Ta和Nb对高温钛合金组织和性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以Ti-6Al-3Sn-3.6Zr-0.5Mo-0.45Si为主要的合金成分,向其成分中添加了0wt.%、1.5wt.%、3.0wt.%、4.5wt.%、6.0wt.%的Ta元素和0wt.%、0.5wt.%、1.0wt.%、1.5wt.%的Nb元素。分析了Ta元素和Nb元素以及热处理的工艺参数(温度:950℃、1020℃、1050℃;时间:30min、45min、60min)对合金组织、元素分布情况以及力学性能的影响。
     Ta元素和Nb元素加入后,XRD和能谱的分析表明,合金中含有α相和β相,并没有产生新相,Ta元素和Nb元素固溶在合金基体内,起到了固溶增强的作用。
     随着Ta元素和Nb元素含量的增加,铸态合金组织中的β相含量增加,α片层变厚;当复合添加Ta元素的质量分数为3.0wt.%,Nb元素的质量分数为1.0wt.%时,合金的组织为网篮组织,室温压缩性能出现峰值,抗压强度为1772.93MPa,屈服强度为1068.34MPa,压缩率为36.38%;比未加入Ta和Nb两种元素的合金,抗压强度提高了164.40MPa,屈服强度提高了118.12MPa,压缩率提高了6.49%。
     热处理过程中,合金内出现Mo、Nb、Ta这3个元素在α相和转变β相中偏聚的现象,温度越高、时间越长,3种元素在转变β相中的含量越多;随着Ta元素和Nb元素质量分数的增加,转变β相含量所占比例增大。
     当Ta元素和Nb元素的复合添加量分别为3.0wt.%和1.0wt.%,热处理温度和时间分别为1020℃和45min时,室温压缩性能出现峰值,抗压强度为1879.51MPa,屈服强度为1127.17MPa,压缩率为38.46%;比相同条件下,未加入Ta和Nb两种元素的合金,抗压强度提高了370.09MPa,屈服强度提高了131.80MPa,压缩率提高了7.23%;对合金的断口形貌分析表明,合金的断口上含有大量韧窝,因此塑性很好,为韧性断裂。
The alloy was added Ta of 0wt.%, 1.5wt.%, 3.0wt.%, 4.5wt.%, 6.0wt.% and Nb of 0wt.%, 0.5wt.%, 1.0wt.%, 1.5wt.%, the main ingredient of which included Ti-6Al-3Sn-3.6Zr-0.5Mo-0.45Si. The effect of Ta, Nb and heat treatment (temperature:950℃,1020℃,1050℃;time:30min,45min,60min)on the microstructure, elements distributing and mechanical properties was analysised in the study.
     The analysis of XRD and EDS showed that the alloy containedαanbβphase after added Ta and Nb, but no new phase, then Ta and Nb dissolved in the alloy very well. The enhanced properties can be attributed to the solid-solution effects of Ta and Nb.
     Along with the increasing of Ta and Nb, the content ofβwas increased,αlamellar was thicker. As the mass fraction of Ta was 3.0wt.%, and Nb was 1.0wt.%, the microstructure of the alloy was basket microstructure at as-cast. The mechanical properties was the best: the compressive stress reached 1772.93MPa, the compressive yield stress was up to 1068.34MPa, the compressive rate of the alloy was 36.38%. Comparing with the alloy which didn’t contain Ta or Nb, the compressive stress was increased by 164.40MPa, the compressive yield stress was increased by 118.12MPa, the compressive rate was increased by 6.49%.
     In the process of heat treatment, Mo, Nb and Ta was unequal inαandβphase, the contents of the three elements were increased in the transformedβphase along with the tempreture and time increasing. After heat treatment, with the Ta and Nb increasing, the transformedβwas much more than before.
     When the addition of Ta and Nb was 3.0wt.% and 1.0wt.%, the temperature and time was 1020℃and 45 min, the compressive stress and the compressive yield stress was up to 1879.51MPa and 1127.17MPa, the compressive rate reached to 38.46%, which is the best performance of the heat treatment state. Comparing with the alloy which didn’t contain Ta or Nb under the same condition of heat treatment, the compressive stress was increased by 370.09MPa, the compressive yield stress was increased by 131.80MPa, the compressive rate was increased by 7.23%. The fracture surface was studied, which contained a large number of toughening nests, the plasticity was better.
引文
[1]朱知寿,王新南,童路.中国航空结构用新型钛合金研究[J].钛工业进展,2007,24(6):28-32.
    [2] T. Akahori, M. Ninomii, K.Fukunaga and I.Inagaki. Effect of microstructure on the short fatigue crack initiation and propagation characteristics of biomedicalα/βtitanium alloys[J]. Metall.Mater.Trans.,2000,31A:1949-1958.
    [3] Y.L.Hao, S.J.Li, S.Y.Sun, etal., Elastic deformation behaviour of Ti–24Nb– 4Zr–7.9Sn for biomedical applications[J]. Acta Biomaterialia Volume 3, Issue 2, March 2007:277-286.
    [4]许国栋,王桂生.钛金属和钛产业的发展[J].稀有金属,2009,33(6):903-911.
    [5] L.Zhou, G. Z. Luo. Research and development of titanium in China[J]. Materials Science and Engineering A, 1998, 224:294-298.
    [6]訾群.钛合金研究新进展及应用现状[J].钛工业进展,2008, 25(2):23-27.
    [7]曲恒磊,周义刚,周廉,等.近几年新型钛合金的研究进展[J].材料导报, 2005,19(2): 94-97.
    [8]李梁,孙健科,孟祥军.钛合金的应用现状及发展前景[J].钛工业进展, 2004,21(5):19-24.
    [9] D.Eylon, J.A.Hall, C.M.Pierce etal., Microstructure and mechanical properties relationship in the Ti-11 alloy at room and elevated temperatures [J].Metall. Trans. 1976,7 A:1817-1826.
    [10] William D.Brewer, R.Keith Bird, Terryl A.Wallace. Titanium alloys and processing for high speed aircraft[J]. Mater.Sci.Eng.,1998, A243:299-304.
    [11] P.A.Blenkinsop. Developments in High Temperature Alloys. Titanium Science and Technology[C]. G. Lütjering, U. Zwicker and W. Bunk.Oberursel, Deutsche Gesell- schaft für Metallkunde,1985:2323-2338.
    [12]惠松骁,张翥,萧今声,等.高温钛合金热稳定性研究进展-Ⅰ.组织稳定性[J].稀有金属,1999,23(2):125-130.
    [13]萧今声,许国栋.提高高温钛合金性能的途径[J].中国有色金属学报, 1997,7(4):97-105.
    [14]朱绍祥.同晶β稳定元素对高温钛合金显微组织和抗氧化性能的影响[D].沈阳大学硕士学位论文, 2008:11-13.
    [15]李建民.铸造Ti1100-xNb高温钛合金组织与性能[D].哈尔滨工业大学工学硕士学位论文,2009:5,9-10.
    [16]郭宏岩.稀土Y对铸造Ti-6Al-3Sn-3Zr-0.5Mo-0.35Si高温合金组织性能的影响[D].哈尔滨工业大学工学硕士学位论文,2008:7.
    [17]肖平安,曲选辉,雷长明,等.高温钛合金和颗粒增强钛基复合材料的研究和发展[J].粉末冶金材料科学与工程, 2001,6(4):279-285.
    [18]赵永庆.高温钛合金研究[J].钛工业进展,2001,(1):33-39.
    [19]王桂生,田荣璋,莫畏,等.钛的应用技术[M].中南大学出版社, 2007:1-2, 201.
    [20]许国栋,王凤娥.高温钛合金的发展和应用[J].稀有金属, 2008,12(6): 774-780.
    [21] S.R.Seagle, G.S.Hall, H.B.Bomberger. High Temperature Properties of Ti-6Al-2Sn-4Zr-2Mo-0.09Si[J]. Metals Eng.Quart. 1975(2):48-54.
    [22] Bania P.J, In Lacombe P, Tricot R, Béranger G, etal. Ti-1100:A new high temperature titanium alloy[A]. Sixth World Conference on Titanium [C]. France:SociétéFrancaise de Métallurgie, Cedex,1989:825.
    [23]蔡建明,李臻熙,马济民,等.航空发动机用600℃高温钛合金的研究与发展[J].材料导报,2005,19(1):50-53.
    [24] J.Bania Paul. Next generation titanium alloys for elevated temperature service [J]. ISIJ International,1991,31(8):840-847.
    [25]王敏敏,赵永庆,周廉,等.影响钛合金蠕变行为因素分析[J].稀有金属材料工程,2002,4(2):135-139.
    [26] G..S.Hall, S.R.Seagle, H.B.Bomberger. Improvement in High Temperature Tensileand Creep Properties of the Titanium Alloys.‘Titanium Science and Technology’[C].R.I.Jaffee and H.M.Burte, Plenum Press, New York, 1973: 2141-2150.
    [27] WNSTONE M R, PARTRDGE A, BROOKS J W. The contribution of advanced high temperature materials to future aeroengine[C]//Proc Inst Mech Engrs, Vol 25, Part I, 2001, 63-73.
    [28]胡清熊,刘振球,魏寿庸,等.宝鸡钛的35年[J].金属学报,1999,35(增刊): S15.
    [29] Neal D. F. Optimisation of creep and fatigue resistance in high temperature Ti alloys IMI 829 and IMI 834[J]. In:Lütjering G, Zwicker U, Bunk W, editors. Titanium science and technology. Oberursel: Deutsche Gesellschaft für Metallkunde,1985: 2419-2424.
    [30]高敬,姚丽.国内外钛合金研究发展动态[J].世界有色金属,2001(2):4-7.
    [31]魏寿庸,何瑜,王青江,等.俄航空发动机用高温钛合金发展综述[J].航空发动机, 2005,3(1):52-58.
    [32]索朗宁娜ΟΠ等著,张志方等译.热强钛合金[M].北京:第三机械工业部第621研究所(内部资料), 22.
    [33]王永兰,王桂生. BT20钛合金的金相显微组织[J].稀有金属,1998,22 (2): 152.
    [34]陈玉勇,肖树龙,孔凡涛.高温钛合金及TiAl金属间化合物的精密铸造技术及应用前景[J].金属学报, 2002, 38:39-44.
    [35]郝孟一,蔡建明,杜娟.热处理对BT36高温钛合金组织及性能的影响[J].航空材料学报,2003,23(2):14-17.
    [36] Froes F H, Caplan I. Titanium′92:Science and Technology[J]. Warrendale: TMS, 1993:1891.
    [37] Liu Y., Li G., Li D., Wang Q., Guan S. Thermal stability of rare-earth phase in high temperature titanium alloy[J]. Journal of Rare Earth,1998,16(4):285-289.
    [38]蔡翠丽,杨赛.稀土金属在钛合金中的应用[J].稀有金属材料与工程, 1984,13(2): 63 - 65.
    [39] Ulyakova N.M. The influence of rare earth metals on mechanical properties and structure of heat resistant titanium-alloy[J]. Metallovedenie I Termich eskaya Obrabotka Metallov,1994,3:30-31.
    [40]魏寿庸,贾栓孝,王鼎春,等. 550℃高温钛合金的性能[J].钛工业进展, 2000, 2:25.
    [41] S.Guan, Q.Kang, Q.Wang, etal. Influence of long-term thermal exposure on the tensile properties of a high-temperature titanium alloy Ti-55[J]. Materials Science and Engineering A,1998,243:182-185.
    [42]蔡建明,郝孟一,李学明,等. BT36高温钛合金的成分特点及组织研究[J].材料工程.2000,(2):10-12.
    [43]赵永庆,奚正平,曲恒磊.我国航空用钛合金材料研究现状[J].航空材料学报, 2003,10(23,增刊):215-219.
    [44]杨冠军,邓炬,吴之乐,等.时效处理对Ti-633G合金组织及拉伸断裂特性的影响[J].稀有金属材料与工程,1989(11):7-10.
    [45]杨冠军,邓炬,吴之乐,等.热处理对Ti-633G合金显微组织及力学性能的影响[J].稀有金属材料与工程,1999(6):23-27.
    [46]王蕊宁,奚正平,赵永庆,等. Ti53311S合金高温塑性变形行为及加工图[J].稀有金属材料与工程,2008,37:10-13.
    [47]黄伯云,李成功,石力开,等.中国材料工程大典[M], 2006,第四卷, 523.
    [48] M.Li, H.Pan, Y.Lin, J.Luo. High temperature deformation behavior of near alpha Ti–5.6Al–4.8Sn–2.0Zr alloy[J]. Journal of Materials Processing Technology, 2007 (183): 71-76.
    [49] Y.Chena, X.Wan, F.Li, etal. The behavior of hydrogen in high temperature titanium alloy Ti-60[J]. Materials Science and Engineering A, 2007(466): 156-159.
    [50] Miao quan Li, Yingying Lin. Grain refinement in near alpha Ti60 titanium alloy by the thermo hydrogenation treatment[J]. International Journal of Hydrogen Energy, 2007(32):626-629.
    [51] P. Luiz Ferrandini, F. Farias Cardoso, S.Araujo Souza, etal. Aging response of the Ti-35Nb-7Zr-5Ta and Ti-35Nb-7Ta alloys[J]. Journal of Alloys and Com- pounds,2007, 433:207-210.
    [52]洪权,张振祺,杨冠军,等. Ti600合金的热机械加工工艺与组织性能[J].金属学报, 2002,(38,增刊):135.
    [53]王金友,葛志明,周彦邦.航空用钛合金[M].上海科学技术出版社, 1985: 208-209.
    [54]王惠光,陈玉勇,田竞,等.精铸Ti-Al-Zr合金的显微组织和力学性能[J].中国有色金属学报, 2000, 10(增1):165-168.
    [55] G..R.Yoder, L.A.Cooley and T.W.Crookey. Fatigue crack propagation resistance of beta-Annealed Ti-6Al-4V Alloys of differing interstitial[J]. Metall.Trans.,1978,9A: 1413-1420.
    [56] M.A.Greenfield, H.Margolin. The Mecharism of void Formation,voied growth,and Tensile Fracture in an alloy consisting of Two Ductile phases[J]. Metall.Trans., 1972,3:2649-2659.
    [57] D. Weinem, J. Kumpfert, M. Peters, W. A. Kaysser. Processing window of the near-α-titanium alloy TIMETAL-1100 to produce a fine-grainedβ-structure[J]. Materials science and engineering A, 1996, 206:55-62.
    [58]陈胜晖.基于微观组织演变的钛合金本构关系模型及应用[D].西北工业大学硕士学位论文,2004:1-2.
    [59]周游 置氢Ti600合金高温塑性性能研究[D] .沈阳理工大学硕士学位论文, 2009:4-5.
    [60] J.C.Williams, G.Lütjering. The effect of slip length and slip character on the properties of titanium alloys[J].In‘Titanium’80 Science and Technology’, (ed. H.K imura and O.Izumi), Warrendale, PA, TMS, 1980:.671-681.
    [61]闰世成. Ti-1023合金复杂结构件等温锻造过程数值模拟[D].西北工业大学硕士学位论文,2005:11-20.
    [62] J.Lindemann, L.Wagner. Microtexutral effects on mechanical properties of duplex microsturcutres in (α+β) titanium alloys[J]. Materials Science and Engineering, 1999, A263:137-141.
    [63]孟强.新型钛合金工艺试验及组织性能研究[D].西安建筑科技大学硕士论文,2006: 5-7,12-13.
    [64]徐彬. TC11钛合金高温压缩变形行为研究[D].哈尔滨工业大学工学硕士学位论文,2006:2,17.
    [65]彭娜.高温钛合金中α2相的临界尺寸效应研究[D].沈阳大学硕士学位论文, 2007:5.
    [66] Es-souni M. Creep peformation Behavior of three high-temperature Nearα-Ti alloys:IMI834,IMI829,and IMI685[J]. Metall.Trans.2001,A 32:285-293.
    [67] G.B.Viswanathan, S. Karthikeyan, R.W.Hayes, M.J.Mills. Creep behaviour of Ti-6Al-2Sn-4Zr-2Mo:II.Mechanisms of deformation[J]. Acta Materialia.2002, 50: 4965-4980.
    [68]孙敬. Sn元素对Ti-Zr-Nb-Sn合金系组织和性能的影响[D].天津大学硕士论文, 2006:11-14.
    [69] M.J.Bermingham, S.D.McDonald, M.S.Dargusch, etal. The mechanism of grain refinement of titanium by silicon[J]. Scripta Materialia,2008,58:1050- 1053.
    [70] Sridhar G,Sarma D.S.Structure and properties of aβsolution treated,quenched, and aged Si-bearing near-titanium alloy[J]. Metallurgical and Materials Trans- actions A.1989,20(1):55-62.
    [71]朱绍祥,刘建荣,王青江,等.高温钛合金Ti-60与IMI834的β晶粒长大规律[J].金属热处理, 2007,32(11):11-14.
    [72]王敏敏,赵永庆,周廉,等.影响钛合金蠕变行为因素分析[J].稀有金属材料工程,2002,4(2):135-139.
    [73] Bourgeois M. Creep Mechanisms of Ti-6246 Alloy at 773 K. In: Blenkinsop P A, Evans W.J. eds. Titanium’95: Science and Technology [C]. Cambridge:The University Press, 1995: 1083-1090.
    [74] Y.Shida, H.Anada. Role of W, Mo, Nb and Si on oxidation of TiAl in air at high temperature[J].Materials Transactions,1994,35(9):623-631.
    [75] Takeshi Izumi,Takayuki Yoshioka,Shigenari Hayashi etal. Oxidation behavior of sulfidation processed TiAl-2at.%X(X=V,Fe,Co,Cu,Nb,Mo,Ag andW)alloys at 1173 K in air[J]. Intermetallics,2001,9:547–558.
    [76] Huiren Jiang, Mitsuji Hirohasi,Yun Lu, etal. Effect of Nb on the high temperature oxidation of Ti-(0-50at.%)Al[J]. Scripta Materialia,2002,46:639- 643.
    [77]程晓英,万晓景,沈嘉年.合金元素Nb在TiAl高温氧化行为中的作用[J].中国腐蚀与防护学报,2002,22(2):69-71.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700