β3-肾上腺素能受体调控NOS偶联在压力负荷小鼠心肌肥厚中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景:心肌肥厚是心脏对多种病理性刺激,如高血压,缺血性心脏病,瓣膜缺陷等引起压力负荷升高的一种代偿性反应。这种反应早期通过增加心脏收缩力有利于维持心功能。然而,持续的压力负荷,导致体内多种神经体液因子激活,这些神经体液因子最终会导致心肌损伤,心功能恶化,促进心脏衰竭的发生发展,严重威胁人类健康。然而心肌肥厚的发病机制目前尚不十分明确,并缺乏有效的治疗措施。因此,探索心肌肥厚的发生机制及其防治措施是心血管领域研究的热点问题。β肾上腺素能受体(β-AR)家族在心血管系统中发挥了重要的调节作用。近年来研究发现除了传统的β1/β2-AR之外,心脏还存在β3-AR。与β1/β2-AR相反,β3-AR的激活抑制心肌收缩力。已经在人体和动物模型中证实,心衰时β3-AR表达增加。然而β3-AR的增加在心衰中到底扮演了何种角色,是对儿茶酚胺浓度过高的代偿性保护反应还是心衰的促进因子目前尚不清楚。
     最新研究发现,一氧化氮合酶(NOS)解耦联是导致NO水平下降和活性氧(ROS)水平升高的重要机制,是高血压、糖尿病、胰岛素抵抗、肥胖、动脉粥样硬化、心力衰竭等疾病中发生的重要原因,纠正NOS解耦联有望为保护心血管系统提供有效途径。NOS解耦联是否参与了β3-AR对心脏的调控作用,目前尚未见报道。
     研究目的:本研究通过观察β3-AR基因敲除小鼠(β3-/-)压力负荷下心脏结构和功能的变化,以及压力负荷时给予野生型(WT)小鼠β3-AR激动剂治疗后心脏结构和功能的变化,从正反两方面研究β3-AR信号转导通路对压力负荷时心脏的调控作用,探讨NOS解耦联在β3-AR调节心脏功能中的作用,旨在阐明β3-AR通过调控NOS偶联发挥心脏保护作用,为心肌肥厚,心力衰竭的防治提供新的理论依据和治疗措施。
     研究方法:本研究通过结扎小鼠主动脉弓建立压力负荷心肌肥厚模型,采用心脏超声、组织学方法及多种分子生物学技术,(1)比较β3-AR基因敲除小鼠和野生型小鼠给予慢性压力负荷后,心脏结构和功能、NOS活性及蛋白表达,活性氧及BH4水平的变化。(2)观察给予β3-AR基因敲除小鼠BH4补充性治疗,对压力负荷所致心肌肥厚,心功能和活性氧的改变。(3)观察给予压力负荷野生型小鼠β3-AR激动剂BRL 37344治疗,心脏结构和功能,NOS活性及蛋白表达,活性氧水平的变化。
     研究结果:(1)8周大FVBβ3-/-小鼠体重,室壁厚度及超声测算的左室重量较FVB WT小鼠轻度增加,而心率,左室腔内径及收缩功能两组间没有统计学差别。14-18月时WT小鼠表现为轻度心肌肥厚(P<0.05 vs. 8周),而β3-/-小鼠则有明显的左室肥厚,其室壁厚度(1.30±0.14 vs. 0.86±0.07 mm, P<0.001)和左室重量(196±12 vs. 129±20 mg, P<0.05)均较WT小鼠显著增加。(2)分别给予β3-/-和WT小鼠轻度主动脉缩窄术(25G TAC)和假手术(sham)后,β3-/-小鼠TAC 9周后存活率较WT小鼠明显下降(38%vs. 85%,χ2=10.78, P<0.001)。(3)TAC 9周后,β3-/-小鼠较WT小鼠发生更为严重的心肌肥厚和心脏重构,表现为进一步增加的心脏重量/胫骨长度比值(HW/TL 175.2±17.8 vs. 123.3±4.0, P<0.01),心肌细胞直径(39.3±0.9 vs. 31.3±0.9μm, P<0.001)和心肌纤维化程度(2.7±0.3 vs. 1.2±0.1, P<0.05 vs. WT/TAC for all)。(4)心脏超声结果显示WT小鼠TAC后,LVEDD, LVESD和小轴缩短率与假手术组比较无明显变化,而β3-/-小鼠TAC后,LVEDD(3.90±0.26 vs. 2.91±0.04 mm, P<0.001)和LVESD(2.47±0.36 vs. 1.02±0.05 mm, P<0.001)较假手术组明显增加,小轴缩短率显著降低(38.2±5.0 vs. 64.9±1.8%, P<0.001)。(5)WT小鼠和β3-/-小鼠TAC后,室壁厚度(1.30±0.02 vs. 0.83±0.01 mm, P<0.001)明显增加,但β3-/-小鼠较WT小鼠的室壁厚度(1.43±0.03 vs. 1.02±0.03 mm, P<0.001 vs.β3-/-/sham; P<0.01 vs. WT/TAC)增加更多。(6)基础状态下β3-/-和WT小鼠心脏NOS活性无区别(26.9±0.4 vs. 27.6±0.4 A.U., P=NS)。TAC 9周后,WT小鼠NOS活性较sham组无明显变化(27.7±0.3 A.U., P=NS vs. WT/sham),而β3-/-小鼠心脏NOS活性较β3-/-/sham组明显下降(19.3±1.2 A.U., P<0.001 vs.β3-/-/sham)。(7)基础状态下,β3-/-和WT小鼠心脏超氧化物活性无差别(1145±146 vs. 1106±109 cpm/mg,P=NS)。TAC 9周后,WT和β3-/-小鼠心脏总O2-活性均较sham组增加,差异有统计学意义,但β3-/-小鼠O2-活性较WT小鼠升高近60% (2730±121 vs. 1719±52 cpm/mg,P<0.05 vs. sham, P<0.001 vs. WT/TAC)。(8)基础状态下β3-/-和WT小鼠心脏NOS依赖的O2-活性无差别(P=NS)。TAC 9周后,WT小鼠NOS依赖的O2-活性较sham组增加不到1倍,而β3-/-小鼠TAC 9周后NOS依赖的O2-活性较sham组升高2倍多,并且较WT/TAC小鼠进一步增加(P<0.01,β3-/-/TAC vs. WT/TAC)。(9)基础状态下β3-/-和WT小鼠心脏GTPCH-1的蛋白表达水平无区别。TAC 9周后,WT小鼠较sham组心脏GTPCH-1的蛋白表达水平无明显变化。而β3-/-小鼠TAC 9周后心肌GTPCH-1的蛋白表达量较sham组明显下降(P<0.05 vs.β3-/-/sham)。(10)各组间心肌组织BH4含量无明显变化,β3-/-小鼠TAC后BH4含量略有增高(35.6±1.9 vs. 27.0±0.9 pmol/mg protein,P<0.01)。而基础状态下β3-/-小鼠BH4/(BH2+生物嘌呤)比值较WT小鼠下降了25%(1.49±0.2 vs. 1.91±0.3,P<0.05),TAC后没有进一步下降。(11)给予FVBβ3-/-/ TAC小鼠BH4补充性治疗后,治疗组小鼠心肌收缩力较安慰剂组明显提高(-0.4±0.2 vs. -16.1±4.9%, P<0.05 vs.β3-/-/TAC),左室重量较安慰剂组显著降低(+15.0±6.8 vs. +81.8±13.7 %, P<0.01 vs.β3-/-/TAC)。(12)β3-/-/TAC BH4治疗组小鼠心肌NOS来源的O2-活性较安慰剂治疗组显著下降(P<0.05 vs.β3-/-/TAC+vehicle; P=NS vs.β3-/-/sham and WT/sham)。(13)C57BL/6 WT小鼠经27G TAC手术3周后心腔扩大,心肌收缩力下降。与sham组小鼠比较LVEDD增加82%(2.00±0.20 vs.1.10±0.03 mm; P<0.001),小轴缩短率降低36%(39.1±4.5 vs. 61.4±0.3 %;P<0.001)。左室重量(172±13 vs. 76±5 mg; P<0.001)和室壁厚度(1.21±0.04 vs. 0.84±0.02 mm; P<0.001)也较sham组小鼠增加。而通过皮下植入微量泵给予0.1 mg/kg/day BRL治疗完全防止了压力负荷所致的心腔扩大(LVESD 1.32±0.06 mm; P=NS vs. sham, P<0.01 vs. TAC)和心功能下降(FS% 57.8±1.4%; P=NS vs. sham, P<0.001 vs. TAC)。BRL治疗组小鼠左室重量和室壁厚度也较安慰剂组明显下降(P<0.001 vs. TAC)。(14)BRL治疗组小鼠与安慰剂组比较心肌肥厚的程度明显减轻(HW/TL 100±4 vs. 122±8 mg/cm; P<0.05),心肌细胞直径较安慰剂组明显降低(13.31±0.21 vs. 15.81±0.35μm, P<0.001)。然而BRL治疗对心肌纤维化无明显改善(1.50±0.35 vs. 1.67±0.33, P =NS)。(15)硝酸还原酶法测定的心肌NO终末产物硝酸盐和亚硝酸盐浓度在TAC 3周后较shan组小鼠降低50%(5.03±0.52 vs. 10.10±1.99μM, P<0.05)。BRL治疗组小鼠心肌NO活性恢复正常水平(13.73±1.84μM, P<0.01 vs. TAC; P=NS vs. sham)。(16)WT小鼠27G TAC 3周后心肌总O2-活性较对照组增加约2.5倍(21459±782.8 vs. 6099±1703 CPM/mg; P<0.001),BRL治疗组小鼠心肌总O2-活性较安慰剂治疗组明显下降(14017±838.2 CPM/mg; P<0.01)。更为重要的是,BRL对心肌超氧阴离子的抑制作用在nNOS特异性地拮抗剂L-VNIO的作用下完全消失(21992±75.68 vs. 21063±2930 CPM/mg; P=NS vs. TAC)。(17)TAC后,eNOS单体/二聚体比值显著增加(m/d 1.10±0.24 vs. 0.45±0.05; P<0.05),eNOS二聚体解离,然而BRL治疗并没有降低eNOS单体/二聚体比值(1.01±0.02; P=NS vs. TAC。(18)BRL对eNOS总蛋白表达量没有明显改变。但BRL治疗组小鼠心肌p-eNOSSer1177/eNOS比值较安慰剂治疗组明显降低(0.92±0.01 vs. 1.40±0.02; P<0.01)。而p-eNOSSer114/eNOS比值则较安慰剂治疗组增加了1倍(4.64±0.60 vs. 2.33±0.22; P<0.05)。p-eNOSThr495/eNOS比值在各组间也无明显变化。(19)压力负荷3周后小鼠心肌nNOS表达无明显变化,而BRL治疗组小鼠心肌nNOS蛋白表达量是安慰剂治疗组的3倍(1.11±0.22 vs. 0.39±0.17; P<0.05 vs. TAC)。iNOS蛋白表达在TAC后略有增加,但BRL对iNOS蛋白表达无影响(0.34±0.09; P=NS vs. TAC)。
     研究结论:(1)老年和轻度压力负荷后β3-/-较野生型小鼠发生了更为严重的心肌肥厚,心肌纤维化,心室腔扩大和心功能下降。(2)压力负荷时β3-AR基因敲除小鼠心肌发生NOS解耦联,NOS生成NO的水平下降,而生成活性氧水平增加。(3)压力负荷时β3-AR基因敲除小鼠心肌组织GTPCH- 1的蛋白表达量和BH4/(BH2+生物嘌呤)的比值下降可能是NOS解耦联的原因。外源性补充BH4治疗明显改善了压力负荷所致的心脏功能下降和左室肥厚。(4)给予野生型小鼠选择性β3-AR激动剂BRL治疗3周完全预防了压力负荷所致的心腔扩大,心脏功能下降,并部分地抑制了心肌肥厚的发展。(5)β3-AR激动剂治疗后心肌NO活性恢复正常,ROS活性降低,且BRL对ROS活性的抑制作用是通过nNOS实现的。(6)BRL治疗对eNOS二聚化水平,eNOS蛋白表达没有改变,但显著上调了nNOS的蛋白表达水平。
     综上所述,本研究从正反两面证实了β3-AR信号转导通路对压力负荷小鼠具有重要的保护作用。β3-AR通过调控NOS偶联发挥其心血管保护作用。这一研究为心肌肥厚和心力衰竭的防治提供了新的思路和理论依据,具有重要的临床应用价值。
Background: Cardiac hypertrophy is a compensative response to multiple stessors, like hypertrophy, ischemic heart disease and valve defects. Initially, this response is benificial to maintain systolic function of the heart. However, sustained pressure overload may activate systematic nervous system and neuro-hormone which has deleterious effects on cardiac structure and performance, leading to cardiac de-compensation and heart failure progression. Thus, cardiac hypertrophy is a serious threat to human health. However, its pathogenesis is not yet very clear, and it still lacks effective therapeutic approaches. Therefore, to explore the mechanism and potential treatment of cardiac hypertrophy is currently a hot topic in the field of cardiovascular diseases. Recent studies revealed that besides traditionalβ1/β2-AR, there is another one,β3-AR expressed in the heart. Opposite toβ1/β2-AR,β3-AR stimulation induces a negative inotropic effect. It has been established thatβ3-AR was up-regulated in human heart failure and animal models. However, whether this is a protective response to catecholamine over-expression or it is a contributor to heart failure is still unclear. Recently, a number of studies reported that NOS uncoupling is the mechanism of NO deactivation and ROS activation in the pathophysiology of hypertension, diabeties, insulin resistance, obesity, Atherosclerosis and heart failure. Correcting NOS uncoupling is expected to provide an effective means to protect the cardiovascular system. Whether NOS uncoupling is involved in theβ3-AR regulation in heart has not been reported yet.
     Objectives: This study was therefore designed to observe the changes of cardiac structure and function inβ3-AR knockout (β3-/-) mice underwent pressure overload, andβ3-AR agonism effect on cardiac structure and function in pressure load wild-type mice; to studyβ3-AR signal transduction pathway on the regulation of cardiac pressure overload; to discuss the role of NOS uncoupling in theβ3-AR regulation of cardiac function, aims to clarify maintaining NOS coupling byβ3-AR plays a protective role in the heart, which provides new theoretical evidences and potential therapeutic prevention and treatment approaches for cardiac hypertrophy and heart failure.
     Methods: In this study, mice underwent transverse aortic constriction (TAC) to set the pressure over load induced cardiac hypertrophy and heart failure model as previously described. Transthoracic echocardiography, histology evaluation and a variety of molecular biology techniques were used to: (1) compare the changes of cardiac structure and function, NOS activity and protein expression, reactive oxygen species generation (ROS) and tetrahydrobiopterin (BH4) levels by chronic pressure overload inβ3-/- mice and wild-type (WT) mice; (2) observe the influence of BH4 supplement on cardiac hypertrophy, LV systolid function and ROS generation in pressure overloadedβ3-/-mice; (3) observe the effect of specificβ-3AR agonist BRL 37344 on cardiac structure and function, NOS activity and protein expression and superoxide generation in pressure-overloaded wild-type mice.
     Results: (1) At 8 weeks, body weight, ventricular wall thickness, and calculated left ventricular mass were slightly increased in FVBβ3-/- mice compared with FVB WT, while the heart rate, left ventricular cavity diameter and systolic function between the two groups were not statistically different. At 14-18 months,β3-/- mice had accentuated LV hypertrophy than WT mice, as evidenced by increased wall thickness (1.30±0.14 vs. 0.86±0.07 mm, P<0.001) and calculated LV mass (196±12 vs. 129±20 mg, P<0.05). (2)β3-/- mice had much greater mortality after mild transverse aortic constriction (25G TAC) than WT controls (38% vs. 85%,χ2 = 10.78, P < 0.001). (3) After 9 weeks of TAC,β3-/- mice also had greater LV hypertrophy and cardiac remodeling, with further increased heart weight to tibia length ratio (HW/TL 175.2±17.8 vs. 123.3±4.0, P<0.013), cardiac diameter (39.3±0.9 vs. 31.3±0.9μm, P<0.001) and enhanced fibrosis (2.7±0.3 vs. 1.2±0.1, P<0.05). (4) Echocardiography showed that 9 weeks of TAC didn’t induce any change of LVEDD, LVESD and fractional shortening in WT mice, whereas LVEDD (3.90±0.26 vs. 2.91±0.04 mm) and LVESD (2.47±0.36 vs. 1.02±0.05 mm) were significantly increased and FS% was markedly reduced inβ3-/- mice after TAC (38.2±5.0 vs. 64.9±1.8%, P<0.001 for all). (5) TAC induced increase in wall thickness (1.30±0.02 vs. 0.83±0.01 mm, P <0.001), which was further aggravated inβ3-/- mice (1.43±0.03 vs. 1.02±0.03 mm, P<0.001 vs.β3-/-/sham; P<0.01 vs. WT/TAC). (6) Cardiac Ca2+ dependent NOS activity was similar in WT andβ3-/- mice at baseline (26.9±0.4 vs. 27.6±0.4 A.U., P=NS). By 9 weeks of TAC, NOS activity was unchanged in WT (27.7±0.3 A.U., P=NS vs. WT/sham), but was significantly decreased inβ3-/- mice (19.3±1.2 A.U., P<0.001 vs.β3-/-/sham). (7) At baseline, superoxide generation was similar between WT andβ3-/- mice (145±146 vs. 1106±109 cpm/mg,P=NS). After 9 weeks of TAC, superoxide generation was increased in WT mice and was further raised 60% in inβ3-/- mice compared with WT mice (2730±121 vs. 1719±52 cpm/mg, P<0.05 vs. sham, P<0.001 vs. WT/TAC). (8) The increase of superoxide generation inβ3-/- mice after pressure overload is mainly due to the increase of NOS dependent superoxide. NOS dependent superoxide was similar in WT andβ3-/- mice at baseline (P=NS). However, after TAC, levels rose over 2 fold inβ3-/- mice vs.β3-/-/sham compared with less than 1 fold in WT mice vs. WT/sham. In addition, NOS dependent superoxide was higher inβ3-/-/TAC than in WT/TAC (P<0.05). (9) Cardiac GTPCH-1 protein expression was similar at baseline but declined significantly after 9 weeks of TAC inβ3-/-/TAC vs.β3-/-/sham (P<0.05). (10) Total BH4 level did not differ significantly between strains, although there was a slight increase inβ3-/-/TAC above baseline (35.6±1.9 vs. 27.0±0.9 pmol/mg protein, P<0.01). The ratio of BH4/(BH2+biopterin) was decreased by approximately 25% inβ3-/-mice at baseline compared to WT mice (1.49±0.2 vs. 1.91±0.3, P<0.05), yet was unchanged after TAC. (11) BH4 treated FVBβ3-/-/TAC mice had higher LV systolic function (-0.4±0.2 vs. -16.1±4.9%, P<0.05 vs.β3-/-/TAC), and lower calculated LV mass (+15.0±6.8 vs. +81.8±13.7 %, P<0.01 vs.β3-/-/TAC) compared to vehicle. (12) NOS-dependent superoxide production inβ3-/-/TAC with BH4 supplement was much lower compared to vehicle (P<0.05 vs.β3-/-/TAC+vehicle; P=NS vs.β3-/-/sham and WT/sham). (13) C57BL/6 mice developed increased LV chamber dilation and systolic dysfunction after 3 weeks of 27G TAC, as evidenced by 82% increased LVESD (2.00±0.20 vs.1.10±0.03 mm; P<0.001) and 36% reduced FS% (39.1±4.5 vs. 61.4±0.3 %; P<0.001) compared to sham mice assessed by echocardiography. Calculated LV mass (172±13 vs. 76±5 mg; P<0.001) and average wall thickness (1.21±0.04 vs. 0.84±0.02 mm; P<0.001) were increased as well. Three weeks of BRL treatment via subcutaneous osmotic pumps at 0.1 mg/kg/day totally prevented LV dilation (LVESD 1.32±0.06 mm; P=NS vs. sham, P<0.01 vs. TAC) and restores cardiac function back to normal (FS% 57.8±1.4%; P=NS vs. sham, P<0.001 vs. TAC). Calculated LV mass and average wall thickness were significantly lower in BRL treated mice compared to vehicle (P<0.001 vs. TAC) as well. (14) BRL treated mice developed less hypertrophy (HW/TL 100±4 vs. 122±8 mg/cm; P<0.05) and lower cardiomyocyte width (13.31±0.21 vs. 15.81±0.35μm, P<0.001) compared to vehicle. However, BRL had no effect on fibrosis scale (1.50±0.35 vs. 1.67±0.33, P =NS). (15) Nitrate plus Nitrite, the final production of NO which was examined by Griess assay was decreased 50% by 3 weeks of TAC (5.03±0.52 vs. 10.10±1.99μM, P<0.05). BRL treated mice had normal NO production as sham mice (13.73±1.84μM, P<0.01 vs. TAC; P=NS vs. sham). (16) LV superoxide production assayed by lucigenin-enhanced chemiluminescence was increased by 2.5 fold in TAC hearts over sham controls (21459±782.8 vs. 6099±1703 CPM/mg; P<0.001). BRL treated mice had less myocardial superoxide production compared to vehicle (14017±838.2 CPM/mg; P<0.01). More importantly, this suppression effect of BRL was abolished by acute inhibition with nNOS specific inhibitor L-VNIO (21992±75.68 vs. 21063±2930 CPM/mg; P=NS vs. TAC). (17) Three weeks of TAC resulted in increased eNOS monomer to dimmer ratio, which means more uncoupling of eNOS dimmer (1.10±0.24 vs. 0.45±0.05; P<0.05). BRL treatment didn’t have any influence on this ratio (1.01±0.02; P=NS vs. TAC). (18) Total eNOS protein expression was similar among groups. eNOSSer1177 phosphorylation, which is an indication of eNOS activation, was decreased by BRL treatment compared to vehicle (0.92±0.01 vs. 1.40±0.02; P<0.01), though there was no change between sham and TAC. In contrast, p-eNOSSer114 phosphorylation, an indication of eNOS deactivation, was increased 100% in BRL treated mice (4.64±0.60 vs. 2.33±0.22; P<0.05). eNOSThr495 phosphorylation was unchanged by BRL treatment. (19) nNOS protein expression was unchanged by TAC, however it was up-regulated to 3 fold by BRL treatment (1.11±0.22 vs. 0.39±0.17; P<0.05 vs. TAC). iNOS ptorein expression was slightly up-regulated by TAC while was unchanged by BRL treatment (0.34±0.09; P=NS vs. TAC).
     Conclusions: (1) Old and mild pressure overloadedβ3-/- mice developed worse cardiac hypertrophy, fibrosis, LV dilation and cardiac dysfunction than WT mice. (2) Pressure overload induced NOS uncoupling by decreased NOS activity and increased ROS inβ3-/- mice. (3) Depressed GTPCH-1 protein expression and lowered BH4 /(BH2+biopterin) ratio are part of the reason for NOS uncoupling inβ3-/- mice. BH4 supplement prevented LV dysfunction and heart hypertrophy induced by pressure overload. (4) Three weeks of specificβ3-AR agonist, BRL treatment totally prevented LV dilation and cardiac dysfunction and partially inhibited the development of myocardium in chronic pressure-overloaded WT mice. (5)β3-AR agonist treated mice had normal NO production and lower ROS activity. This suppression effect of BRL was abolished by nNOS specific inhibitor L-VNIO pretreatment,. (6) BRL had no influence on eNOS dimerization and protein expression while markedly up-regulated nNOS protein expression.
     Taken all these together, this study from both positive and negative sides revealed thatβ3-AR signal transduction pathway plays a vital important protective effect on pressure overloaded mice, which is associated with maintaining NOS coupling. This study provides a new direction and theoretical basis for the treatment of cardiac hypertrophy and heart failure which has important clinical potentials.
引文
1. Rohini A, Agrawal N, Koyani CN, et al. Molecular targets and regulators of cardiac hypertrophy. Pharmacol Res. Apr;61(4):269-280.
    2. Ojamaa K. Signaling mechanisms in thyroid hormone-induced cardiac hypertrophy. Vascul Pharmacol. Mar-Apr;52(3-4):113-119.
    3. Gauthier C, Leblais V, Kobzik L, et al. The negative inotropic effect of beta3-adrenoceptor stimulation is mediated by activation of a nitric oxide synthase pathway in human ventricle. J.Clin.Invest. 1998;102:1377-1384.
    4. Nahmias C, Blin N, Elalouf JM, et al. Molecular characterization of the mouse beta 3-adrenergic receptor: relationship with the atypical receptor of adipocytes. EMBO J. 1991;10:3721-3727.
    5. Emorine LJ, Marullo S, Briend-Sutren MM, et al. Molecular characterization of the human beta 3-adrenergic receptor. Science. 1989;245:1118-1121.
    6. Nantel F, Bonin H, Emorine LJ, et al. The human beta 3-adrenergic receptor is resistant to short term agonist-promoted desensitization. Mol.Pharmacol. 1993;43:548-555.
    7. Bristow MR, Ginsburg R, Minobe W, et al. Decreased catecholamine sensitivity and beta-adrenergic-receptor density in failing human hearts. N Engl J Med. Jul 22 1982;307(4):205-211.
    8. Moniotte S, Kobzik L, Feron O, et al. Upregulation of beta(3)-adrenoceptors and altered contractile response to inotropic amines in human failing myocardium. Circulation. 2001;103:1649-1655.
    9. Morimoto A, Hasegawa H, Cheng HJ, et al. Endogenous beta3-adrenoreceptor activation contributes to left ventricular and cardiomyocyte dysfunction in heart failure. Am.J.Physiol.Heart Circ.Physiol. 2004;286:H2425-2433.
    10. Zhao Q, Wu TG, Jiang ZF, et al. Effect of beta-blockers on beta3-adrenoceptor expression in chronic heart failure. Cardiovasc.Drugs Ther. 2007;21:85-90.
    11. Belge C, Sekkali B, Tavernier G, et al. Cardiomyocyte-specific Overexpression of Beta3-adrenoceptors Attenuates The Hypertrophic Resposne to Catecholamines In Vivo. Circulation. 2007;116:II_148.
    12. Engelhardt S, Hein L, Keller U, et al. Inhibition of Na(+)-H(+) exchange prevents hypertrophy, fibrosis, and heart failure in beta(1)-adrenergic receptor transgenic mice. Circ.Res. 2002;90:814-819.
    13. Forstermann U, Munzel T. Endothelial nitric oxide synthase in vascular disease: from marvel to menace. Circulation. Apr 4 2006;113(13):1708-1714.
    14. Munzel T, Daiber A, Ullrich V, et al. Vascular consequences of endothelial nitric oxide synthase uncoupling for the activity and expression of the soluble guanylyl cyclase and the cGMP-dependent protein kinase. Arterioscler Thromb Vasc Biol. Aug 2005;25(8):1551-1557.
    15. Yang D, Levens N, Zhang JN, et al. Specific potentiation of endothelium-dependent contractions in SHR by tetrahydrobiopterin. Hypertension. Jan 2003;41(1):136-142.
    16. Strosberg AD. Structure and function of the beta 3 adrenoreceptor. Adv.Pharmacol. 1998;42:511-513.
    17. Moffett S, Mouillac B, Bonin H, et al. Altered phosphorylation and desensitization patterns of a human beta 2-adrenergic receptor lacking the palmitoylated Cys341. Embo J. Jan 1993;12(1):349-356.
    18. Strosberg AD, Pietri-Rouxel F. Function and regulation of the beta 3-adrenoceptor. Trends Pharmacol Sci. Oct 1996;17(10):373-381.
    19. Forrest RH, Hickford JG. Rapid communication: nucleotide sequences of the bovine, caprine, and ovine beta3-adrenergic receptor genes. J Anim Sci. May 2000;78(5):1397-1398.
    20. Walston J, Lowe A, Silver K, et al. The beta3-adrenergic receptor in the obesity and diabetes prone rhesus monkey is very similar to human and contains arginine at codon 64. Gene. Apr 1 1997;188(2):207-213.
    21. Lenzen G, Pietri-Rouxel F, Drumare MF, et al. Genomic cloning and species-specific properties of the recombinant canine beta3-adrenoceptor. Eur J Pharmacol. Dec 18 1998;363(2-3):217-227.
    22. Granneman JG, Lahners KN, Rao DD. Rodent and human beta 3-adrenergic receptor genes contain an intron within the protein-coding block. Mol Pharmacol. Dec 1992;42(6):964-970.
    23. Pietri-Rouxel F, Lenzen G, Kapoor A, et al. Molecular cloning and pharmacological characterization of the bovine beta 3-adrenergic receptor. Eur.J.Biochem. 1995;230:350-358.
    24. van Spronsen A, Nahmias C, Krief S, et al. The promoter and intron/exon structure of the human and mouse beta 3-adrenergic-receptor genes. Eur J Biochem. May 1 1993;213(3):1117-1124.
    25. Evans BA, Papaioannou M, Hamilton S, et al. Alternative splicing generates two isoforms of the beta3-adrenoceptor which are differentially expressed in mouse tissues. Br J Pharmacol. Jul 1999;127(6):1525-1531.
    26. Liggett SB, Freedman NJ, DA S, et al. Structural basis for receptor subtype-specific regulation revealed by a chimeric beta 3/beta 2-adrenergic receptor. Proc.Natl.Acad.Sci.U.S.A. 1993;90:3665-3669.
    27. Jockers R, Da Silva A, Strosberg AD, et al. New molecular and structural determinants involved in beta 2-adrenergic receptor desensitization and sequestration. Delineation using chimeric beta 3/beta 2-adrenergic receptors. J Biol Chem. Apr 19 1996;271(16):9355-9362.
    28. Rouget C, Breuiller-Fouche M, Mercier FJ, et al. The human near-term myometrial beta 3-adrenoceptor but not the beta 2-adrenoceptor is resistant to desensitisation after sustained agonist stimulation. Br J Pharmacol. Mar 2004;141(5):831-841.
    29. Kaumann AJ. (-)-CGP 12177-induced increase of human atrial contraction through a putative third beta-adrenoceptor. Br J Pharmacol. Jan 1996;117(1):93-98.
    30. Michel MC, and Vrydag W. Alpha1-, alpha2- and beta-adrenoceptors in the urinary bladder, urethra and prostate. Br.J.Pharmacol. 2006;147 Suppl 2:S88-119.
    31. Consoli D, Leggio GM, Mazzola C, et al. Behavioral effects of the beta3 adrenoceptor agonist SR58611A: is it the putative prototype of a new class of antidepressant/anxiolytic drugs? Eur.J.Pharmacol. 2007;573:139-147.
    32. Stemmelin J, Cohen C, Terranova JP, et al. Stimulation of the beta3-Adrenoceptor as a novel treatment strategy for anxiety and depressive disorders. Neuropsychopharmacology. 2008;33:574-587.
    33. Baker JG. The selectivity of beta-adrenoceptor antagonists at the human beta1, beta2 and beta3 adrenoceptors. Br.J.Pharmacol. 2005;144:317-322.
    34. Manara L, Badone D, Baroni M, et al. Functional identification of rat atypical beta-adrenoceptors by the first beta 3-selective antagonists, aryloxypropanolaminotetralins. Br J Pharmacol. Feb 1996;117(3):435-442.
    35. Candelore MR, Deng L, Tota L, et al. Potent and selective human beta(3)-adrenergic receptor antagonists. J.Pharmacol.Exp.Ther. 1999;290:649-655.
    36. Bristow MR, Ginsburg R, Umans V, et al. Beta 1- and beta 2-adrenergic-receptor subpopulations in nonfailing and failing human ventricular myocardium: coupling of both receptor subtypes to muscle contraction and selective beta 1-receptor down-regulation in heart failure. Circ Res. Sep 1986;59(3):297-309.
    37. Gauthier C, Tavernier G, Charpentier F, et al. Functional beta3-adrenoceptor in the human heart. J.Clin.Invest. 1996;98:556-562.
    38. Imbrogno S, Angelone T, Adamo C, et al. Beta3-adrenoceptor in the eel (Anguilla anguilla) heart: negative inotropy and NO-cGMP-dependent mechanism. J.Exp.Biol. 2006;209:4966-4973.
    39. Gauthier C, Seze-Goismier C, Rozec B. Beta 3-adrenoceptors in the cardiovascular system. Clin Hemorheol Microcirc. 2007;37(1-2):193-204.
    40. Kaumann AJ, Molenaar P. Modulation of human cardiac function through 4 beta-adrenoceptor populations. Naunyn Schmiedebergs Arch Pharmacol. Jun1997;355(6):667-681.
    41. Chamberlain PD, Jennings KH, Paul F, et al. The tissue distribution of the human beta3-adrenoceptor studied using a monoclonal antibody: direct evidence of the beta3-adrenoceptor in human adipose tissue, atrium and skeletal muscle. Int J Obes Relat Metab Disord. Oct 1999;23(10):1057-1065.
    42. Pott C, Brixius K, Bundkirchen A, et al. The preferential beta3-adrenoceptor agonist BRL 37344 increases force via beta1-/beta2-adrenoceptors and induces endothelial nitric oxide synthase via beta3-adrenoceptors in human atrial myocardium. Br.J.Pharmacol. 2003;138:521-529.
    43. Cheng HJ, Zhang ZS, Onishi K, et al. Upregulation of functional beta(3)-adrenergic receptor in the failing canine myocardium. Circ.Res. 2001;89:599-606.
    44. Gauthier C, Tavernier G, Trochu JN, et al. Interspecies differences in the cardiac negative inotropic effects of beta(3)-adrenoceptor agonists. J Pharmacol Exp Ther. Aug 1999;290(2):687-693.
    45. Dincer UD, Bidasee KR, Guner S, et al. The effect of diabetes on expression of beta1-, beta2-, and beta3-adrenoreceptors in rat hearts. Diabetes. 2001;50:455-461.
    46. Kitamura T, Onishi K, Dohi K, et al. The negative inotropic effect of beta3-adrenoceptor stimulation in the beating guinea pig heart. J.Cardiovasc.Pharmacol. 2000;35:786-790.
    47. Zhang ZS, Cheng HJ, Onishi K, et al. Enhanced inhibition of L-type Ca2+ current by beta3-adrenergic stimulation in failing rat heart. J Pharmacol Exp Ther. 2005;315(3):1203-1211.
    48. Leblais V, Demolombe S, Vallette G, et al. beta3-adrenoceptor control the cystic fibrosis transmembrane conductance regulator through a cAMP/protein kinase A-independent pathway. J Biol Chem. Mar 5 1999;274(10):6107-6113.
    49. Tavernier G, Toumaniantz G, Erfanian M, et al. beta3-Adrenergic stimulation produces a decrease of cardiac contractility ex vivo in mice overexpressing the human beta3-adrenergic receptor. Cardiovasc.Res. 2003;59:288-296.
    50. Kohout TA, Takaoka H, McDonald PH, et al. Augmentation of cardiac contractility mediated by the human beta(3)-adrenergic receptor overexpressed in the hearts of transgenic mice. Circulation. 2001;104:2485-2491.
    51. Moniotte S, and Balligand JL. Potential use of beta(3)-adrenoceptor antagonists in heart failure therapy. Cardiovasc.Drug Rev. 2002;20:19-26.
    52. Rozec B, Erfanian M, Laurent K, et al. Nebivolol, a vasodilating selective beta(1)-blocker, is a beta(3)-adrenoceptor agonist in the nonfailing transplanted human heart. J Am Coll Cardiol. Apr 28 2009;53(17):1532-1538.
    53. Shen YT, Zhang H, Vatner SF. Peripheral vascular effects of beta-3 adrenergic receptorstimulation in conscious dogs. J.Pharmacol.Exp.Ther. 1994;268:466-473.
    54. Shen YT, Cervoni P, Claus T, et al. Differences in beta 3-adrenergic receptor cardiovascular regulation in conscious primates, rats and dogs. J.Pharmacol.Exp.Ther. 1996;278:1435-1443.
    55. Kuratani K, Kodama H, Yamaguchi I. Enhancement of gastric mucosal blood flow by beta-3 adrenergic agonists prevents indomethacin-induced antral ulcer in the rat. J Pharmacol Exp Ther. Aug 1994;270(2):559-565.
    56. Lacroix JS, Kurt AM, Auberson S, et al. Beta-adrenergic mechanisms in the nasal mucosa vascular bed. Eur.Arch.Otorhinolaryngol. 1995;252:298-303.
    57. Rohrer DK, Chruscinski A, Schauble EH, et al. Cardiovascular and metabolic alterations in mice lacking both beta1- and beta2-adrenergic receptors. J.Biol.Chem. 1999;274:16701-16708.
    58. Barbe P, Millet L, Galitzky J, et al. In situ assessment of the role of the beta 1-, beta 2-, and beta 3-adrenoceptors in the control of liplysis and nutrive blood flow in human subcutaneous adipose tissue. Br.J.Pharmacol. 1996;117:907-913.
    59. Larsen TM, Toubro S, van Baak MA, et al. Effect of a 28-d treatment with L-796568, a novel beta(3)-adrenergic receptor agonist, on energy expenditure and body composition in obese men. Am.J.Clin.Nutr. 2002;76:780-788.
    60. Tagaya E, Tamaoki J, Takemura H, et al. Atypical adrenoceptor-mediated relaxation of canine pulmonary artery through a cyclic adenosine monophosphate-dependent pathway. Lung. 1999;177:321-332.
    61. Tamaoki J, Tagaya E, K I, et al. Atypical adrenoceptor-mediated relaxation of canine pulmonary artery through a cAMP-dependent pathway. Biochem.Biophys.Res.Commun. 1998;248:722-727.
    62. Oriowo MA. Atypical beta-adrenoceptors in the rat isolated common carotid artery. Br.J.Pharmacol. 1994;113:699-702.
    63. MacDonald A, McLean M, MacAulay L, et al. Effects of propranolol and L-NAME on beta-adrenoceptor-mediated relaxation in rat carotid artery. J Auton Pharmacol. Jun 1999;19(3):145-149.
    64. Trochu JN, Leblais V, Rautureau Y, et al. Beta 3-adrenoceptor stimulation induces vasorelaxation mediated essentially by endothelium-derived nitric oxide in rat thoracic aorta. Br.J.Pharmacol. 1999;128:69-76.
    65. Ignarro LJ, Byrns RE, Trinh K, et al. Nebivolol: a selective beta(1)-adrenergic receptor antagonist that relaxes vascular smooth muscle by nitric oxide- and cyclic GMP-dependent mechanisms. Nitric Oxide. Sep 2002;7(2):75-82.
    66. Feldman RD. Beta-adrenergic receptor alterations in hypertension--physiological and molecular correlates. Can.J.Physiol.Pharmacol. 1987;65:1666-1672.
    67. Werstiuk ES, and Lee RM. Vascular beta-adrenoceptor function in hypertension and in ageing. Can.J.Physiol.Pharmacol. 2000;78:433-452.
    68. Donckier JE, Massart PE, Van Mechelen H, et al. Cardiovascular effects of beta 3-adrenoceptor stimulation in perinephritic hypertension. Eur.J.Clin.Invest. 2001; 31:681-689.
    69. Mallem MY, Toumaniantz G, Serpillon S, et al. Impairment of the low-affinity state beta1-adrenoceptor-induced relaxation in spontaneously hypertensive rats. Br.J.Pharmacol. 2004;143:599-605.
    70. Brixius K, Bloch W, Pott C, et al. Mechanisms of beta 3-adrenoceptor-induced eNOS activation in right atrial and left ventricular human myocardium. Br.J.Pharmacol. 2004;143:1014-1022.
    71. Brixius K, Bloch W, Ziskoven C, et al. Beta3-adrenergic eNOS stimulation in left ventricular murine myocardium. Can.J.Physiol.Pharmacol. 2006;84:1051-1060.
    72. Moens AL, Kass DA. Tetrahydrobiopterin and cardiovascular disease. Arterioscler.Thromb.Vasc.Biol. 2006;26:2439-2444.
    73. Fleming I, Busse R. Molecular mechanisms involved in the regulation of the endothelial nitric oxide synthase. Am.J.Physiol.Regul.Integr.Comp.Physiol. 2003;284:R1-12.
    74. Barouch LA, Berkowitz DE, Harrison RW, et al. Disruption of leptin signaling contributes to cardiac hypertrophy independently of body weight in mice. Circulation. Aug 12 2003;108(6):754-759.
    75. van der Heyden MA, Wijnhoven TJ, Opthof T. Molecular aspects of adrenergic modulation of cardiac L-type Ca2+ channels. Cardiovasc Res. 2005;65(1):28-39.
    76. Xiong L, Kleerekoper QK, He R, et al. Sites on calmodulin that interact with the C-terminal tail of Cav1.2 channel. J Biol Chem. 2005;280(8):7070-7079.
    77. Xu KY, Huso DL, Dawson TM, et al. Nitric oxide synthase in cardiac sarcoplasmic reticulum. Proc.Natl.Acad.Sci.U.S.A. 1999;96:657-662.
    78. Angelone T, Quintieri AM, Brar BK, et al. The antihypertensive chromogranin a peptide catestatin acts as a novel endocrine/paracrine modulator of cardiac inotropism and lusitropism. Endocrinology. 2008;149(10):4780-4793.
    79. Wang H, Kohr MJ, Traynham CJ, et al. Neuronal nitric oxide synthase signaling within cardiac myocytes targets phospholamban. Am J Physiol Cell Physiol. 2008;294(6):1566-1575.
    80. Bendall JK, Damy T, Ratajczak P, et al. Role of myocardial neuronal nitric oxide synthase-derived nitric oxide in beta-adrenergic hyporesponsiveness after myocardial infarction-induced heart failure in rat. Circulation. 2004;110:2368-2375.
    81. Dawson D, Lygate CA, Zhang MH, et al. nNOS gene deletion exacerbates pathologicalleft ventricular remodeling and functional deterioration after myocardial infarction. Circulation. 2005;112:3729-3737.
    82. Saraiva RM, Minhas KM, Raju SV, et al. Deficiency of neuronal nitric oxide synthase increases mortality and cardiac remodeling after myocardial infarction: role of nitroso-redox equilibrium. Circulation. 2005;112:3415-3422.
    83. Amour J, Loyer X, Le Guen M, et al. Altered contractile response due to increased beta3-adrenoceptor stimulation in diabetic cardiomyopathy: the role of nitric oxide synthase 1-derived nitric oxide. Anesthesiology. Sep 2007;107(3):452-460.
    84. Birenbaum A, Tesse A, Loyer X, et al. Involvement of beta 3-adrenoceptor in altered beta-adrenergic response in senescent heart: role of nitric oxide synthase 1-derived nitric oxide. Anesthesiology. 2008;109:1045-1053.
    85. Barouch LA, Harrison RW, Skaf MW, et al. Nitric oxide regulates the heart by spatial confinement of nitric oxide synthase isoforms. Nature. 2002;416:337-339.
    86. Idigo W, Zhang MH, Zhang YH, et al. The negative inotropic effect of [beta]3-adrenergic receptor stimulation in nNOS-/- mice is restored by oxypurinol. Heart. 2006;92:e1 008.
    87. Khan SA, Lee K, Minhas KM, et al. Neuronal nitric oxide synthase negatively regulates xanthine oxidoreductase inhibition of cardiac excitation-contraction coupling. Proc.Natl.Acad.Sci.U.S.A. 2004;101:15944-15948.
    88. Maffei A, Di Pardo A, Carangi R, et al. Nebivolol induces nitric oxide release in the heart through inducible nitric oxide synthase activation. Hypertension. 2007;50:652-656.
    89. Pou S, Keaton L, Surichamorn W, et al. Mechanism of superoxide generation by neuronal nitric-oxide synthase. J Biol Chem. Apr 2 1999;274(14):9573-9580.
    90. Imaizumi T, Hirooka Y, Masaki H, et al. Effects of L-arginine on forearm vessels and responses to acetylcholine. Hypertension. Oct 1992;20(4):511-517.
    91. Drexler H, Zeiher AM, Meinzer K, et al. Correction of endothelial dysfunction in coronary microcirculation of hypercholesterolaemic patients by L-arginine. Lancet. Dec 21-28 1991;338(8782-8783):1546-1550.
    92. Rossitch E, Jr., Alexander E, 3rd, Black PM, et al. L-arginine normalizes endothelial function in cerebral vessels from hypercholesterolemic rabbits. J Clin Invest. Apr 1991;87(4):1295-1299.
    93. Pollock JS, Forstermann U, Mitchell JA, et al. Purification and characterization of particulate endothelium-derived relaxing factor synthase from cultured and native bovine aortic endothelial cells. Proc Natl Acad Sci U S A. Dec 1 1991;88(23):10480-10484.
    94. Closs EI, Scheld JS, Sharafi M, et al. Substrate supply for nitric-oxide synthase inmacrophages and endothelial cells: role of cationic amino acid transporters. Mol Pharmacol. Jan 2000;57(1):68-74.
    95. Simon A, Plies L, Habermeier A, et al. Role of neutral amino acid transport and protein breakdown for substrate supply of nitric oxide synthase in human endothelial cells. Circ Res. Oct 31 2003;93(9):813-820.
    96. Ming XF, Barandier C, Viswambharan H, et al. Thrombin stimulates human endothelial arginase enzymatic activity via RhoA/ROCK pathway: implications for atherosclerotic endothelial dysfunction. Circulation. Dec 14 2004;110(24):3708-3714.
    97. Bachetti T, Comini L, Francolini G, et al. Arginase pathway in human endothelial cells in pathophysiological conditions. J Mol Cell Cardiol. Aug 2004;37(2):515-523.
    98. Bivalacqua TJ, Hellstrom WJ, Kadowitz PJ, et al. Increased expression of arginase II in human diabetic corpus cavernosum: in diabetic-associated erectile dysfunction. Biochem Biophys Res Commun. May 18 2001;283(4):923-927.
    99. Xu W, Kaneko FT, Zheng S, et al. Increased arginase II and decreased NO synthesis in endothelial cells of patients with pulmonary arterial hypertension. Faseb J. Nov 2004;18(14):1746-1748.
    100. Berkowitz DE, White R, Li D, et al. Arginase reciprocally regulates nitric oxide synthase activity and contributes to endothelial dysfunction in aging blood vessels. Circulation. Oct 21 2003;108(16):2000-2006.
    101. Hein TW, Zhang C, Wang W, et al. Ischemia-reperfusion selectively impairs nitric oxide-mediated dilation in coronary arterioles: counteracting role of arginase. Faseb J. Dec 2003;17(15):2328-2330.
    102. Zhang C, Hein TW, Wang W, et al. Upregulation of vascular arginase in hypertension decreases nitric oxide-mediated dilation of coronary arterioles. Hypertension. Dec 2004;44(6):935-943.
    103. Johnson FK, Johnson RA, Peyton KJ, et al. Arginase inhibition restores arteriolar endothelial function in Dahl rats with salt-induced hypertension. Am J Physiol Regul Integr Comp Physiol. Apr 2005;288(4):R1057-1062.
    104. De Gennaro Colonna V, Bianchi M, Pascale V, et al. Asymmetric dimethylarginine (ADMA): an endogenous inhibitor of nitric oxide synthase and a novel cardiovascular risk molecule. Med Sci Monit. Apr 2009;15(4):RA91-101.
    105. Martasek P, Miller RT, Liu Q, et al. The C331A mutant of neuronal nitric-oxide synthase is defective in arginine binding. J Biol Chem. Dec 25 1998;273(52):34799-34805.
    106. Lin KY, Ito A, Asagami T, et al. Impaired nitric oxide synthase pathway in diabetes mellitus: role of asymmetric dimethylarginine and dimethylarginine dimethylaminohydrolase. Circulation. Aug 20 2002;106(8):987-992.
    107. Boger RH, Sydow K, Borlak J, et al. LDL cholesterol upregulates synthesis of asymmetrical dimethylarginine in human endothelial cells: involvement of S-adenosylmethionine-dependent methyltransferases. Circ Res. Jul 21 2000;87(2):99-105.
    108. Zheng JS, Yang XQ, Lookingland KJ, et al. Gene transfer of human guanosine 5'-triphosphate cyclohydrolase I restores vascular tetrahydrobiopterin level and endothelial function in low renin hypertension. Circulation. Sep 9 2003;108(10):1238-1245.
    109. Cai S, Alp NJ, McDonald D, et al. GTP cyclohydrolase I gene transfer augments intracellular tetrahydrobiopterin in human endothelial cells: effects on nitric oxide synthase activity, protein levels and dimerisation. Cardiovasc Res. Sep 2002;55(4):838-849.
    110.郑建普,卞卡,可燕, et al.内皮型一氧化氮合酶脱偶联的研究进展.中国药理学通报. June 2006;22(6):659-663.
    111. Gesierich A, Niroomand F, Tiefenbacher CP. Role of human GTP cyclohydrolase I and its regulatory protein in tetrahydrobiopterin metabolism. Basic Res Cardiol. Mar 2003;98(2):69-75.
    112. Maita N, Okada K, Hatakeyama K, et al. Crystal structure of the stimulatory complex of GTP cyclohydrolase I and its feedback regulatory protein GFRP. Proc Natl Acad Sci U S A. Feb 5 2002;99(3):1212-1217.
    113. Werner ER, Bahrami S, Heller R, et al. Bacterial lipopolysaccharide down-regulates expression of GTP cyclohydrolase I feedback regulatory protein. J Biol Chem. Mar 22 2002;277(12):10129-10133.
    114. Park JH, Na HJ, Kwon YG, et al. Nitric oxide (NO) pretreatment increases cytokine-induced NO production in cultured rat hepatocytes by suppressing GTP cyclohydrolase I feedback inhibitory protein level and promoting inducible NO synthase dimerization. J Biol Chem. Dec 6 2002;277(49):47073-47079.
    115. Huang A, Zhang YY, Chen K, et al. Cytokine-stimulated GTP cyclohydrolase I expression in endothelial cells requires coordinated activation of nuclear factor-kappaB and Stat1/Stat3. Circ Res. Feb 4 2005;96(2):164-171.
    116. Ishii M, Shimizu S, Nagai T, et al. Stimulation of tetrahydrobiopterin synthesis induced by insulin: possible involvement of phosphatidylinositol 3-kinase. Int J Biochem Cell Biol. Jan 2001;33(1):65-73.
    117. Shinozaki K, Nishio Y, Yoshida Y, et al. Supplement of tetrahydrobiopterin by a gene transfer of GTP cyclohydrolase I cDNA improves vascular dysfunction in insulin-resistant rats. J Cardiovasc Pharmacol. Oct 2005;46(4):505-512.
    118. Miao Y, Zhang Y, Lim PS, et al. Folic acid prevents and partially reversesglucocorticoid-induced hypertension in the rat. Am J Hypertens. Mar 2007;20(3):304-310.
    119. Kumar S, Sun X, Sharma S, et al. GTP cyclohydrolase I expression is regulated by nitric oxide: role of cyclic AMP. Am J Physiol Lung Cell Mol Physiol. Aug 2009;297(2):L309-317.
    120. Chalupsky K, Cai H. Endothelial dihydrofolate reductase: critical for nitric oxide bioavailability and role in angiotensin II uncoupling of endothelial nitric oxide synthase. Proc Natl Acad Sci U S A. Jun 21 2005;102(25):9056-9061.
    121. Du YH, Guan YY, Alp NJ, et al. Endothelium-specific GTP cyclohydrolase I overexpression attenuates blood pressure progression in salt-sensitive low-renin hypertension. Circulation. Feb 26 2008;117(8):1045-1054.
    122. Wang S, Xu J, Song P, et al. In vivo activation of AMP-activated protein kinase attenuates diabetes-enhanced degradation of GTP cyclohydrolase I. Diabetes. Aug 2009;58(8):1893-1901.
    123. Crane BR, Arvai AS, Gachhui R, et al. The structure of nitric oxide synthase oxygenase domain and inhibitor complexes. Science. Oct 17 1997;278(5337):425-431.
    124. Rusche KM, Marletta MA. Reconstitution of pterin-free inducible nitric-oxide synthase. J Biol Chem. Jan 5 2001;276(1):421-427.
    125. Ghosh S, Wolan D, Adak S, et al. Mutational analysis of the tetrahydrobiopterin-binding site in inducible nitric-oxide synthase. J Biol Chem. Aug 20 1999;274(34):24100-24112.
    126. Abu-Soud HM, Wu C, Ghosh DK, et al. Stopped-flow analysis of CO and NO binding to inducible nitric oxide synthase. Biochemistry. Mar 17 1998;37(11):3777-3786.
    127. Wang J, Stuehr DJ, Rousseau DL. Interactions between substrate analogues and heme ligands in nitric oxide synthase. Biochemistry. Apr 15 1997;36(15):4595-4606.
    128. Kotsonis P, Frohlich LG, Shutenko ZV, et al. Allosteric regulation of neuronal nitric oxide synthase by tetrahydrobiopterin and suppression of auto-damaging superoxide. Biochem J. Mar 15 2000;346 Pt 3:767-776.
    129. Heitzer T, Brockhoff C, Mayer B, et al. Tetrahydrobiopterin improves endothelium-dependent vasodilation in chronic smokers: evidence for a dysfunctional nitric oxide synthase. Circ Res. Feb 4 2000;86(2):E36-41.
    130. Settergren M, Bohm F, Malmstrom RE, et al. L-arginine and tetrahydrobiopterin protects against ischemia/reperfusion-induced endothelial dysfunction in patients with type 2 diabetes mellitus and coronary artery disease. Atherosclerosis. May 2009;204(1):73-78.
    131. Higashi Y, Sasaki S, Nakagawa K, et al. Tetrahydrobiopterin enhances forearm vascular response to acetylcholine in both normotensive and hypertensive individuals.Am J Hypertens. Apr 2002;15(4 Pt 1):326-332.
    132. Cosentino F, Hurlimann D, Delli Gatti C, et al. Chronic treatment with tetrahydrobiopterin reverses endothelial dysfunction and oxidative stress in hypercholesterolaemia. Heart. Apr 2008;94(4):487-492.
    133. Setoguchi S, Mohri M, Shimokawa H, et al. Tetrahydrobiopterin improves endothelial dysfunction in coronary microcirculation in patients without epicardial coronary artery disease. J Am Coll Cardiol. Aug 2001;38(2):493-498.
    134. Setoguchi S, Hirooka Y, Eshima K, et al. Tetrahydrobiopterin improves impaired endothelium-dependent forearm vasodilation in patients with heart failure. J Cardiovasc Pharmacol. Mar 2002;39(3):363-368.
    135. Meininger CJ, Cai S, Parker JL, et al. GTP cyclohydrolase I gene transfer reverses tetrahydrobiopterin deficiency and increases nitric oxide synthesis in endothelial cells and isolated vessels from diabetic rats. Faseb J. Dec 2004;18(15):1900-1902.
    136. Noguchi K, Hamadate N, Matsuzaki T, et al. Improvement of impaired endothelial function by tetrahydrobiopterin in stroke-prone spontaneously hypertensive rats. Eur J Pharmacol. Apr 10;631(1-3):28-35.
    137. Moens AL, Leyton-Mange JS, Niu X, et al. Adverse ventricular remodeling and exacerbated NOS uncoupling from pressure-overload in mice lacking the beta3-adrenoreceptor. J Mol Cell Cardiol. Nov 2009;47(5):576-585.
    138. Li H, Witte K, August M, et al. Reversal of endothelial nitric oxide synthase uncoupling and up-regulation of endothelial nitric oxide synthase expression lowers blood pressure in hypertensive rats. J Am Coll Cardiol. Jun 20 2006;47(12):2536-2544.
    139. Fortepiani LA, Reckelhoff JF. Treatment with tetrahydrobiopterin reduces blood pressure in male SHR by reducing testosterone synthesis. Am J Physiol Regul Integr Comp Physiol. Mar 2005;288(3):R733-736.
    140. Quagliaro L, Piconi L, Assaloni R, et al. Primary role of superoxide anion generation in the cascade of events leading to endothelial dysfunction and damage in high glucose treated HUVEC. Nutr Metab Cardiovasc Dis. May 2007;17(4):257-267.
    141. Dumitrescu C, Biondi R, Xia Y, et al. Myocardial ischemia results in tetrahydrobiopterin (BH4) oxidation with impaired endothelial function ameliorated by BH4. Proc Natl Acad Sci U S A. Sep 18 2007;104(38):15081-15086.
    142. Tiefenbacher CP, Bleeke T, Vahl C, et al. Endothelial dysfunction of coronary resistance arteries is improved by tetrahydrobiopterin in atherosclerosis. Circulation. Oct 31 2000;102(18):2172-2179.
    143. Alp NJ, McAteer MA, Khoo J, et al. Increased endothelial tetrahydrobiopterin synthesis by targeted transgenic GTP-cyclohydrolase I overexpression reduces endothelial dysfunction and atherosclerosis in ApoE-knockout mice. Arterioscler Thromb VascBiol. Mar 2004;24(3):445-450.
    144. Vasquez-Vivar J. Tetrahydrobiopterin, superoxide, and vascular dysfunction. Free Radic Biol Med. Oct 15 2009;47(8):1108-1119.
    145. Mittermayer F, Pleiner J, Schaller G, et al. Tetrahydrobiopterin corrects Escherichia coli endotoxin-induced endothelial dysfunction. Am J Physiol Heart Circ Physiol. Oct 2005;289(4):H1752-1757.
    146. Wyss CA, Koepfli P, Namdar M, et al. Tetrahydrobiopterin restores impaired coronary microvascular dysfunction in hypercholesterolaemia. Eur J Nucl Med Mol Imaging. Jan 2005;32(1):84-91.
    147. Verma S, Maitland A, Weisel RD, et al. Novel cardioprotective effects of tetrahydrobiopterin after anoxia and reoxygenation: Identifying cellular targets for pharmacologic manipulation. J Thorac Cardiovasc Surg. Jun 2002;123(6):1074-1083.
    148. Takimoto E, Champion HC, Li M, et al. Oxidant stress from nitric oxide synthase-3 uncoupling stimulates cardiac pathologic remodeling from chronic pressure load. J Clin Invest. May 2005;115(5):1221-1231.
    149. Armitage ME, Wingler K, Schmidt HH, et al. Translating the oxidative stress hypothesis into the clinic: NOX versus NOS. J Mol Med. Nov 2009;87(11):1071-1076.
    150. Li H, Forstermann U. Prevention of atherosclerosis by interference with the vascular nitric oxide system. Curr Pharm Des. 2009;15(27):3133-3145.
    151. Umar S, van der Laarse A. Nitric oxide and nitric oxide synthase isoforms in the normal, hypertrophic, and failing heart. Mol Cell Biochem. Jan;333(1-2):191-201.
    152. El-Remessy AB, Abou-Mohamed G, Caldwell RW, et al. High glucose-induced tyrosine nitration in endothelial cells: role of eNOS uncoupling and aldose reductase activation. Invest Ophthalmol Vis Sci. Jul 2003;44(7):3135-3143.
    153. Zou MH, Shi C, Cohen RA. Oxidation of the zinc-thiolate complex and uncoupling of endothelial nitric oxide synthase by peroxynitrite. J Clin Invest. Mar 2002;109(6):817-826.
    154. Pritchard KA, Jr., Groszek L, Smalley DM, et al. Native low-density lipoprotein increases endothelial cell nitric oxide synthase generation of superoxide anion. Circ Res. Sep 1995;77(3):510-518.
    155. Laursen JB, Somers M, Kurz S, et al. Endothelial regulation of vasomotion in apoE-deficient mice: implications for interactions between peroxynitrite and tetrahydrobiopterin. Circulation. Mar 6 2001;103(9):1282-1288.
    156. Racasan S, Braam B, Koomans HA, et al. Programming blood pressure in adult SHR by shifting perinatal balance of NO and reactive oxygen species toward NO: the inverted Barker phenomenon. Am J Physiol Renal Physiol. Apr 2005;288(4):F626-636.
    157. Oelze M, Daiber A, Brandes RP, et al. Nebivolol inhibits superoxide formation byNADPH oxidase and endothelial dysfunction in angiotensin II-treated rats. Hypertension. Oct 2006;48(4):677-684.
    158. Ghosh M, Wang HD, McNeill JR. Role of oxidative stress and nitric oxide in regulation of spontaneous tone in aorta of DOCA-salt hypertensive rats. Br J Pharmacol. Feb 2004;141(4):562-573.
    159. Satoh M, Fujimoto S, Arakawa S, et al. Angiotensin II type 1 receptor blocker ameliorates uncoupled endothelial nitric oxide synthase in rats with experimental diabetic nephropathy. Nephrol Dial Transplant. Dec 2008;23(12):3806-3813.
    160. Landmesser U, Dikalov S, Price SR, et al. Oxidation of tetrahydrobiopterin leads to uncoupling of endothelial cell nitric oxide synthase in hypertension. J Clin Invest. Apr 2003;111(8):1201-1209.
    161. Moens AL, Takimoto E, Tocchetti CG, et al. Reversal of cardiac hypertrophy and fibrosis from pressure overload by tetrahydrobiopterin: efficacy of recoupling nitric oxide synthase as a therapeutic strategy. Circulation. May 20 2008;117(20):2626-2636.
    162. Ren J, Duan J, Thomas DP, et al. IGF-I alleviates diabetes-induced RhoA activation, eNOS uncoupling, and myocardial dysfunction. Am J Physiol Regul Integr Comp Physiol. Mar 2008;294(3):R793-802.
    163. Moens AL, Champion HC, Claeys MJ, et al. High-dose folic acid pretreatment blunts cardiac dysfunction during ischemia coupled to maintenance of high-energy phosphates and reduces postreperfusion injury. Circulation. Apr 8 2008;117(14):1810-1819.
    164. Kinugawa S, Huang H, Wang Z, et al. A defect of neuronal nitric oxide synthase increases xanthine oxidase-derived superoxide anion and attenuates the control of myocardial oxygen consumption by nitric oxide derived from endothelial nitric oxide synthase. Circ Res. Feb 18 2005;96(3):355-362.
    165. Ali ZA, Bursill CA, Douglas G, et al. CCR2-mediated antiinflammatory effects of endothelial tetrahydrobiopterin inhibit vascular injury-induced accelerated atherosclerosis. Circulation. Sep 30 2008;118(14 Suppl):S71-77.
    166. Napp A, Brixius K, Pott C, et al. Effects of the beta3-adrenergic agonist BRL 37344 on endothelial nitric oxide synthase phosphorylation and force of contraction in human failing myocardium. J.Card.Fail. 2009;15:57-67.
    167. Zhou L, Zhu DY. Neuronal nitric oxide synthase: structure, subcellular localization, regulation, and clinical implications. Nitric Oxide. Jun 2009;20(4):223-230.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700