CTGF-整合素β_1受体信号途径在PASMC增殖、迁移和细胞外基质沉积中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:1.探讨整合素β1受体在CTGF促进PASMC增殖、迁移、细胞骨架变化和细胞外基质分泌中的作用机制。2.初步探讨CTGF-整合素β1受体信号途径在肺动脉高压肺血管重构中的作用。方法:1.分离并培养SD大鼠肺动脉中膜平滑肌细胞,实验使用3~7代细胞;2.加入CTGF和不同浓度整合素β1抗体共同孵育24h、48h、72h、96h和120h,采用WST-1检测整合素β1抗体对CTGF促进PASMC增殖的影响;3.在无刺激因子、CTGF(50ng/ml)和CTGF(50ng/ml)+整合素β1抗体(15mg/L)孵育PASMC 24h,采用Transwell小室检测整合素β1抗体对CTGF促进PASMC迁移的影响;4.在无刺激因子、CTGF (50ng/ml)和CTGF (50ng/ml)+整合素β1抗体(15mg/L)孵育PASMC 12h和24h,采用考马斯亮蓝R250染色和激光共聚焦显微镜观察细胞骨架改变情况;5.在无刺激因子、CTGF (50ng/ml)和CTGF (50ng/ml)+整合素β1抗体(15mg/L)孵育PASMC 72h,采用RT-PCR检测整合素β1抗体对CTGF促进CollagenⅠ-α、CollagenⅢ-α1、Fibronectin-1 mRNA表达的影响;并采用蛋白质印迹检测整合素β1抗体对CTGF促进PASMC中Ⅲ型胶原蛋白的表达及细胞外信号调节激酶1和2 (ERK1/2)的磷酸化水平,并研究整合素β1抗体对ERK1/2信号通路的影响。结果:1.用CTGF (50ng/ml)和整合素β1抗体(0、5、10、15 mg/L)同时孵育PASMC 24h、48h、72h96h和120h, WST-1检测结果表明,整合素β1抗体对CTGF促进PASMC增殖有明显抑制作用(P<0.01),并呈现一定的浓度依赖性,其中整合素β1抗体(15mg/L)在72h抑制率最高。2. Transwell小室检测结果显示,以整合素β1抗体(15 mg/L)封闭PASMC 24h后,CTGF刺激的细胞迁移受到明显抑制(P<0.01)。3.考马斯亮蓝R250染色观察细胞骨架变化结果发现,24h时,各组之间细胞骨架变化不明显;在12h时与对照组比较,CTGF组能短暂改变细胞形态:使用整合素β1抗体后,CTGF所引起的细胞形态变化不明显。同时采用激光共聚焦扫描显微镜观察胞内FAK的变化结果发现,12h时,细胞形态及胞质内绿色荧光变化不明显。而CTGF作用PASMCs 24h可见细胞形态缩小,胞质绿色荧光(FAK)减弱,分散。但整合素β1抗体作用24h后细胞形态与正常组相近。4. RT-PCR检测结果显示,与对照组比较,CTGF显著促进Ⅰ型胶原-α1、Ⅲ型胶原-α1和纤维连接蛋白-1mRNA表达(P<0.05);使用整合素β1抗体后与CTGF组比较三种基因mRNA表达均减少(P<0.05)。5.蛋白质印迹结果表明,与对照组比较CTGF明显促进Ⅲ型胶原蛋白表达;使用整合素β1抗体后Ⅲ型胶原蛋白表达较CTGF组减少(P<0.05),但较对照组表达增加;且整合素β1(15mg/L)抗体能明显抑制CTGF诱导大鼠PASMCs中ERK1/2磷酸化的水平,p-ERK1/2与ERK1/2比值降低(P<0.05)。结论:1.整合素β1介导了CTGF诱导的PASMC增殖、迁移和细胞骨架变化。2.整合素β1可介导外源性CTGF促进PASMC.Ⅰ型胶原-α1、Ⅲ型胶原-α1、纤维连接蛋白-1 mRNA表达,以及介导CTGF促进Ⅲ型胶原蛋白表达。4.整合素β1介导CTGF诱导的PASMC增殖和迁移可能与ERK1/2信号通路有关。4.整合素β1受体信号可能在CTGF介导的PASMC增殖、迁移、细胞外基质沉积和细胞骨架改变等生物学行为中起重要作用;CTGF-整合素受体信号途径可能参与了PAH肺血管重构。
Objective 1. To explore the mechanisms of integrinβ1 on CTGF-induced proliferation, migration, change of cytoskeleton and extracellular matrix deposition of PASMCs in vitro.2. To investigate the effects of CTGF-integrinβ1 signal pathway on pulmonary vascular remodeling in pulmonary hypertension. Methods 1. Pulmonary artery smooth muscle cells of SD Rats were cultured in vitro and 3-7 passages of cultured PASMCs were used in the experiments.2. The PASMCs were cultured with CTGF and different concentrations of anti-integrinβ1 antibody for 24h,48h,72h,96h and 120h, WST-1 assay was used to detect the effects of anti-integrinβ1 antibody on CTGF-induced proliferation.3. The cultured PASMCs were divided into control group, CTGF group and CTGF+anti-integrinβ1 antibody group.Transwell chambers were used to observe the effects of anti-integrin Pi antibody on CTGF-induced migration at 24h.4. The cytoskeletal rearrangement was observed with coomassie brilliant blue R25o staining and Confocal Lasar Scanning Microscopy(CLSM) at 12h and 24h.5.RT-PCR was used to assay the mRNA expression of CollagenⅠ-α1, CollagenⅢ-α1 and Fibronectin-1 at 72h. In addition, the expression of Collagen III protein and the phosphorylation of ERK1/2 were evaluated by Western blot analysis at 72h. Results 1. PASMCs treated with CTGF (50ng/ml)were exposed to anti-integrinβ1 antibody (0,5,10,15 mg/L) for 24h,48h,72h, 96h and 120h. WST-1 assay showed a pattent of concentration-dependent, and there was significant difference (P<0.01) when the concentration of anti-integrinβ1 antibody meet 15mg/L, and inhibition rate of PASMC proliferation was the highest at 72h.2.The migration of PASMCs treated with anti-integrinβ1 antibody (15mg/L) was inhibited by Transwell chambers assay at 24h.3. Coomassie brilliant blue R250 staining assay indicated that the cytoskeletal rearrangement of PASMCs were not changed significantly between each groups at 24h; compared with the control, CTGF could change cytoskeletal rearrangement of PASMCs briefly at 12h, while anti-integrinβ1 antibody inhibited this phenomenon; Meanwhile, Changes of intracellular FAK was observed by CLSM. The cell morphology and green fluorescence (FAK) of cytoplasmic were not channged significantly between each group at 12h. Compared with the control group, CTGF could reduce cell morphology and decrease green fluorescence of cytoplasmic of PASMCs at 24h, while anti-integrinβ1 antibody inhibited this phenomenon.4. compared with the control groups, RT-PCR assay indicated that the expression of Collagen typeⅠ-α1, Collagen typeⅢ-α1, Fibronectin-1 mRNA of PASMCs treated with CTGF (50ng/ml) were significantly increased at 72h (P<0.01), anti-integrinβ1 antibody inhibited these extracellular matrix genes mRNA expression (P<0.05).5. Compared with the control, Western blot assay indicated that CTGF(50ng/ml) promoted significantly the expression of CollagenⅢprotein, while anti-integrinβ1 antibody inhibited the expression of CollagenⅢprotein, but the CollagenⅢprotein expression were still more than control group. Meanwhile, anti-integrinβ1 antibody also obviously reduced phosphorylation of ERK1/2 induced by CTGF. Conclusions 1. Integrinβ1 mediates proliferation, migration, cytoskeletal rearrangement of PASMCs induced by CTGF.2. CTGF could promote the expression of CollagenⅠ-α1, CollagenⅢ-α1, Fibronectin-1 mRNA and protein of CollagenⅢ.3. Integrinβ1 may mediate the expression of CollagenⅠ-α1, CollagenⅢ-α1, Fibronectin-1 mRNA and CollagenⅢprotein in PASMCs induced by CTGF, which may be related to the phosphorylation of ERK1/2 signal pathway.4.The CTGF-integrinβ1 signal pathway may play a key role in proliferation, migration, cytoskeletal rearrangement and extracellular matrix deposition of PASMCs, and this signal pathway may be a new target to interven the pulmonary vascular remodeling in PAH.
引文
[1]Suzuki YJ, Day RM, Tan CC, et al. Activation of GATA-4 by serotonin in pulmonary artery smooth muscle cells. J Biol Chem. 2003.278(19):17525-31.
    [2]Liu Y, Fanburg BL. Phospholipase D signaling in serotonin-induced mitogenesis of pulmonary artery smooth muscle cells. Am J Physiol Lung Cell Mol Physiol.2008.295(3): L471-8.
    [3]Kaiura TL, Itoh H,3rd KSM, McCaffrey TA, Liu B, Kent KC. The effect of growth factors, cytokines, and extracellular matrix proteins on fibronectin production in human vascular smooth muscle cells. J Vasc Surg.2000.31(3):577-84,
    [4]Shimo T, Koyama E, Sugito H, Wu C, Shimo S, Pacifici M. Retinoid signaling regulates CTGF expression in hypertrophic chondrocytes with differential involvement of MAP kinases. J Bone Miner Res.2005.20(5):867-77.
    [5]刘斌,王献民,周同甫等.大鼠肺动脉高压模型结缔组织生长因子的表达及辛伐他汀的调控作用.中华儿科杂志.2008.46(5):359-365.
    [6]Zheng DQ, Woodard AS, Fornaro M, Tallini G, Languino LR. Prostatic carcinoma cell migration via alpha(v)beta3 integrin is modulated by a focal adhesion kinase pathway. Cancer Res.1999. 59(7):1655-64.
    [7]Lau LF, Lam SC. The CCN family of angiogenic regulators:the integrin connection. Exp Cell Res.1999.248(1):44-57.
    [8]Brigstock DR. The connective tissue growth factor/cysteine-rich 61/nephroblastoma overexpressed (CCN) family. Endocr Rev. 1999.20(2):189-206.
    [9]Clark EA, Brugge JS. Integrins and signal transduction pathways: the road taken. Science (80-).1995.268(5208):233-9.
    [10]Heng EC, Huang Y, Black SA Jr, Trackman PC. CCN2, connective tissue growth factor, stimulates collagen deposition by gingival fibroblasts via module 3 and alpha6- and betal integrins. J Cell Biochem.2006.98(2):409-20.
    [11]Gao R, Brigstock DR. A novel integrin alpha5betal binding domain in module 4 of connective tissue growth factor (CCN2/CTGF) promotes adhesion and migration of activated pancreatic stellate cells. Gut.2006.55(6):856-62.
    [12]Schwartz MA, Ginsberg MH. Networks and crosstalk:integrin signalling spreads. Nat Cell Biol.2002.4(4):E65-8.
    [13]Giancotti FG, Ruoslahti E. Integrin signaling. Science (80-).1999. 285(5430):1028-32.
    [14]Rabinovitch M. Molecular pathogenesis of pulmonary arterial hypertension. J Clin Invest.2008.118(7):2372-9.
    [15]Gurbanov E, Shiliang X. The key role of apoptosis in the pathogenesis and treatment of pulmonary hypertension. Eur J Cardiothorac Surg.2006.30(3):499-507.
    [16]Boudreau NJ, Jones PL. Extracellular matrix and integrin signalling:the shape of things to come. Biochem J.1999.339 (Pt 3):481-8.
    [17]Roberts MS, Woods AJ, Shaw PE, Norman JC. ERK1 associates with alpha(v)beta 3 integrin and regulates cell spreading on vitronectin. J Biol Chem.2003.278(3):1975-85.
    [18]Borges E, Jan Y, Ruoslahti E. Platelet-derived growth factor receptor beta and vascular endothelial growth factor receptor 2 bind to the beta 3 integrin through its extracellular domain. J Biol Chem.2000.275(51):39867-73.
    [19]Perbal B. NOV (nephroblastoma overexpressed) and the CCN family of genes:structural and functional issues. Mol Pathol.2001. 54(2):57-79.
    [20]Song Y, Qi H, Wu C. Effect of 1,25-(OH)2D3 (a vitamin D analogue) on passively sensitized human airway smooth muscle cells. Respirology.2007.12(4):486-94.
    [21]Yosimichi G, Nakanishi T, Nishida T, Hattori T, Takano-Yamamoto T, Takigawa M. CTGF/Hcs24 induces chondrocyte differentiation through a p38 mitogen-activated protein kinase (p38MAPK), and proliferation through a p44/42 MAPK/extracellular-signal regulated kinase (ERK). Eur J Biochem.2001.268(23):6058-65.
    [22]Pons J, Kitlinska J, Jacques D, et al. Interactions of multiple signaling pathways in neuropeptide Y-mediated bimodal vascular smooth muscle cell growth. Can J Physiol Pharmacol.2008.86(7): 438-48.
    [23]Sheetz MP, Felsenfeld D, Galbraith CG, Choquet D. Cell migration as a five-step cycle. Biochem Soc Symp.1999.65: 233-43.
    [24]Schlaepfer DD, Hauck CR, Sieg DJ. Signaling through focal adhesion kinase. Prog Biophys Mol Biol.1999.71(3-4):435-78.
    [25]Schaller MD. Biochemical signals and biological responses elicited by the focal adhesion kinase. Biochim Biophys Acta.2001. 1540(1):1-21.
    [26]Morla AO, Mogford JE. Control of smooth muscle cell proliferation and phenotype by integrin signaling through focal adhesion kinase. Biochem Biophys Res Commun.2000.272(1): 298-302.
    [27]Sajid M, Stouffer GA. The role of alpha(v)beta3 integrins in vascular healing. Thromb Haemost.2002.87(2):187-93.
    [28]Yin H, Wang LH, Huo Y, Peng X, Xia CF, Tang CS. [FAK antisense oligodeoxynucleotides inhibit vascular smooth muscle cell migration and adhesion mediated by FAK-ERK1/2 signaling pathway]. Yao Xue Xue Bao.2002.37(5):334-8.
    [29]Sundberg LJ, Galante LM, Bill. HM, Mack CP, Taylor JM.An endogenous inhibitor of focal adhesion kinase blocks Racl/JNK but not Ras/ERK-dependent signaling in vascular smooth muscle cells. J Biol Chem.2003.278(32):29783-91.
    [30]Maniotis AJ, Chen CS, Ingber DE. Demonstration of mechanical connections between integrins, cytoskeletal filaments, and nucleoplasm that stabilize nuclear structure. Proc Natl Acad Sci U S A.1997.94(3):849-54.
    [31]Hassid A, Huang S, Yao J. Role of PTP-1B in aortic smooth muscle cell motility and tyrosine phosphorylation of focal adhesion proteins. Am J Physiol.1999.277(1 Pt 2):H192-8.
    [32]Kintscher U, Lyon C, Wakino S, et al. PPARalpha inhibits TGF-beta-induced beta5 integrin transcription in vascular smooth muscle cells by interacting with Smad4. Circ Res.2002.91(11): e35-44.
    [33]Thomson RJ, Bramley AM, Schellenberg RR. Airway muscle stereology:implications for increased shortening in asthma. Am J Respir Crit Care Med.1996.154(3 Pt 1):749-57.
    [34]Haberstroh KM, Kaefer M, DePaola N, Frommer SA, Bizios R. A novel in-vitro system for the simultaneous exposure of bladder smooth muscle cells to mechanical strain and sustained hydrostatic pressure. J Biomech Eng.2002.124(2):208-13.
    [35]Ferri N, Garton KJ, Raines EW. An NF-kappaB-dependent transcriptional program is required for collagen remodeling by human smooth muscle cells. J Biol Chem.2003.278(22): 19757-64.
    [36]Chen N, Chen CC, Lau LF. Adhesion of human skin fibroblasts to Cyr61 is mediated through integrin alpha 6beta 1 and cell surface heparan sulfate proteoglycans. J Biol Chem.2000.275(32): 24953-61.
    [37]Babic AM, Chen CC, Lau LF. Fisp12/mouse connective tissue growth factor mediates endothelial cell adhesion and migration through integrin alphavbeta3, promotes endothelial cell survival, and induces angiogenesis in vivo. Mol Cell Biol.1999.19(4): 2958-66.
    [38]Leask A, Abraham DJ, The role of connective tissue growth factor, a multifunctional matricellular protein, in fibroblast biology. Biochem Cell Biol.2003.81(6):355-63.
    [39]Gao R, Brigstock DR. Connective tissue growth factor (CCN2) induces adhesion of rat activated hepatic stellate cells by binding of its C-terminal domain to integrin alpha(v)beta(3) and heparan sulfate proteoglycan. J Biol Chem.2004.279(10):8848-55.
    [40]Grotendorst GR, Duncan MR. Individual domains of connective tissue growth factor regulate fibroblast proliferation and myofibroblast differentiation. FASEB J.2005.19(7):729-38.
    [41]韩维娜,刘晔,吕昌莲等.ERK1/2通路在4-AP诱导大鼠肺动脉收缩中的作用.中国药理学通报.2007.23(2):202-206.
    [42]刘慧,赵连友,郑强荪等.结缔组织生长因子诱导大鼠心肌细胞肥大的作用及其与细胞外信号调节激酶1/2的关系.中华高血压杂志.2006.14(12):984-988.
    [43]Zaiman A, Fijalkowska I, Hassoun PM, Tuder RM. One hundred years of research in the pathogenesis of pulmonary hypertension. Am J Respir Cell Mol Biol.2005.33(5):425-31.
    [1]Ware S, Donahue JP, Hawiger J, Anderson WE Structure of the fibrinogen gamma-chain integrin binding and factor ⅩⅢa cross-linking sites obtained through carrier protein driven crystallization. Protein Sci.1999.8(12):2663-71.
    [2]Humphries JD, Byron A, Humphries MJ. Integrin ligands at a glance. J Cell Sci.2006.119(Pt 19):3901-3.
    [3]Takada Y, Ye X, Simon S. The integrins. Genome Biol.2007.8(5): 215.
    [4]Wozniak MA, Modzelewska K, Kwong L, Keely PJ. Focal adhesion regulation of cell behavior. Biochim Biophys Acta.2004. 1692(2-3):103-19.
    [5]Legate KR, Wickstrom SA, Fassler R. Genetic and cell biological analysis of integrin outside-in signaling. Genes Dev.2009.23(4): 397-418.
    [6]Howe A, Aplin AE, Alahari SK, Juliano RL. Integrin signaling and cell growth control. Curr Opin Cell Biol.1998.10(2):220-31.
    [7]Welser JV, Lange N, Singer CA, et al. Loss of the alpha7 integrin promotes extracellular signal-regulated kinase activation and altered vascular remodeling. Circ Res.2007.101(7):672-81.
    [8]Chan WL, Holstein-Rathlou NH, Yip KP. Integrin mobilizes intracellular Ca(2+) in renal vascular smooth muscle cells. Am J Physiol Cell Physiol.2001.280(3):C593-603.
    [9]Kawabe J, Okumura S, Lee MC, Sadoshima J, Ishikawa Y. Translocation of caveolin regulates stretch-induced ERK activity in vascular smooth muscle cells. Am J Physiol Heart Circ Physiol. 2004.286(5):H1845-52.
    [10]Fogelstrand P, Feral CC, Zargham R, Ginsberg MH. Dependence of proliferative vascular smooth muscle cells on CD98hc (4F2hc, SLC3A2). J Exp Med.2009.206(11):2397-406.
    [11]Walsh CT, Stupack D, Brown JH. G protein-coupled receptors go extracellular:RhoA integrates the integrins. Mol Interv.2008.8(4): 165-73.
    [12]Sedding DG, Hermsen J, Seay U, et al. Caveolin-1 facilitates mechanosensitive protein kinase B (Akt) signaling in vitro and in vivo. Circ Res.2005.96(6):635-42.
    [13]Stawowy P, Kallisch H, Veinot JP, et al. Endoproteolytic activation of alpha(v) integrin by proprotein convertase PC5 is required for vascular smooth muscle cell adhesion to vitronectin and integrin-dependent signaling. Circulation.2004.109(6): 770-6.
    [14]Vicente-Manzanares M, Choi CK, Horwitz AR. Integrins in cell migration--the actin connection. J Cell Sci.2009.122(Pt 2): 199-206.
    [15]Heerkens EH, Izzard AS, Heagerty AM. Integrins, vascular remodeling, and hypertension. Hypertension.2007.49(1):1-4.
    [16]Liu P, Zhang C, Feng JB, et al. Cross talk among Smad, MAPK, and integrin signaling pathways enhances adventitial fibroblast functions activated by transforming growth factor-beta1 and inhibited by Gax. Arterioscler Thromb Vasc Biol.2008.28(4): 725-31.
    [17]Kintscher U, Lyon C, Wakino S, et al. PPARalpha inhibits TGF-beta-induced beta5 integrin transcription in vascular smooth muscle cells by interacting with Smad4. Circ Res.2002.91(11): e35-44.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700