC of Klebsiella pneumoniae. Mol. Microbiol.4:29-37.
    40. Drummond, M. H., and J. C. Wootton. 1987. Sequence of nifL from Klebsiella pneumoniae: mode of action and relationship to two families of regulatory proteins. Mol. Microbiol. 1:37-44.
    41. Dutta, R., and M. Inouye. 2000. GHKL, an emergent ATPase/kinase superfamily. Trends Biochem. Sci. 25:24-28.
    42. Edwards, R., and M. Merrick. 1995. The role of uridylyltransferase in the control of Klebsiella pneumoniae nif gene regulation. Mol. Gen. Genet.247:189-198.
    43. Egener, T., A. Sarkar, D. E. Martin, and B. Reinhold-Hurek. 2002. Identification of a NifL-like protein in a diazotroph of the beta-subgroup of theProteobacteria, Azoarcus sp. strain BH72. Microbiology 148:3203-3212.
    44. Elderkin, S., S. Jones, J. Schumacher, D. Studholme, and M. Buck. 2002. Mechanism of action of the Escherichia coli phage shock protein PspA in repression of the AAA family transcription factor PspF. J. Mol. Biol. 320:23-37.
    45. Eydmann, T., E. S'derback, T. Jones, S. Hill, S. Austin, and R. Dixon. 1995. Transcriptional activation of the nitrogenase promoter in vitro: adenosine nucleosides are required for inhibition of NIFA activity by NIFL. J. Bacteriol. 177:1186-1195.
    46. Egener, T., Martin, D. E., Sarkar, A. & Reinhold-Hurek, B. (2001). Role of a ferredoxin gene cotranscribed with the nifHDK operon in N2 fixation and nitrogenase "switch-off' of Azoarcus sp. strain BH72. J Bacteriol 183, 3752-3760.
    47. Elmerich, C. (1991). Genetics and regulation of Mo-nitrogenase. In Biology and Biochemistry of Nitrogen Fixation, pp. 103-141. Edited by M.J. Dilworth and A.R. Glenn. Amsterdam: Elsevier.
    48. Fallik, E., Chan, Y. K. & Robson, R. L. (1991). Detection of alternative nitrogenases in aerobic Gram- negative nitrogen-fixing bacteria. J Bacteriol 173, 365-371.
    49. Fernando Govantes,Eduardo Santero.Transcription termination within the regulatory nifLA operon of Klebsiella pneumoniae,Mol.Gen.Genet., 1996,250:447-454
    50. Fischer, H.M.et al. 1988. Essential and non-essential domains in the Bradyrhizobium japonicum NifA protein: identification of indispensible cysteine residues potentially involved in redox reactivity and/or metal binding. Nucleilc Acids Res., 16:2207-24.
    51. Fields S. The two-hybrid system to detect protein-protein interac-tions. Methods: A Companion to Meth Enzymol, 1993, 5: 116-124
    52. Fischer, H. M. 1994. Genetic regulation of nitrogen fixation in rhizobia. Microbiol. Rev. 58:352-386.
    53. Fischer, H. M., and H. Hennecke. 1987. Direct response of Bradyrhizobium japonicum nifA-mediated nif gene regulation to cellular oxygen status. Mol. Gen. Genet. 209:621-626.
    54. Franz Narberhaus,Heung-shick Lee.The C-terminal of NifL is sufficient to inhabit NifA activity,J.Bacteriology,Sept. 1995:5078-5087
    55. Galimand, M., Perroud, B., Delorme, F., Paquelin, A., Vieille, C, Bozouklian, H., & Ehnerich, C. (1989). Identification of DNA regions homologous to nitrogen fixation genes nifE, nifUS and fixABC in Azospirillum brasilense Sp7. J Gen Microbiol 135,1047-1059.
    56. Gonzalo Blanco,Martin Drummond,Paul Woodley.Sequence and molecular analysis of the nifL gene of Azotobacter vinelandii,Mol.Micro.,1993,9(4):869-879
    57. Govantes, F., E. Andujar, and E. Santero. 1998. Mechanism of translational coupling in the nifLA operon of Klebsiella pneumoniae. EMBO J. 17:2368-2377.
    58. Govantes, F., J. A. Molina-Lopez, and E. Santero. 1996. Mechanism of coordinated synthesis of the antagonistic regulatory proteins NifL and NifA of Klebsiella pneumoniae. J. Bacteriol. 178:6817-6823.
    59. Grabbe, R., K. Klopprogge, and R. A. Schmitz. 2001. Fnr is required for NifL-dependent oxygen control of nif gene expression in Klebsiella pneumoniae. J. Bacteriol. 183:1385-1393.
    60. Grabbe, R., and R. A. Schmitz. 2003. Oxygen control of nif gene expression in Klebsiella pneumoniae depends on NifL reduction at the cytoplasmic membrane by electrons derived from the reduced quinone pool. Eur. J. Biochem. 270:1555-1566.
    61. Hallmann, J., Quadt-hallmann, A., Mahaffee, W. F. & Kloepper, J. W. (1997).
    62. Hase, C. & Mekalanos, J. J. (1999). Effects of changes in membrane sodium flux on virulence gene expression in Vibrio cholerae. Proc natl Acad Sci 96, 3183-3187.
    63. He, L., E. Soupene, A. Ninfa, and S. Kustu. 1998. Physiological role for the GlnK protein of enteric bacteria: relief of NifL inhibition under nitrogenlimiting conditions. J. Bacteriol. 180:6661-6667.
    64. He, L. H., E. Soupene, and S. Kustu. 1997. NtrC is required for control of Klebsiella pneumoniae NifL activity. J. Bacteriol. 179:7446-7455.
    65. Hefti, M., J. Hendle, C. Enroth, J. Vervoort, and P. A. Tucker. 2001. Crystallization and preliminary crystallographic data of the PAS domain of the NifL protein from Azotobacter vinelandii. Acta Crystallogr. D Biol. Crystallogr. 57:1895-1896.
    66. Hefti, M. H., F. J. Milder, S. Boeren, J. Vervoort, and W. J. van Berkel. 2003. A His-tag based immobilization method for the preparation and reconstitution of apoflavoproteins. Biochim. Biophys. Acta 1619:139-143.
    67. Hefti, M. H., C. J. Van Vugt-Van der Toorn, R. Dixon, and J. Vervoort. 2001. A novel purification method for histidine-tagged proteins containing a thrombin cleavage site. Anal. Biochem. 295:180-185.
    68. Henderson, N., S. A. Austin, and R. A. Dixon. 1989. Role of metal ions in negative regulation of nitrogen fixation by the nifL gene product from Klebsiella pneumoniae. Mol. Gen. Genet. 216:484-491.
    69. Henderson N.,S.Austin,R.A.Dixon.Role of metal ions in negative regulation of nitrogen fixation by the nifL gene product from Klebsiella pneumoniae,Mol.Gen. Genet. 1989,216:484-491
    70. Heung-shick Lee,Franz Narberhaus.In vitro activity of NifL, a signal transduction protein for biological nitrogen fixtion,J.Bacteriology.Dec, 1993:7683-7688
    71. Hill, S. 1992. Physiology of nitrogen fixation in free-living heterotrophs, p. 87-134. In G. Stacey, R. H. Burris, and H. J. Evans (ed.), Biological nitrogen fixation. Chapman and Hall, New York, N.Y.
    72. Hill, S., S. Austin, T. Eydmann, T. Jones, and R. Dixon. 1996. Azotobacter vinelandii NIFL is a flavoprotein that modulates transcriptional activation of nitrogen-fixation genes via a redox-sensitive switch. Proc. Natl. Acad. Sci. 93:2143-2148.
    73. Hill, S., C. Kennedy, E. Kavanagh, R. Goldberg, and R. Hanau. 1981. Nitrogen fixation gene (nifL) involved in oxygen regulation of nitrogenase synthesis in K. pneumoniae. Nature 290:424-426.
    74. Ho, Y. S., L. M. Burden, and J. H. Hurley. 2000. Structure of the GAF domain, a ubiquitous signaling motif and a new class of cyclic GMP receptor. EMBO J. 19:5288-5299.
    75. Hopper, S., and A. Bo'ck. 1995. Effector-mediated stimulation of ATPase activity by the σ54-dependent transcriptional activator FHLA from Escherichia coli. J. Bacteriol. 177:2798-2803.
    76. Hubner, P., Masepohl, B., Klipp, W., Bickle, T. A. (1993). nif gene expression studies in Rhodobacter capsulatus: ntrC-independent repression by high ammonium concentrations. Mol Microbiol 10, 123-132.
    77. Jack, R., M. De Zamaroczy, and M. Merrick. 1999. The signal transduction protein GlnK is required for NifL-dependent nitrogen control of nif gene expression in Klebsiella pneumoniae. J. Bacteriol. 181:1156-1162.
    78. Kanacher, T., A. Schultz, J. U. Linder, and J. E. Schultz. 2002. A GAFdomain- regulated adenylyl cyclase from Anabaena is a self-activating camp switch. EMBO J. 21:3672-3680.
    79. Kennedy, C. 1977. Linkage map of the nitrogen fixation (nif) genes in Klebsiella pneumoniae. Mol. Gen. Genet. 157:199-204.
    80. Kiley, P. J., and H. Beinert. 2003. The role of Fe-S proteins in sensing and regulation in bacteria. Curr. Opin. Microbiol. 6:181-185.
    81. Kim, Y. M., K. J. Ahn, T. Beppu, and T. Uozomi. 1986. Nucleotide sequence of the nifLA operon of Klebsiella oxytoca NG13 and characterisation of the gene products. Mol. Gen. Genet. 205:253-259.
    82. Klopprogge, K., R. Grabbe, M. Hoppert, and R. A. Schmitz. 2002. Membrane association of Klebsiella pneumoniae NifL is affected by molecular oxygen and combined nitrogen. Arch. Microbiol. 177:223-234.
    83. Klopprogge, K., and R. A. Schmitz. 1999. NifL of Klebsiella pneumoniae: redox characterization in relation to the nitrogen source. Biochim. Biophys. Acta 1431:462-470.
    84. Klopprogge, K., J. Stips, and R. A. Schmitz. 2002. The inhibitory form of NifL from Klebsiella pneumoniae exhibits ATP hydrolyzing activity only when synthesized under nitrogen sufficiency. Biochim. Biophys. Acta 1594: 243-254.
    85. Kloepper J W,Lifishilz R.Free-living bacterial inocula for enhancing crop productivity TIBTECH, 1989,7:39-44
    86. Knauf, V. C. & Nester, E. W. (1982). Wide host range cloning vectors: a cosmid clone bank of an Agrobacterium Ti plasmid. Plasmid 8,45-54.
    87. Kokotek, W., & Lotz, W. (1989). Construction of a lacZ-kanamycin-resistance cassette, useful for site-directed mutagenesis and as a promoter probe. Gene 84,467-471.
    88. Krotkzy, A. & Werner, D. (1987). Nitrogen fixation in Pseudomonas stutzeri. Arch Microbiol 147,48.57.
    89. Kullik,I. et al.1989.Inhibition of Bradyhizobium japonicum nifA-dependent nif gene activation by oxygen occurs at the NifA protein level and is irreversible. Arch. Microbiol., 151:191-97.
    90. Kustu, S.et al. 1989. Expression of NtrA-dependent genes is probably united by a common mechanism. Microbiol. Rev., 53: 367-78.
    91. Kumagai, H., Fujiwara, T., Matsubara, H. &Saeki, K. (1997). Membrane localization, topology, and mutual stabilization of the rnfABC gene products in Rhodobacter capsulatus and implications for a new family of energy-coupling NADH oxidoreductases. Biochem 36, 5509-5521.
    92. Jacobson, M.R., Brigle, K.V., Bennett, L.T., Setterquist R.A., Wilson, M.S., Cash, V.L., Beynon, J., Newton, W.E. & Dean, D.R. (1989). Physical and genetic map of the major nifgene cluster from Azotobacter vinelandii. J Bacteriol, 171, 10171027.
    93. Jouanneau, Y., Jeong, H. S, Hugo, N., Meyer, C. & Willison, J. C. (1998). Overexpression in Escherichia coli of the rnf genes from Rhodobacter capsulatus: Characterization of two membrane-bound iron-sulphur proteins. Eur J Biochem 251, 54-64.
    94. Joerger, R.D. & Bishop, P.E. (1988). Nucleotide sequence and genetic analysis of the nifB-nifQ region from Azotobacter vinelandii. J. Bacteriol 170, 1475-1487.
    95. Lee, S., Reth, A., Meletzus, D., Sevilla, M. & Kennedy, C. (2000). Characterization of a major cluster of nif, fix and associated genes in a sugarcane endophyte, Acetobacter diazotrophicus. J bacteriol 182, 7088-7091.
    96. Lee, H.-S., F. Narberhaus, and S. Kustu. 1993. In vitro activity of NifL,a signal transduction protein for biological nitrogen fixation. J. Bacteriol. 175:7683-7688.
    97. Lei, S., L. Pulakat, and N. Gavini. 1999. Genetic analysis of nif regulatory genes by utilizing the yeast two-hybrid system detected formation of a NifL-NifA complex that is implicated in regulated expression of nif genes. J. Bacteriol. 181:6535-6539.
    98. Liao G X, Yu G Q, Shen S J, et al. Use of bacterial two-hybrid system to investigate the molecular interaction between the regu-lators NifA and NifL of Enterobacter cloacae. Science in China Series C, 2002,45 (6): 569-576
    99. Li, J., and V. Stewart. 1992. Localization of upstream sequence elements required for nitrate and anaerobic induction of fdn (formate dehydrogenase- N) operon expression in Escherichia coli K-12. J. Bacteriol. 174:4935-4942.
    100. Little, R., V. Colombo, A. Leech, and R. Dixon. 2002. Direct interaction of
    101. the NifL regulatory protein with the GlnK signal transducer enables the Azotobacter vinelandii NifL-NifA regulatory system to respond to conditions replete for nitrogen. J. Biol. Chem. 277:15472-15481.
    102. Little, R., and R. Dixon. 2003. The amino-terminal GAF domain of Azotobacter vinelandii NifA binds 2-oxoglutarate to resist inhibition by NifL under nitrogen-limiting conditions. J. Biol. Chem. 278:28711-28718.
    103. Little, R., S. Hill, S. Perry, S. Austin, F. Reyes-Ramirez, R. Dixon, and P. Macheroux. 1999. Properties of NifL, a regulatory flavoprotein containing a PAS domain, p. 737-740. In S. Ghisla, P. Kroneck, P. Macheroux, and H. Sund (ed.), Flavins and flavoproteins 1999. Rudolf Weber, Berlin, Germany.
    104. Little, R., F. Reyes-Ramirez, Y. Zhang, W. C. van Heeswijk, and R. Dixon. 2000. Signal transduction to the Azotobacter vinelandii NIFL-NIFA regulatory system is influenced directly by interaction with 2-oxoglutarate and the PII regulatory protein. EMBO J. 19:6041-6050.
    105. Liang, Y. Y., Kaminski, P. A., & Elmerich, C. (1991) Identification of a nifA-like regulatory gene of Azospirillum brasilense Sp7 expressed under conditions of nitrogen fixation and in the presence of air and ammonia. Molecular Microbiol 5, 2735-2744.
    106. Liang, Y.Y., Arsene, F., & Elmerich, C. (1993) Characterization of the ntrBC genes of Azospirillum brasilense Sp7: Their involvement in the regulation of nitrogenase synthesis and activity. Mol Gen Genet 240,188-196.
    107. Lin, M., Smalla, K., Heuer, H. & van Elsas, J.D. (2000). Effect of an Alcaligenes faecalis inoculant strain on bacterial communities in flooded microcosms planted with rice seedlings. Appl Soil Eco I 15,211-225.
    108. Loveless, T.M. & Bishop, P. E. (1999) identification of genes unique to Mo-independent nitrogenase systems in diverse diazotrophs. Can J Microbiol 45, 312317.
    109. Lovell, C.R., Piceno, Y. M., Quattro, J. M. & Bagwell C. E. (2000). Molecular analysis of diazotroph diversity in the rhizosphere of the smooth cordgrass, Spartina alterniflora. Appl Environm Microbiol 66, 3814-3822.
    110. Ludden, P. W. (1994) Reversible ADP-ribosylation as a mechanism of enzyme regulation in procaryotes. Mol Cell Biochem 138, 123-129.
    111. Lee H.S., D.K.Berger,and S.Kustu.,1993b,Activity of purified NIFA,a trsnecriptional activator of nitrogen fixation genes.,Proc.Natl.Acad.Sci., 90:2266-2270
    112. Luhong He,Eric Soupene. NtrC is required for control of Klebsiella pneumoniae NIFL activity,J.Bacteriology,Dec. 1997:7446-7455
    113. Macheroux, P., S. Hill, S. Austin, T. Eydmann, T. Jones, S.-O. Kim, R. Poole, and R. Dixon. 1998. Electron donation to the flavoprotein NifL, a redox-sensing transcriptional regulator. Biochem. J. 332:413-419.
    114. Martinez-Argudo I, Little R, Shearer N, et al. The NifL-NifA system: A multidomain transcriptional regulatory complex that integrates en-vironmental signals. J Bacteriol, 2004, 186: 601-610
    115. Martin Drummond,John Clements,Mike Merrick.Positive control and autogenous regulation of the nifLA promoter in Klebsiella pneumoniae,Nature, 1983,Vol. 301:302-307
    116. Meletzus, D., P. Rudnick, N. Doetsch, A. Green, and C. Kennedy. 1998. Characterization of the glnK-amtB operon of Azotobacter vinelandii. J. Bacteriol. 180:3260-3264.
    117. Merrick, M., S. Hill, H. Hennecke, M. Hahn, R. Dixon, and C. Kennedy. 1982. Repressor properties of the nifL gene product of Klebsiella pneumoniae. Mol. Gen. Genet. 185:75-81.
    118. Minchin, S. D., S. Austin, and R. A. Dixon. 1988. The role of activator binding sites in transcriptional control of the divergently transcribed nifF and nifLA promoters from Klebsiella pneumoniae. Mol. Microbiol. 2:433-442.
    119. Mavingui, P., Flores, M., Guo, X., Davilla, G., Perret, X., Brougthon, W. J. & Palacios, R. (2002). Dynamics of genome architecture in Rhizobium sp. NGR234. J Bacteriol 184, 171-176.
    120. Merrick, M. J. (1992) Regulation of nitrogen fixation genes in free-living and symbiotic bacteria. In: Biological Nitrogen Fixation, pp. 835-876. Edited by G. Stacey, R. H. Burris, and H J. Evans. New York: Chapman and Hall.
    121. Miller, J. (1972). Assay for B-galactosidase. In: Experiments in Molecular Genetics, pp. 352-355.Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
    122. Mike Merrick,Susan Hill,Christina Kennedy.Repressor properties of the nifL gene product in Klebsiella pneumoniae,Mol.Gen.Genet. 1982,185:75-81
    123. Money, T., J. Barrett, R. Dixon, and S. Austin. 2001. Protein-protein interactions in the complex between the enhancer binding protein NIFA and the sensor NIFL from Azotobacter vinelandii. J. Bacteriol. 183:1359-1368.
    124. Money, T., T. Jones, R. Dixon, and S. Austin. 1999. Isolation and properties of the complex between the enhancer binding protein NIFA and the sensor NIFL. J. Bacteriol. 181:4461-4468.
    125. Morett, E., W. Cannon, and M. Buck. 1988. The DNA-binding domain of the transcriptional activator protein NifA resides in its carboxy terminus, recognises the upstream activator sequences of nif promoters and can be separated from the positive control function of NifA. Nucleic Acids Res. 16:11469-11488.
    126. Morett, E., R. Kreutzer, W. Cannon, and M. Buck. 1990. The influence of the Klebsiella pneumoniae regulatory gene nifL upon the transcriptional activator protein NifA. Mol. Microbiol. 4:1253-1258.
    127. Morett E.,M.Buck.The influence of the Klebsiella pneumoniae regulatory gene nifL upon the transcriptional activator protein NifA,Mol.Micro. 1990,4(8): 1253-1258
    128. Morett, E., and L. Segovia. 1993. The sigma 54 bacterial enhancer-binding protein family: mechanism of action and phylogenetic relationship of their functional domains. J. Bacteriol. 175:6067-6074.
    129. Moshiri, F., J. Kim, C. Fu, and R. Maier. 1994. The FeSII protein of Azotobacter vinelandii is not essential for aerobic nitrogen fixation but confers significant protection to oxygen-mediated inactivation of nitrogenase in vitro and in vivo. Mol. Microbiol. 14:101-114.
    130. Narberhaus, F., H.-S. Lee, R. A. Schmitz, L. He, and S. Kustu. 1995. The C-terminal domain of NIFL is sufficient to inhibit NIFA activity. J. Bacteriol. 177:5078-5087.
    131.Neuwald, A. F., L. Aravind, J. L. Spouge, and E. V. Koonin. 1999. AAA_: a class of chaperone-like ATPases associated with the assembly, operation, and disassembly of protein complexes. Genome Res. 9:27-43.
    132. Ninfa, A., and M. Atkinson. 2000. PII signal transduction proteins. Trends Microbiol. 8:172-179.
    133. Nixon, B. T, Ronson, C. W., Ausubel, F. M., Two-component regulatory systems responsive to environmental stimuli share strongly conserved domains with the nitrogen assimilatory genes ntrB and ntrC. Proc. Natl. Acad. Sci. USA, 1986, 83: 7850-7854
    134. Okon Y, Kapalink Y. Development and function of Azospirillum-inoculated root.Plant Soil, 1986, 90:3-16
    135. Paul Woodly,Martin Drummond Redundancy of the conserved His residue in Azotobacter vinelandii NifL, a histidine autokinse homologue which regulates transcription of nitrogen fixation genes,Mol.Micro. 1994,13(4):619-626
    136. Pioszak, A. A., P. Jiang, and A. J. Ninfa. 2000. The Escherichia coli PII signal transduction protein regulates the activities of the two-component system transmitter protein NRII by direct interaction with the kinase domain of the transmitter module. Biochemistry 39:13450-13461.
    137. Ponting, C. P., and L. Aravind. 1997. PAS: a multifunctional domain family comes to light. Curr. Biol. 7:R674-R677.
    138. Poole, R. K., and S. Hill. 1997. Respiratory protection of nitrogenase activity in Azotobacter vinelandii-roles of the terminal oxidases. Biosci.Rep. 17:303-317.
    139. Popham, DL. et al. 1989. Function of a bacterial activator protein that binds to transcriptional enhancers. Science, 243:629-35
    140. Preston, G., W. L. Deng, H. C. Huang, and A. Collmer. 1998. Negative regulation of hrp genes in Pseudomonas syringae by HrpV. J. Bacteriol. 180:4532-4537.
    141.Qui-tong Kong, Qi-long Wu,San-chium Shen.Oxygen sensitivity of the nifLA promoter of Klebsiella pneumoniae,J.Bacteriology,Apr.1986,353-356
    142. Raina, R., U. K, Bageshwar, and H. K. Das. 1993. The Azotobacter vinelandii nifL-like gene: nucleotide sequence analysis and regulation of expression.Mol. Gen. Genet. 237:400-406.
    143. Ray, P., K. J. Smith, R. A. Parslow, R. Dixon, and E. I. Hyde. 2002. Secondary structure and DNA binding by the C-terminal domain of the transcriptional activator NifA from Klebsiella pneumoniae. Nucleic Acids Res. 30:3972-3980.
    144. Rebbapragada, A., M. S. Johnson, G. P. Harding, A. J. Zuccarelli, H. M. Fletcher, I. B. Zhulin, and B. L. Taylor. 1997. The Aer protein and the serine chemoreceptor sense intracellular energy levels and transduce oxygen, redox, and energy signals for Escherichia coli behaviour. Proc. Natl.Acad. Sci. 94:10541-10546.
    145. Reyes-Ramirez, F., Little, R., Dixon, R. (2001). Role of Escherichia coli nitrogen regulatory genes in the nitrogen response of the Azotobacter vinelandii NifL-nifA complex. J bacteriol 183, 3076-3082.
    146. Reyes-Ramirez, F., R. Little, and R. Dixon. 2002. Mutant forms of the Azotobacter vinelandii transcriptional activator NifA resistant to inhibition by the NifL regulatory protein. J. Bacteriol. 184:6777-6785.
    147. Reyes-Ramirez, F., R. Little, and R. Dixon. 2001. Role of Escherichia coli nitrogen regulatory genes in the nitrogen response of the Azotobacter vinelandii NifL-NifA complex. J. Bacteriol. 183:3076-3082.
    148. Rodrigue, A., Quentin, Y., Lazdunski, A., Mejean, V. & Foglino, M. (2000) Two-component systems in Pseudomonas aeruginosa: why so many. Trends Microbiol 8,498-504.
    149. Rubio, L. M., Rangaraj, P., Homers, M. J., Roberts, G. P. & Ludden, P.W. (2002) cloning and mutational analysis of the y gene from Azotobacter vinelandii defines a new family of proteins capable of metallocluster binding and protein stabilization. J Biol Chem 277, 14299-14305.
    150. Ruth A. Schmitz,Sydney Rustu. Iron is required to relieve inhibitory effects of NifL on transcriptional activation by NifA in Klebsiella pneumoniae,J.Bacteriology. Aug, 1996:4679-4687
    151. Rudnick, P., C. Kunz, M. K. Gunatilaka, E. R. Hines, and C. Kennedy.2002. Role of GlnK in NifL-mediated regulation of NifA activity in Azotobacter vinelandii. J. Bacteriol. 184:812-820.
    152. Saez, L. P., Garcia, P., Martinez-Luque, M., Klipp, W., Blasco, R. & Castillo, F. (2001) Role of draTG and rnf genes in reduction of 2,4-dinitrophenol by Rhodobacter capsulatus. J Bacteriol 183, 1780-1783.
    153. Sambrook, J., Fritsch, E. F, & Maniatis, T. (1989) Molecular Cloning: a Laboratory manuel, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
    154. Sara Austin,Martin Buck,Ray Dixon.Purification and in vitro activities of the native nitrogen fixation control proteins NifA and NifL,J.Bacteriology,June 1994:3460-3465
    155. Sara Austin,Neville Henderson,Ray Dixon.Characterisation of the Klebsiella pneumoniae nitrogen-fixation regulatory proteins NIFA and NIFL in vitro,Eur.J.Biochem.,1990,187:353-360
    156. Schippers B,Bakker P A H M,Van Peer R.Crop losses due to the deleterious rhizobacteria and their prevention by bacterization. In Proceedings Crop Protection conference pest and diease,1988:611-614
    157. Schmel, M., Jahn, A., Meyer zu Vilsendorf, A., Hennecke, S., Masepohl, B., Schuppler, M., Marxer, M., Oelze, J. & Klipp, W. (1993). Identification of a new class of nitrogen fixation genes in Rhodobacter capsulatus: a putative membrane complex involved in electron transport to nitrogenase. Mol Gen Genet 241, 602615.
    158. Schmidhauser TJ, Ditta G, Helinski DR. (1988). Broad-host-range plasmid cloning vectors for gram-negative bacteria. Biotechnology 10,287-332.
    159. Schmitz, R., L. He, and S. Kustu. 1996. Iron is required to relieve inhibitory effects of NifL on transcriptional activation by NifA in Klebsiella pneumoniae.J. Bacteriol. 178:4679-4687.
    160. Schmitz, R. A. 1997. NifL of Klebsiella pneumoniae carries an N-terminally bound FAD cofactor, which is not directly required for the inhibitory function of NifL. FEMS Microbiol. Lett. 157:313-318.
    161. Schmitz, R. A., K. Klopprogge, and R. Grabbe. 2002. Regulation of nitrogen fixation in Klebsiella pneumoniae and Azotobacter vinelandii: NifL, transducing two environmental signals to the nif transcriptional activator NifA. J. Mol. Microbiol. Biotechnol. 4:235-242.
    162. Senior, P. J. 1975. Regulation of nitrogen metabolism in Escherichia coli and Klebsiella aerogenes: studies with the continuous culture technique. J. Bacteriol. 123:407-418.
    163. Shingler, V. 1996. Signal sensing by sigma 54-dependent regulators: derepression as a control mechanism. Mol. Microbiol. 19:409-416.
    164. Shand R.F., and Betlach M.C., 1991,Expression of the bop gene cluster of Halobacterium halobium is induced by low oxygen tension and by light,J.Bacteriol., 173:4692-4699
    165. Sidoti C.,G.Harwood,M.Merrick.l993,Characterisation of mutations in the Klebsiella pneumoniae nitrogen fixation regulatory gene nifL which impair oxygen regulation. Arch.Microbiol. 159:276-281
    166. Simon, R., Priefer, U., and Puhler, A. (1983). A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram-negative bacteria. Biotechnology 1, 784-791.
    167. Simon Whitehall,Sara Austin,Ray Dixon.The function of the upstream region of the δ54-dependent Klebsiella pneumoniae nifL promoter is sensitive to DNA supercoiling, Mol.Micro.l993,9(5):1107-1117
    168. Siddavattam, D., H. D. Steibl, R. Kreutzer, and W. Klingmuller. 1995. Regulation of nif gene expression in Enterobacter agglomerans: nucleotide sequence of the nifLA operon and influence of temperature and ammonium on its transcription. Mol. Gen. Genet. 249:629-636.
    169. Sikorski, J., Rosello-Mora, R. & Lorenz, M G. (1999) Analysis of genotypic diversity and relationships among Pseudomonas stutzeri strains by PCR-based genomic fingerprinting and multilocus enzyme electrophoresis. System Appl Microbiol 22, 393-402.
    170. So¨derba¨ck, E., F. Reyes-Ramirez, T. Eydmann, S. Austin, S. Hill, and R. Dixon. 1998. The redox-and fixed nitrogen-responsive regulatory protein NIFL from Azotobacter vinelandii comprises discrete flavin and nucleotidebinding domains. Mol. Microbiol. 28:179-192.
    171. Stock, A. M., V. L. Robinson, and P. N. Goudreau. 2000. Two-component signal transduction. Annu. Rev. Biochem. 69:183-215.
    172. Studholme, D. J., and R. Dixon. 2003. Domain architectures of _54-dependent transcriptional activators. J. Bacteriol. 185:1757-1767.
    173. Susan Hill,Sara Austin.Azotobacter vinelandii NifL is a flavoprotein that modulates transcriptional activation of nitrogen-fixtion genes via a redox-sensitive switch.Proc.Natl.Acad.Sci.l996,Vol 93:2143-2148
    174. Taylor, B. L., and I. B. Zhulin. 1999. PAS domains: internal sensors of oxygen, redox potential, and light. Microbiol. Mol. Biol. Rev. 63:479-506.
    175. Thorneley, R. N., and D. J. Lowe. 1983. Nitrogenase of Klebsiella pneumoniae. Kinetics of the dissociation of oxidized iron protein from molybdenum-iron protein: identification of the rate-limiting step for substrate reduction. Biochem. J. 215:393-403.
    176. Toukdarian, A., and C. Kennedy. 1986. Regulation of nitrogen metabolism in Azotobacter vinelandii: isolation of ntr and glnA genes and construction of ntr mutants. EMBO J. 5:399-407.
    177. Trevor Eydmann,Erik Soderback,Ray Dixon. Transcriptional activation of the nitrogenase promoter in vitro:adenosine nucleotides are required for inhibition of NIFA activity by NIFL,J.Bacteriology,Mar. 1995:1186-1195
    178. Toukdarian, A. & Kennedy, C. (1986). Regulation of nitrogen metabolism in Azotobacter vinelandii: Isolation of ntr and glnA genes and construction of ntr mutants. EMBO J5, 399-407
    179. Ueda, T., Suga, Y., Yahiro, N. & Matsuguchi, T. (1995). Genetic diversity of N2fixing bacteria associated with rice roots. Can J Microbiol 41,235-240.
    180. Wang, Y.-K., J. Lee, J. Brewer, and T. Hoover. 1997. A conserved region in the σ54-dependent activator DctD is involved in both binding to RNA polymerase and coupling ATP hydrolysis to activation. Mol. Microbiol.26:373-386.
    181. Vermeiren, H., Willems, A., Schools, G., de Mot, R., Keijers, V., Hai, W. & Vanderleyden, J. (1999). The rice inoculant strain A15 is a nitrogen-fixing Pseudomonas stutzeri strain. System Appl Microbio122, 215-224.
    182. Vermerein, H., Hai, W. L. & Vanderleyden, J. (1998) Colonization and nifH expression on rice roots by Alcaligenes faecalis A15. In, Nitrogen Fixation with non-Legumes, pp. 167-177. Edited by K. A. Malik, M. S. Mirza and J. K. Ladha. Dordrecht: Kluwer.
    183. Woodley, P., and M. Drummond. 1994. Redundancy of the conserved His residue in Azotobacter vinelandii NifL, a histidine protein kinase homologue which regulates transcription of nitrogen fixarion genes. Mol. Microbiol. 13:619-626.
    184. Wootton, J. C., and M. Drummond. 1989. The Q-linker: a class of interdomain sequences found in bacterial multidomain regulatory proteins. Protein Eng. 2:535-543.
    185. Young-Mi Kim,Takeshi Uozumi.Nucleotide sequence of the nifLA operon of Klebiella oxytoca NG13 and characterization of the gene products,Mol Gen Genet,1986, 205:253-259
    186. Young, J. P. W. (1992) Phylogenetic classification of nitrogen-fixing organisms. In: Biological Nitrogen Fixation, pp. 43-86. Edited by G. Stacey, R. H. Burris, and H.J. Evans. New York: Chapman and Hall.
    187. Zehr, J. & McReynolds, L. A. (1989). Use of degenerate oligonucleotides for amplification of the nifH gene from the marine cyanobacterium trichodesmium thiebautii. Appl Environm Microbiol 55, 2522-2526.
    188. Zhang, Y., Pohlmann, E. L, Ludden, P. W., & Roberts G. P. (2000). Mutagenesis and functional characterization of the glnB, glnA, and nifA genes from the photosynthetic bacterium Rhodospirillum rubrum. J Bacteriol 182, 983-992.
    189. Zhang, X., M. Chaney, S. R. Wigueshweraraj, J. Schumacher, P. Bordes, W. Cannon, and M. Buck. 2002. Mechanochemical ATPases and transcriptional activation. Mol. Microbiol. 45:895-903.
    190. Zhulin, I. B., B. L. Taylor, and R. Dixon. 1997. PAS domain S-boxes in Archea, Bacteria and sensors for oxygen and redox. Trends Biochem. Sci. 22:331-333.
    191. 刘艳宁,平淑珍,林敏.异源 nifL 在粪产碱菌的表达及功能研究,农业生物技术学报,1998.6:347-350
    192.印红,陆伟,林敏.提高自生或联合固氮菌铵分泌量的遗传改造途径,生物化学与分子生物学动向,1998,Vol.4(1):8-12
    193.尤崇杓.非豆科作物联合固氮作用,固氮生物化学与遗传研究158-161,1995
    194.尤崇杓.联合固氮研究的现状和展望,固氮生物化学与遗传研究,162-164,1995
    195.尤崇杓.固氮酶学的进展和遗传工程,固氮生物化学与遗传研究,106-108,1995
    196.闫春玲,林敏,宛煜嵩,候胜强,平淑珍,陈明,张保明,C.Elmerich.固氮斯氏假单胞菌四碳二羧酸转移酶DetPQM的跨膜结构分析与功能研究.科学通报.2003,48(9)
    197.陈明,张维,林敏.粪产碱菌耐铵工程菌与水稻联合共生固氮作用.核农学报.1999,13(6):373-376
    198.陈中义,林敏,黄大昉.首例属间遗传工程微生物进入商品化生产.生物技术通报.1998,6:41-42
    199.黄大昉,林敏.农业微生物基因工程,2001,北京:科学出版社,2-8
    200.江群益,周宗汉,沈思师,金润之,黄懿德,沈善炯.具有广泛寄主范围转移特性的Tn5-nifA重组质粒的构建.科学通报.1990,4:302-305
    201.林敏,方宣钧,程红梅,尤崇杓.重组耐氨固氮菌株的田间长期定点释放试验.农业生物技术学报.1995,3(1):28-33
    202.林敏,尤崇杓.水稻根分泌物及其与粪产碱菌的相互作用.中国农业科学.1989,22(6):6-12
    203.平淑珍,程红梅,林敏.盐胁迫下粪产碱菌在水稻根表的定殖和异源固氮基因的表达.植物生理学报.2000,26(2):95-100
    204.丘元盛,周淑萍,莫小真,王大,洪俊华.稻根联合固氮细菌的研究Ⅰ.菌种的分离和鉴定.微生物学报.1981,21(4):468-472
    205.杨苏生,吴拙如,高为民,李季伦.Tn5-Mob系统诱导根瘤菌属之间耐盐和共生性状的转移.生物工程学报.1993,9(3):193-197
    206.尤崇杓,李信,王有为,朱承志,侯景琴,莫小真,罗修和,廖金才,丘元盛。粪产碱菌的培养及其生理特性.原子能农业应用.1983,4:27—33
    207.张海予,林敏,萧凤回,朱玉贤.粪产碱菌nifH与lacZ的融合基因构建及其表达调控.生物化学杂志.1997,13(5):499-503

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700