TGF-β1/smads通路调控COPD发病过程中气道上皮细胞分泌SLPI的作用机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
慢性阻塞性肺疾病(Chronic obstructive pulmonary disease,COPD)是一组严重危害人群健康的常见疾病,近年来,其发病率在全球均有明显上升趋势。COPD发病机制尚未完全阐明,目前多数学者认为弹性蛋白酶-抗蛋白酶失衡是COPD发生、发展的重要机制之一。研究表明,慢性支气管炎患者(无论急性发作与否)其气道腔内中性粒细胞百分数显著高于对照组。同时发现,慢支患者的气流阻塞程度与支气管灌洗液中中性粒细胞数量增多有关。以上研究表明,COPD患者气道腔内存在中性粒细胞的聚集状态,中性粒细胞弹力酶(NE)是中性粒细胞释放的丝氨酸蛋白酶,被认为是肺炎性损伤级联反应的主要终效应因子,其对肺组织结构蛋白有直接损伤作用,是肺气肿形成过程中的关键作用环节。中性粒细胞聚集导致弹性蛋白酶负荷的增加,从而促进了COPD的发生发展。与蛋白酶相对应,体内的抗蛋白酶主要有:1.α1-抗胰蛋白酶(α1-AT),这是肺实质中主要的抗蛋白酶,它由肝脏合成,血浆转运。α1-AT主要对抗中性粒细胞弹性蛋白酶。2.α1-抗糜蛋白酶。3.组织金属蛋白酶抑制物(TIMPs)。该酶主要对抗MMPs。4.分泌性白细胞蛋白酶抑制物(secretory leukocyte proteinase inhibitor,SLPI),这是气道中最重要的保护基质,它起源于气道上皮细胞,在气道中可起到局部防护作用。国内外研究最多、最透彻的是α1-AT,它是人血浆中最主要的抗蛋白酶,但其并不能完成在肺间质中的保护作用;相对而言,目前国内外对源于气道上皮细胞在气道中起到局部最重要防护作用的SLPI的研究却较少,SLPI能够抑制金属蛋白酶的产生,抑制核因子-κB(NF-κB)的活性和减轻炎症反应。SLPI还可以抑制气道上皮细胞中性粒细胞弹性蛋白酶(NE)的水平和白细胞介素8(IL-8)的水平,从而可以中断炎症循环,提示SLPI可能是气道中最重要的保护基质之一。
     转化生长因子β_1(TGF-β_1)也被认为是COPD发病机制中的关键致病因子,其作用机制可能与肺纤维化的形成及气道重构密切关联。已有研究证实,TGF-β受体激活后,由TGF-βⅠ型受体到核内的信号转导主要由Smads蛋白家族的胞浆蛋白磷酸化完成的。被激活的已经磷酸化的Smad2和Smad3只有与Smad4结合形成复合物,才能使TGF-β_1信号传导进入细胞核,从而起到生物学效应。然而,在COPD发病过程中,SLPI在支气管肺组织中的如何表达及其是否与TGF-β_1存在对应关系尚不清楚,若二者存在对应关系,Smads信号通路是否在此过程中起作用作用。本研究对此进行了探讨。
     第一部分:分泌性白细胞蛋白酶抑制物在慢性阻塞性肺疾病大鼠支气管肺组织中的表达及转化生长因子β_1对其影响的研究
     我们采用熏香烟加气管内注射内脂多糖复制大鼠COPD模型,并用TGF-β_1单抗干预,测定大鼠的肺功能及病理变化结果,应用酶联免疫法检测支气管肺泡灌洗液(BALF)中SLPI的水平,用免疫组织化学法观察TGF-β_1、Smad 4、SLPI在支气管肺组织中的表达情况,用逆转录聚合酶链法检测TGF-β_1、Smad4和SLPI mRNA在支气管肺组织中的表达水平。
     结果显示:光镜下可见模型组支气管上皮细胞变性坏死脱落,大量炎症细胞浸润,肺大疱形成,气管及血管壁增厚,管腔狭窄闭塞。干预组可见少量支气管上皮细胞变性坏死脱落,气管及血管壁轻度增厚,少量炎性细胞浸润,管壁未见明显增厚,未见明显肺大疱的形成及管腔狭窄。而正常对照组未见异常。模型组大鼠比对照组大鼠的肺功能明显降低,干预组大鼠比模型组大鼠的肺功能明显增高。TGF-β_1在血管和气道平滑肌细胞、支气管、细支气管上皮细胞、肺泡上皮细胞、肺间质细胞以及巨噬细胞均有免疫染色,细胞膜着色。对照组TGF-β_1呈弱阳性表达,阳性产物为棕黄色颗粒,模型组TGF-β_1呈强阳性表达,阳性产物为棕褐色颗粒,二者的阳性系数和灰度值差异有统计学意义;干预组TGF-β_1表达比模型组明显减弱,二者的阳性系数及灰度值差异有统计学意义。Smad4在血管和气道平滑肌细胞、支气管、细支气管上皮细胞、肺泡上皮细胞、肺间质细胞以及巨噬细胞均有免疫染色,细胞质和细胞核均有着色。对照组Smad4呈弱阳性表达,阳性产物为棕黄色颗粒,模型组Smad4呈强阳性表达,阳性产物为棕褐色颗粒,二者的阳性系数和灰度值差异有统计学意义;干预组比模型组Smad4表达明显减弱,二者的阳性系数和灰度值差异有统计学意义。SLPI只在气管、支气管上皮细胞有免疫染色,且仅在细胞质和管腔侧细胞膜有着色。对照组SLPI呈强阳性表达,阳性产物为棕褐色颗粒,模型组SLPI呈弱阳性表达,阳性产物为棕黄色颗粒,二者的阳性系数和灰度值差异有统计学意义;干预组比模型组SLPI表达明显增强,二者的阳性系数和灰度值差异有统计学意义。模型组支气管肺泡灌洗液中SLPI浓度明显低于对照组,差异有统计学意义;干预组支气管肺泡灌洗液中SLPI浓度明显高于模型组,差异有统计学意义。与对照组比较,模型组大鼠支气管肺组织中TGF-β_1、Smad4 mRNA表达量增高,其吸光度值明显增高,差异有统计学意义;而SLPI mRNA的表达量却很低,其吸光度值明显降低,差异有统计学意义。干预组大鼠支气管肺组织中TGF-β_1、Smad4 mRNA表达量比模型组明显下降,其吸光度值明显降低,差异有统计学意义;而SLPI mRNA的表达量却明显升高,其吸光度值明显增高,差异有统计学意义。
     第二部分:Smads信号通路在TGF-β_1介导气道上皮细胞SLPI下调中作用的研究
     我们采用Smad4 siRNA预处理及TGF-β_1进行刺激支气管上皮细胞,免疫细胞化学及westen blot方法观Smad4、SLPI在Smad4 siRNA预处理及TGF-β_1进行刺激后支气管上皮细胞内的表达情况;RT-PCR法检测在Smad4 siRNA预处理及TGF-β_1进行刺激后支气管上皮细胞内Smad4 mRNA及SLPI mRNA的表达水平。
     结果显示:SLPI在胞浆胞膜均有免疫染色,在对照组中SLPI呈强阳性表达,染色为棕褐色颗粒,经TGF-β_1刺激后,SLPI在刺激组呈弱阳性表达的棕黄色颗粒;Western blot检测也显示,在对照组中SLPI表达量较高,经TGF-β_1刺激后,SLPI在刺激组表达量明显减少,二者差异差异有统计学意义;在对照组中SLPI mRNA表达量较高,经TGF-β_1刺激后,SLPI mRNA在刺激组表达量明显降低,二者差异有统计学意义。Smad4在胞浆胞核均有免疫染色,在对照组中Smad4呈弱阳性表达,染色为棕黄色颗粒,经TGF-β_1刺激后,Smad4在刺激组染色呈强阳性表达的棕褐色颗粒;Western blot检测也显示,在对照组中Smad4表达量较低,经TGF-β_1刺激后,Smad4在刺激组表达量明显增高,二者差异有统计学意义;在对照组中Smad4 mRNA表达量较低,经TGF-β_1刺激后,Smad4 mRNA在刺激组表达量明显增高,二者差异有统计学意义。经Smad4 siRNA预处理后再给予TGF-β_1刺激,Smad4在干扰组的表达比单纯的TGF-β_1刺激组的表达明显减弱,染色呈弱阳性表达的棕黄色颗粒;而给予阴性对照siRNA预处理后再给予TGF-β_1刺激,则Smad4在HK组的表达比单纯的TGF-β_1刺激组的表达减弱不明显,染色仍呈强阳性表达的棕褐色颗粒;Western blot检测也显示,经Smad4 siRNA预处理后再给予TGF-β_1刺激,Smad4在干扰组的表达量比单纯的TGF-β_1刺激组明显减少,二者差异有统计学意义。而给予阴性对照siRNA预处理后再给予TGF-β_1刺激,则Smad4在HK组的表达量比单纯的TGF-β_1刺激组减少不明显,二者差异无统计学意义。经Smad4 siRNA预处理后再给予TGF-β_1刺激,Smad4 mRNA在干扰组的表达量比单纯的TGF-β_1刺激组明显减少,二者差异有统计学意义;而给予阴性对照siRNA预处理后再给予TGF-β_1刺激,则Smad4 mRNA在HK组的表达量比单纯的TGF-β_1刺激组的表达量减少不明显,二者差异无统计学意义。经Smad4 siRNA预处理成功转染后再给予TGF-β_1刺激,SLPI在干扰组的表达比单纯的TGF-β_1刺激组的表达明显增强,染色呈强阳性表达的棕褐色颗粒;而给予阴性对照siRNA预处理后再给予TGF-β_1刺激,则SLPI在HK组的表达比单纯的TGF-β_1刺激组的表达增强不明显,染色仍呈弱阳性表达的棕黄色颗粒;Western blot检测也显示,经Smad4 siRNA预处理后再给予TGF-β_1刺激,SLPI在干扰组的表达量比单纯的TGF-β_1刺激组明显增高,二者差异有统计学意义;而给予阴性对照siRNA预处理后再给予TGF-β_1刺激,则SLPI在HK组的表达量比单纯的TGF-β_1刺激组增高不明显,二者差异无统计学意义。经Smad4 siRNA预处理成功转染后再给予TGF-β_1刺激,SLPImRNA在干扰组的表达量比单纯的TGF-β_1刺激组明显增高,二者差异有统计学意义;而给予阴性对照siRNA预处理后再给予TGF-β_1刺激,则SLPI mRNA在HK组的表达量比单纯的TGF-β_1刺激组增高不明显,二者差异无统计学意义。
     上述二个部分研究提示,COPD大鼠支气管肺组织中SLPI明显减少,可能主要是由于TGF-β_1表达增加所致,而且,TGF-β_1使支气管上皮细胞SLPI表达下调的作用是通过Smads信号通路介导的。
Chronic obstructive pulmonary disease(COPD)is characterized by airflow obstruction,which comprises emphysema and chronic bronchitis/bronchiolitis.While the molecular mechanisms by which small airway obstruction occurs remain unknown.Recently,some studies indicated that an imbalance between neutrophil protease and surrounding antiprotease levels has been shown to be important in the pathogenesis of COPD.Secretory leukocyte proteinase inhibitor(SLPI),known as one of the most important antileukoproteases in airway,is a 12-kDa non-glycosylated,cationic protein that is produced by serous cells of the submucosal bronchial glands,by non-ciliated cells of the bronchial epithelium,and by neutrophils.Its major physiological function is considered to be the inhibition of the destructive capacity of neutrophil elastase(NE),and some data indicated that COPD is related to the reduction of SLPI.Whereas little is known about the regulation of SLPI expression in the lung.
     Other studies suggest some fibrogenic growth factors may be involved in the remodeling processes of the small airways,iOne of the most potent and extensively studied growth factors is transforming growth factor(TGF)-betal,which induces fibroblast proliferation, increased production of collagen and other extracellular matrix proteins, and decreased collagen degradation.TGF-β_1 is also chemotactic for neutrophil,macrophages and mast cells,and its major intracellular signaling effector is the Smad proteins.It is well known that Smad pathways are central mediators of signals from the receptors for TGF-beta superfamily members to the nucleus.Phosphorylation of receptor-activated Smads(R-Smads)leads to formation of complexes with the common mediator Smad(Co-Smad)(Smad4),which are imported to the nucleus.Nuclear Smad oligomers bind to DNA and associate with transcription factors to regulate expression of target genes. TGF-β_1 is widely localized in the lung.Several studies recently demonstrated that there was a significant expression of TGF-β_1 in airway epithelial cells in subjects with COPD as compared with the control.
     Low levels of SLPI and high levels of TGF-β_1 were observed in the bronchi and lung tissues of COPD,and recent study indicated that TGF-β_1 is a potent inhibitor of SLPI in a bronchial epithelial cell. However,whether the decreased expression of SLPI in the bronchi and lung tissues of COPD is related to the increased expression of TGF-β_1 is unknown.If so,whether the role of SLPI is mediated through Smads signal pathway needs further investigation.To address the role of TGF-β_1/Smads on the regulation of SLPI in the bronchi and lung tissues of COPD,COPD model was established and the rats were treated with TGF-β_1 monoclonal antibody;the normal human bronchial epithelial cell (NHBE)line was cultured and it was stimulated with TGF-β_1 and siRNA (Smad4).Then,the relationship among the expression of SLPI TGF-β_1 and Smad4 in the bronchi and lung tissues were observed,and the role of TGF-β_1/Smads on the decreased expression of SLPI in NHBE cells was investigated.
     1.Expression of secretory leukocyte proteinase inhibitor in the bronchi and lung tissues of chronic obstructive pulmonary disease rat models and the regu-lative mechanism by TGF-β_1
     Rat COPD model was established by intratracheal instillation of lipopoly-saccharide(LPS)twice and exposure to cigarette smoke daily; drug intervention group received TGF-β_1 monoclonal antibody 0.5 mg twice via the tail venous injection.The spirometry was conducted and the pathological changes were observed,the concentrations of SLPI in bronchoalveolar lavage fluid(BALF)was measured by enzyme-linked inmunosorbent assay(ELISA);The expressions of TGF-β_1、Smad4 and SLPI in the bronchi and lung tissues were examined by using immunohistochemistry,and the expressions of TGF-β_1 mRNA,Smad4 mRNA and SLPI mRNA in the bronchi and lung tissues were detected by reverse transcription-polymerase chain reaction(RT-PCR)respectively.
     Results showed:The PEF,FEV_(0.3)and FEV_(0.3)/FVC in COPD model group were significantly lower than those in the control group(all P<0.01).After treated with TGF-β_1 monoclonal antibody,the PEF,FEV_(0.3) and FEV_(0.3)/FVC in the TGF-β_1 monoclonal antibody intervention group were all significantly improved as compared with the COPD model group (all P<0.01).Compared with the control group,a portion of the airway epithelium and some cilia had been shed,inflammatory cells infiltrated some airway walls,smooth muscles in the airway walls and small artery walls had proliferated irregularly,air spaces were enlarged in an irregular manner,some alveoli were confluent and bullae were seen in the COPD model group.Compared with the COPD model group,significant improvement was seen in the shedding of airway epithelium and cilia,the proliferation of smooth muscle in airway walls and small artery walls was great alleviated,air spaces were not obviously enlarged in the TGF-β_1 monoclonal antibody intervention group.The concentration of secretion of SLPI in BALF of the COPD model group was significantly lower than that in the control group(P<0.01).After treated with TGF-β_1 monoclonal antibody,the concentration of secretion of SLPI in BALF of the TGF-β_1 monoclonal antibody intervention group was significantly improved as compared with the COPD model group(all P<0.01).Both at the mRNA level and the protein level,the expressions of both TGF-β_1 and Smad4 in the COPD model group were higher than those in the control group(all P<0.01),while the expression of SLPI was lower in the COPD model group than that in the control group(P<0.01).After treated with TGF-β_1 monoclonal antibody,the expressions of both TGF-β_1 and Smad4 were all significantly decreased in TGF-β_1 monoclonal antibody intervention group both at the mRNA level and the protein level as compared with the COPD model,grouP(all P<0.01),however,the expression of SLPI was significantly increased in TGF-β_1 monoclonal antibody intervention group both at the mRNA level and the protein level as compared with the COPD model group(all P<0.01).According to TGF-β_1 and Smad4,the main immune positive cell types were vascular smooth muscle cell, airway epithelial cell,alveolar epithelial cell,pulmonary interstitial cell and macrophage cells;but to SLPI,the main immune positive cell type was only airway epithelial cell.TGF-β_1 was mainly stained in membrane, Smad4 and SLPI were both stained in cytoplasm,but Smad4 was stained in nuclus,too.
     2.The expression of secretory leukocyte proteinase inhibitor in human bronchial epithelial cell is downregulated by TGF-β_1/Smads pathway.
     The normal human bronchial epithelial cell(NHBE)was cultured, preincubated with or without siRNA(Smad4),and then stimulated with or without TGF-β_1.The expressions of Smad4 and SLPI were detected by immunocytochemistry,western blot and RT-PCR respectively.
     Results showed:The expression of SLPI in NHBE was inhibited by TGF-β_1 both at the mRNA level and the protein level(all P<0.01).The expression of Smad4 in NHBE was successfully inhibited by siRNA (Smad4)both at the mRNA level and the protein level(all P<0.01),but it was not affected by negative control siRNA(all P>0.05).At the same time,the results indicated that,after preincubated with siRNA(Smad4) then stimulated with TGF-β_1,the effects of TGF-β_1-inhibited expression of SLPI in NHBE was disengaged by siRNA(Smad4)both at the mRNA level and the protein level(all P<0.01),but it was not affected by negative control siRNA.(all P>0.05)
     The above two parts prompted:the expression of SLPI in the airway of the COPD rat model was significantly decreased,which may be mainly caused by the increased expression of TGF-β_1,and the activation of Smads signal pathway play a crucial role in this process.
引文
[1]Holland WW.Chronic obstructive tung.disease prevention[J].Br J Dis Chest.1988,82(1):32-44.
    [2]Burge PS.Occupation and chronic obstructive pulmonary disease(COPD)[J].Eur Respir J.1994 Jun,7(6):1032-1034.
    [3]Petty TL.Chronic obstructive pulmonary disease-can we do better[J]? Chest.1990 Feb,97(2 Suppl):2S-5S.
    [4]Luisetti M,Piccioni PD,Dormetta,et al.Protease-antiprotease imbalance:local evaluation with bronchoalveolar lavage.Respiration.1992,59 Suppl 1:24-27.
    [5]周向东、黄勇,急性肺损伤时肺血管床中性粒细胞滞留的分子基础,中华内科杂志,1996,35(8):559.
    [6]Liden M,Rasmussen JB,Piitulainen E,et al.Airway inflammation in smokers with nonobstructive and obstructive chronic bronchitis[J].Am Rev Respir Dis.1993 Nov,148(5):1226-1232.
    [7]Chodosh S.Examination of sputum cells[J].N Engl J Meal.1970 Apr 9,282(15):854-857.
    [8]Martin TR,Raghu G,Maunder RJ,et al.The effects of chronic bronchitis and chronic airflow obstruction on long cell populations recovered by bronchoalveolar lavage[J].Am Rev Respir Dis.1985 Aug,132(2):254-260.
    [9]Ronchi Me,Piragino C,Rosi E,et al.Role of sputum differential cell count in detecting airway inflammation in patients with chronic bronchial asthma or COPD.Thorax,1996 Oct,51(10):1000-1004.
    [10]Thompson AB,Daughton D,Robbins RA,et al.Intraluminal airway inflammation in chronic bronchitis characterization and correlation with clinical parameters.Am Rev Respir Dis,1989 Dec,140(6):1527-1537.
    [11]Bingle L,Tetley TD.Secretory leuk0protease inhibitor:partnering alpha 1-proteinase inhibitor to combat pulmonary inflammation.Thorax.1996 Dec 51(12):1273-1274.
    [12]Schalkwijk J,Wiedow O,Hirose S.The trappin gene family:proteins defined by an N-terminal transglutaminase substrate domain and a C-terminal fourdisulphide core.Biochem J.1999 Jun 15;340(pt 3):569-577.
    [13]Hochstrasser K,Reichert R,Schwarz S,et al.[Isolation and characterisation of a protease inhibitor from human bronchial secretion].Hoppe Seylers Z Physiol Chem.1972 Feb;353(2):221-226.
    [14]Eisenberg SP,Hale KK,Heimdal P,et al.Location of the protease-inhibitory region of secretory leukocyte protease inhibitor.J Biol Chem.1990;265:7976-7981.
    [15]Renesto P,Balloy V,Kamimura T,et al.Inhibition by recombinant SLPI and half-SLPI(Asn55-Ala107)of elastase and cathepsin G activities:consequence for neutrophil-platelet cooperation.Br J PharmacoI.1993;108:1100-1106.
    [16]Masuda K,Kamimura T,Kanesaki M,et al.Efficient production of the C-terminal domain of secretory leukoprotease inhibitor as a thrombin-cleavable fusion protein in Escherichia coli.Protein Eng.1996;9:101-106.
    [17]Pemberton AD,Huntley JF,Miller HR.Differential inhibition of mast cell chymases by secretory leukocyte protease inhibitor.Biochim Biophys Acta,1998;1379:29-34.
    [18]Shugars DC,Sauls DL,Weinberg JB.Secretory leukocyte protease inhibitor blocks infectivity of primary monocytes and mononuclear ceils with both monocytotropic and lymphocytotropic strains of human immunodeficiency virus type I.Oral Dis.1997;3:S70-72.
    [19]Tomee JF,Koeter GH,Hiemstra PS,et al.Secretory leukoprotease inhibitor:a native antimicrobial protein presenting a new therapeutic option? Thorax.1998;53:1t4-116.
    [20]Hiemstra PS,Maassen RJ,Stolk J,et al.Antibacterial activity of antileukoprotease.Infect Immun.1996;64:4520-4524,
    [21]Zang Y,De Witt DL,McNeely TB,et al.Secretory leukocyte protease inhibitor suppresses the production of monocyte prostaglandin H synthase-2,prostaglandin E2,and matrix metalloproteases.J Clin Invest.1997;99:894-900.
    [22]Lentsch AB,Jordan JA,Czermak BJ,et al.Inhibition of NF-kappaB activation and augmentation of IkappaBbeta by secretory leukocyte protease inhibitor during lung inflammation.Am J Pathol.1999;154:239-247.
    [23]Ward PA,Lentsch AB.Endogenous regulation of the acute inflammatory response.Mol Cell Biochem.2002;234-235:225-228.
    [24]McElvaney NG,Nakamura H,Birrer P,et al.Modulation of airway inflammation in cystic fibrosis.In vivo suppression of interleukin-8 levels on the respiratory epithelial surface by aerosolization of recombinant secretory leukoprotease inhibitor.J Olin Invest.1992 Oct;90(4):1296-1301.
    [25]Hill AT,Bayley D,Stockley RA.The interrelationship of sputum inflammatory markers in patients with chronic bronchitis.Am J Respir Crit Care Med.1999Sep;160(3):893-898.
    [26]Gompertz S,Bayley DL,Hill SL,et al.Relationship between airway inflammation and the frequency of exacerbations in patients with smoking related COPD.Thorax.2001 Jan;56(1):36-41.
    [27]Suzuki T,Wang W,Lin JT,et al.Aerosolized human neutrophil elastase induces airway constriction and hyperresponsiveness with protection by intravenous pretreatment with half-length secretory leukoprotease inhibitor.Am J Respir Crit CareMeal.1996 Apr;153(4 Pt 1):1405-1411.
    [28]Rudolphus A,Kramps JA,Dijkman JH.Effect of human antileucoprotease on experimental emphysema.Eur Respir J.1991 Jan;4(1):31-39.
    [29]Rudolphus A,Stolk J,Dijkman JH,et al.Inhibition of lipopolysaccharideinduced pulmonary emphysema by intratracheally instilled recombinant secretory leukocyte proteinase inhibitor.Am Rev Respir Dis.1993 Feb;147(2):442-447.
    [30]Border WA,Noble NA.Transforming growth factor[beta]in tissue frbrosis.N Engl J Med,1994,331:1286-1292.
    [31]de Boer WI,van Schadewijk A,Sont JK,et al.Transforming growth factor betal and recruitment of macrophages and mast cells in airways in chronic obstructive pulmonary disease.Am J Respir Crit Care Med.1998 Dec;158(6):1951-1957.
    [32]葛晓娜、熊密、郝春荣,肌动蛋白和转化生长因子-β1在大鼠试验性肺气肿发生中的作用,中华病理学杂志,2003年4月第32卷第2期,P142-P146。
    [33]钟小宁、白晶、施焕中等,慢性支气管炎与肺气肿大鼠气道炎症与重塑的实验研究,中华结核和呼吸杂志,2003年12月第26卷第12期,P750-P755。
    [34]Higashimoto Y,Elliott WM,Behzad AR,et al.Inflammatory mediator mRNA expression by adenovirus ElA-transfected bronchial epithelial ceils.Am J Respir Crit Care Med.2002 Jul 15;166(2):200-207.
    [35]李莉、阮英茆、陈颖等,转化生长因子β1在吸烟诱发地鼠慢性支气管炎与肺气肿肺组织中的表达,中华结核和呼吸杂志,2002年5月第25卷第5期,P284-P286。
    [36]Takizawa H,Tanaka M,Takami K,et al.Increased expression of transforming growth factor-betal in small airway epithelium from tobacco smokers and patients with chronic obstructive pulmonary disease(COPD).Am J Respir Crit Care Meal.2001 May;163(6):1476-1483.
    [37]吴定钱、刘进、鲁晓勇等,早期药物干预对慢性阻塞性肺疾病大鼠转化生长因子β1的表达影响,浙江大学学报(医学版),2004年第33卷第5期,P427-P432。
    [38]宋一平、崔德健、茅培英等,慢性阻塞性肺疾病大鼠模型气道重塑及生长因子的研究,中华结核和呼吸杂志,2001年5月第24卷第5期,P283-P287。
    [39]宋一平、崔德健、茅培英等,生长因子在慢性阻塞性肺疾病大鼠模型气道重塑中的作用,中华内科杂志,2000年11月第39卷第11期,P751-P754。
    [40]Massague J,Chen YG.Controlling TGF-[beta]signaling.Genes Dev,2000,14:627-644.
    [41]Jaumann F,Elssner A,Mazur G,et al.Transforming growth factor-betal is a potent inhibitor of secretory leukoprotease inhibitor expression in a bronchial epithelial cell line.Munich Lung Transplant Group.Eur Respir J.2000 Jun;15(6):1052-1057.
    [42]Kaiyin Wu,Tong Zhou,Guizhi Sun,et al.Valsartan Inhibited the Accumulation of Dendritic Cells in Rat Fibrotic Renal Tissue Cell Mol Immunol.2006 Jun;3(3):213-220.
    [43]Do Youn Park,Chang Hun Lee,Mee Young Sol,et al.Expression and Localization of the Transforming Growth Factor-Type I receptor and Smads in.Preneoplastic Lesions during Chemical Hepatocarcinogenesis in Rats.J Korean Med Sci.2003;18:510-519.
    [44]胡淳玲,喻伦银,陈德基等.大鼠试验性肺癌癌变各阶段微血管密度及VEGF、FLK-1表达的动态变化.癌症杂志,2001,20:713-717
    [45]邢传平,刘斌,董亮.免疫组织化学标记结果的判断方法.中华病理学杂志,2001年8月第30卷第4期,P318-318.
    [46]Kodavanti UP,Jackson MC,Ledbeter AL,et al.The combination of elastase and sulfur dioxide exposure causes COPD-like lesions in the rat.Chest.2000;117(5):299s-302s
    [47]Xu J,Zhao M,Liao S.Establishment and pathological study of models of chronic obstructive pulmonary disease by S02 in halation method.Chin Med J (Engl),2000,113(3):213-216
    [48]许浒,熊密,黄庆华等.细菌感染导致慢性阻塞性肺病大鼠模型的探讨[J]中华结核和呼吸杂志,1999,22(12):739-742
    [49]宋一平,崔德健,茅培英.慢性阻塞性肺疾病大鼠模型的建立及药物干预的影响[J].中华内科杂志,2000,39(8):556-557
    [50]郑鸿翱.建立慢性阻塞性肺疾病动物模型方法的研究进展.中国实验动物学报,2003,11:249-252
    [51]Paigen K.A miracke enough:the power of mice.Nature Med.1995;1:215-220.
    [52]许三林,吴人亮,陈春莲等.Ecadherin在吸烟小鼠气道上皮损伤修复中表达的研究.中华结核和呼吸杂志,1999,22:417-419
    [53]迟春花,何冰,汤秀英等.烟草雾吸入导致慢阻肺机制的实验研究-大鼠Clara 细胞结构及其分泌蛋白的变化.心肺血管病杂志,2000,19:224-227
    [54]李红梅,崔德健,马楠等.细胞外基质重塑的大鼠慢性阻塞性肺疾病模型气流阻塞中的作用[J].中华结核和呼吸杂志,2002,25(7):403-407
    [55]Takeyama K,Jung.B,Shim JJ,et al.Activation of epidermal growth factor receptors is responsible for mucin synthesis induced by cigarette smoke.Am J Physiol Lung Cell Mol Physiol,2001,280(1):L165-L172
    [56]陈祥银,赵青,赵磊等.中药制剂对烟雾刺激所致地鼠呼吸道炎症的保护作用.基础医学与临床,1999,19:69-72
    [57]Stolk J,Rudolphus A,Daviest P,et al.Induction of emphysema and bronchial mucus cell hyperplasia by intratracheal instillation of lipopolysaccharide in the hamster.J Pathol,1992,167(2):349-356
    [58]李红梅,崔德健,伶欣等.熏香烟加气管注内毒素和单纯熏香烟法建立大鼠COPD模型[J].中国病理生理杂志,2002,18(7):808-812.
    [59]Lopez-Casillas F,Payne H M,Andress JL,et al.Betaglycan can act as a dual modulator of TGF-beta access to signaling receptors:mapping of ligand binding and GAG attachment sites.J Cell Biol.1994;124:557-568.
    [60]Yang X,Letterio JJ,Lechleider RJ,et al.Targeted disruption of SMAD3 results in impaired mucosal immunity and diminished T cell responsiveness to TGFbeta.EMBO J.1999 Mar 1;18(5):1280-1291.
    [61]李广虎,李志平等,TGF-b信号转导在放射性肺纤维化形成中的作用和意义,中华放射学与防护杂志,2005年2月第25卷第1期,P97-99.
    [62]Jono H,Xu H,Kai H,et al.Transforming growth factor-beta-Smad signaling pathway negatively regulates nontypeable Haemophilus influenzae-induced MUC5AC mucin transcription via mitogen-activated protein kinase(MAPK)phosphatase-1-dependent inhibition of p38 MAPK.J Biol Chem.2003 Jul 25;278(30):27811-27819.Epub 2003 May 6.
    [63]王秀梅,付松滨等,TGF-b/Smads信号传导通路与肿瘤关系的研究进展,国外医学遗传学分册,2004年12月15日第27卷第6期,P341-344.
    [64]杨玲,罗勇,徐卫国等.谷氨酰胺对COPD营养不良患者免疫功能的影响.实用医学杂志2004年第20卷第8期 P869-871.
    [65]杜雪梅、崔玉芳、孙启鸿等,SMADs介导的TGF-b信号转导途径及其在放射性肺损伤中的作用,科学技术与工程,2003年第3卷第1期,P91-93.
    [66]Celedon JC,Lange C,Raby BA,et al.The transforming growth factor-betal (TGFB1)gene is associated with chronic obstructive pulmonary disease(COPD).Hum Mol Genet.2004 Aug 1;13(15):1649-1656.Epub 2004 Jun 2.
    [67]Hersh CP,Demeo DL,Lazarus R,et al.Genetic Association Analysis of Functional Impairment in Chronic Obstructive Pulmonary Disease.Am J Respir Crit Care Med.2006 May 1;173(9):977-984.Epub 2006 Feb 2.
    [68]Su ZG,Wen FQ,Feng YL,et al.Transforming growth factor-betal gene polymorphisms associated with chronic obstructive pulmonary disease in Chinese population.Acta Pharmacol Sin.2005 Jun;26(6):714-720.
    [69]Ogawa E,Elliott WM,Hughes F,et al.Latent adenoviral infection induces production of growth factors relevant to airway remodeling in COPD.Am J Physiol Lung Cell Mol Physiol.2004 Jan;286(1):L189-197.Epub 2003 Sep 26.
    [70]Higashimoto Y,Yarnagata Y,Iwata T,et al.Adenoviral E1A suppresses secretory leukoprotease inhibitor and elafin secretion in human alveolar epithelial cells and bronchial epithelial cells.Respiration.2005 Nov-Dec;72(6):629-635.
    [71]Sallenave JM,Shulmann J,Crossley J,et al.Regulation of secretory leukocyte proteinase inhibitor(SLPI)and elastase-specific inhibitor(ESI/elafin)in human airway epithelial cells by cytokines and neutrophilic enzymes.Am J Respir Cell Mol Biol.1994 Dec;11(6):733-741.
    [72]Abbinante-Nissen JM,Simpson LG,Leikauf GD.Corticosteroids increase secretory leukocyte protease inhibitor transcript levels in airway epithelial cells.Am J Physiol.1995 Apr;268(4 Pt 1):L601-606.
    [73]Maruyarna M,Hay JG,Yoshimura K,et al.Modulation of secretory leukoprotease inhibitor gene expression in human bronchial epithelial cells by phorbol ester.J Clin Invest.1994 Jul;94(1):368-375.
    [74]van Wetering S,van der Linden AC,van Sterkenburg MA,et al.Regulation of secretory leukocyte proteinase inhibitor(SLPI)production by human bronchial epithelial cells:increase of cell-associated SLPI by neutrophil elastase.J Investig Med.2000 Sep;48(5):359-366.
    [75]Marchand V,Tournier JM,Polette M,et al.The elastase-induced expression of secretory leukocyte protease inhibitor is decreased in remodelled airway epithelium,Eur J Pharmacol.1997 Oct 8;336(2-3):187-196.
    [76]van Wetering S,van der Linden AC,van Sterkenburg MA,et al.Regulation of SLPI and elafin release from bronchial epithelial cells by neutrophil defensins. Am J Physiol Lung Cell Mol Physiol.2000 Jan;278(1):L51-58.
    [77]Abbinante-Nissen JM,Simpson LG,Leikauf GD.Neutrophil elastase increases secretory leukocyte protease inhibitor transcript levels in airway epithelial cells.Am J Physiol.1993 Sep;265(3 Pt 1):L286-292.
    [78]Abbinante-Nissen JM,Simpson LG,Leikauf GD.Neutrophil elastase increases secretory leukocyte protease inhibitor transcript levels in airway epithelial cells.Am J Physiol.1993 Sep;265(3 Pt 1):L286-L292.
    [79]Sallenave JM,Shulmann J,Crossley J,et al.Regulation of secretory leukocyte inhibitor(SLPI)and elastase-specific inhibitor(ESI/Elafin)in human airway epithelial cells by cytoldnes and neutrophilic enzymes.Am J Respir Cell Mol Biol.1994 Dec;11(6):773-741.
    [80]Hollander C,Nystrom M,Janciauskiene S,et al.Human mast cells decrease SLPI levels in type Ⅱ-like alveolar cell model,in vitro.Cancer Cell Int.2003Aug 20;3(1):14.
    [81]Higashimoto Y,Yamagata Y,Iwata T,et al.Adenoviral E1A suppresses secretory leukoprotease inhibitor and elafin secretion in human alveolar epithelial cells and bronchial epithelial cells.Respiration.2005 Nov-Dec;72(6):629-635.
    [82]Bouras M,Tabone E,Bertholon J,et al.A novel SMAD4 gene mutation in seminoma germ cell tumors.Cancer Res.2000 Feb 15;60(4):922-928.
    [83]Si-Tahar M,Merlin D,Sitaraman S,et al.Constitutive and Regulated Secretion of Secretory Leukocyte Proteinase Inhibitor by Human Intestinal Epithelial Cells Gastroenterology.2000 Jun;118(6):1061-1071.
    [84]叶绿,张红英,杨光华等,转化生长因子-β/Smad信号对人横纹肌肉瘤细胞RD生长和凋亡的调控。中华病理学杂志2005年7月第34卷第7期。P407-412.
    [85]Zhao J,Crowe DL,Castillo C,et al.Smad7 is a TGF-beta-inducible attenuator of Smad2/3-mediated inhibition of embryonic lung morphogenesis.Mech Dev.2000 May;93(1-2):71-81.
    [86]Rosendahl A,Checchin D,Fehniger TE,et al.Activation of the TGF-beta/activin-Smad2 pathway during allergic airway inflammation.Am J Respir Cell Mol Biol. 2001 M; 25(1): 60-68.
    [87] Wen FQ, Liu X, Kobayashi T, et al. Interferon-gamma inhibits transforming growth factor-beta production in human airway epithelial cells by targeting Smads. Am J Respir Cell Mol Biol. 2004 Jun; 30(6): 816-822. Epub 2004 Jan 12.
    [88] Fire A, Xu AQ, Montgomery MK, et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 1998,391: 806-811.
    [89] Misquitta L, Paterson BM. Targeted disruption of gene function in Drosophila by RNA interference (RNAi): a role for nautilus in embryonic somatic muscles formation. Proc Natl Acad Sci USA, 1999, 96: 1451-1456.
    [90] Mourrain P, Beclin C, Elmayan T, et al. Arabidopsis SGS2 and SGS3 genes are required for posttranscriptional gene silencing and natural virus resistance. Cell. 2000 May 26; 101(5): 533-542.
    [91] Yang D, Lu H, Erickson JW. Evidence that processed small dsRNAs may mediate sequence2specific mRNA degradation during RNAi in drosophila embryos. Curr Biol. 2000 Oct 5, 10(19): 1191-1200.
    [92] Lipardi C, Wei Q, Paterson BM. RNAi as random degradative PCR: siRNA primers convert mRNA into dsRNAs that are degraded to generate new siRNAs. Cell. 2001 Nov 2; 107(3): 297-307.
    
    [93] Dzitoyeva S, Dimitrijevic N, Manev H. Intra-abdominal injection of double- stranded RNA into anesthetized adult Drosophila triggers RNA interference in the central nervous system. Mol Psychiatry. 2001 Nov; 6(6): 665-670.
    [1]Holland WW.Chronic obstructive lung disease prevention[J].Br J Dis Chest.1988,82(1):32-44.
    [2]Burge PS.Occupation and chronic obstructive pulmonary disease(COPD)[J].Eur Respir J.1994 Jun,7(6):1032-1034.
    [3]Petty TL.Chronic obstructive pulmonary disease-can we do better[J]? Chest.1990 Feb,97(2 Suppl):2S-5S.
    [4]Liden M,Rasmussen JB,Piitulainen E,et al.Airway inflammation in smokers with nonobstructive and obstructive chronic bronchitis[J].Am Rev Respir Dis.1993 Nov,148(5):1226-1232.
    [5]Chodosh S.Examination of sputum cells[J].N Engl J Med.1970 Apr 9,282(15):854-857.
    [6]Martin TR,Raghu G,Maunder RJ,et al.The effects of chronic bronchitis and chronic airflow obstruction on long cell populations recovered by bronchoalveolar lavage[J].Am Rev Respir Dis.1985 Aug,132(2):254-260.
    [7]Ronehi MC,Piragino C,Rosi E,et al.Role of sputum differential cell count in detecting airway inflammation in patients with chronic bronchial asthma or COPD.Thorax,1996 Oct,51(10):1000-1004.
    [8]Thompson AB,Daughton D,Robbins RA,et al.Intraluminal airway inflammation in chronic bronchitis characterization and correlation with clinical parameters.Am Rev Respir Dis,1989 Dec,140(6):1527-1537.
    [9]Churg A,Zay K,Shay S,et al.Acute cigarette smoke-induced connective tissue breakdown requires both neutrophils and macrophage metalloelastase in mice. Am J Respir Cell Mol Biol,2002 Sep,27(3):368-374.
    [10]Luisetti M,Piccioni PD,Donnetta,et al.Protease-antiprotease imbalance:local evaluation with bronchoalveolar lavage.Respiration.1992,59 Suppl 1:24-27.
    [11]周向东、黄勇,急性肺损伤时肺血管床中性粒细胞滞留的分子基础,中华内科杂志,1996,35(8):556。
    [12]Stocldey RA.The role of proteinases in the pathogenesis of chronic bronchitis.Am J Respir Crit Care Med,1994 Dec,150(6 Pt 2):S109-S113.
    [13]Finlay GA,Russell KJ,McMahon KJ,et al.Elevated levels of matrix metalloproteinases in bronchoalveolar lavage fluid of emphysematous patients.Thorax,1997 Jun,52(6):502-506.
    [14]Yim JJ,Park GY,Lee CT,et al.Genetic susceptibility to chronic obstructive pulmonary disease in Koreans:combined analysis of polymorphic genotypes for microsomal epoxide hydrolase and giutathione S-transferaseM1 and T1.Thorax,2000 Feb,55(2):121-125.
    [15]Halpern MT,Stanford RH,Borker R.The burden of COPD in the U.S.A.:results from the Confronting COPD survey.Respir Med,2003 Mar,97 Suppl C:S81-S89.
    [16]Stecenko AA,Brigham KL.Gene therapy progress and prospects:alpha-1antitrypsin.Gene Ther,2003 Jan,10(2):95-99.
    [17]Koyama H,Geddes DM.Genes,oxidative stress,and the risk of chronic obstructive pulmonary disease.Thorax,1998 Aug,53 Suppl 2:S10-S14.
    [18]Bingle L,Tetley TD.Secretory leukoprotease inhibitor:partnering alpha 1-proteinase inhibitor to combat pulmonary inflammation.Thorax.1996 Dec 51(12):1273-1274.
    [19]Schalkwijk J,Wiedow O,Hirose S.The trappin gene family:proteins defined by an N-terminal transglutaminase substrate domain and a C-terminal fourdisulphide core.Biochem J.1999 Jun 15;340(pt 3):569-577.
    [20]Hochstrasser K,Reichert R,Schwarz S,et al.[Isolation and characterisation of a protease inhibitor from human bronchial secretion].Hoppe Seylers Z Physiol Chem.1972 Feb;353(2):221-226.
    [21]Eisenberg SP,Hale KK,Heimdal P,et al.Location of the protease-inhibitory region of secretory leukocyte protease inhibitor.J Biol Chem.1990;265:7976-7981.
    [22]Renesto P,Balloy V,Kamimura T,et al.Inhibition by recombinant SLPI and half-SLPI(Asn55-Ala107)of elastase and cathepsin G activities:consequence for neutrophil-platelet cooperation.Br J Pharmacol.1993;108:1100-1106.
    [23]Masuda K,Kamimura T,Kanesaki M,et al.Efficient production of the C-terminal domain of secretory leukoprotease inhibitor as a thrombin-cleavable fusion protein in Escherichia coli.Protein Eng.1996;9:101-106.
    [24]Pemberton AD,Huntley JF,Miller HR.Differential inhibition of mast cell chymases by secretory leukocyte protease inhibitor.Biochim Biophys Acta.1998;1379:29-34.
    [25]Shugars DC,Sauls DL,Weinberg JB.Secretory leukocyte protease inhibitor blocks infectivity of primary monocytes and mononuclear cells with both monocytotropic and lymphocytotropic strains of human immunodeficiency virus type Ⅰ.Oral Dis.1997;3:S70-72.
    [26]Tomee JF,Koeter GH,Hiemstra PS,et al.Secretory leukoprotease inhibitor:a native antimicrobial protein presenting a new therapeutic option? Thorax.1998;53:114-116.
    [27]Hiemstra PS,Maassen RJ,Stolk J,et al.Antibacterial activity of antileukoprotease.Infect Immun.1996;64:4520-4524
    [28]Zang Y,De Witt DL,McNeely TB,et al.Secretory leukocyte protease inhibitor suppresses the production of monocyte prostaglandin H synthase-2,prostaglandin E2,and matrix metalloproteases.J Clin Invest.1997;99:894-900.
    [29]Lentsch AB,Jordan JA,Czermak BJ,et al.Inhibition of NF-kappaB activation and augmentation of IkappaBbeta by secretory leukocyte protease inhibitor during lung inflammation.Am J Pathol.1999;154:239-247.
    [30]Ward PA,Lentsch AB.Endogenous regulation of the acute inflammatory response.Mol Cell Biochem.2002;234-235:225-228.
    [31] McElvaney NG, Nakamura H, Birrer P, et al. Modulation of airway inflammation in cystic fibrosis. In vivo suppression of interleukin-8 levels on the respiratory epithelial surface by aerosolization of recombinant secretory leukoprotease inhibitor. J Clin Invest. 1992 Oct; 90(4): 1296-301.
    [32] Sallenave JM, Shulmann J, Crossley J, et al. Regulation of secretory leukocyte proteinase inhibitor (SLPI) and elastase-specific inhibitor (ESI/elafin) in human airway epithelial cells by cytokines and neutrophilic enzymes. Am J Respir Cell Mol Biol. 1994 Dec, 11(6): 733-741.
    [33] Abbinante-Nissen JM, Simpson LG, Leikauf GD. Corticosteroids increase secretory leukocyte protease inhibitor transcript levels in airway epithelial cells. Am J Physiol. 1995 Apr; 268(4 Pt 1): L601-606.
    [34] Maruyama M, Hay JG, Yoshimura K, et al. Modulation of secretory leukoprotease inhibitor gene expression in human bronchial epithelial cells by phorbol ester. J Clin Invest. 1994 Jul; 94(1): 368-375.
    [35] van Wetering S, van der Linden AC, van Sterkenburg MA, et al. Regulation of secretory leukocyte proteinase inhibitor (SLPI) production by human bronchial epithelial cells: increase of cell-associated SLPI by neutrophil elastase. J Investig Med. 2000 Sep; 48(5): 359-366.
    [36] Marchand V, Tournier JM, Polette M, et al. The elastase-induced expression of secretory leukocyte protease inhibitor is decreased in remodelled airway epithelium. Eur J Pharmacol. 1997 Oct 8; 336(2-3): 187-196.
    [37] van Wetering S, van der Linden AC, van Sterkenburg MA, et al. Regulation of SLPI and elafin release from bronchial epithelial cells by neutrophil defensins. Am J Physiol Lung Cell Mol Physiol. 2000 Jan; 278(1): L51-58.
    [38] Abbinante-Nissen JM, Simpson LG, Leikauf GD. Neutrophil elastase increases secretory leukocyte protease inhibitor transcript levels in airway epithelial cells. Am J Physiol. 1993 Sep; 265(3 Pt 1): L286-292
    [39] Sallenave JM, Shulmann J, Crossley J, et al. Regulation of secretory leukocyte inhibitor (SLPI) and elastase-specific inhibitor (ESI/Elafm) in human airway epithelial cells by cytokines and neutrophilic enzymes. Am J Respir Cell Mol Biol. 1994 Dec; 11(6): 733-741.
    [40] Hollander C, Nystrom M, Janciauskiene S, et al. Human mast cells decrease SLPI levels in type II - like alveolar cell model, in vitro. Cancer Cell Int. 2003 Aug 20;3(1):14.
    [41] Higashimoto Y, Yamagata Y, Iwata T, et al. Adenoviral ElA suppresses secretory leukoprotease inhibitor and elafin secretion in human alveolar epithelial cells and bronchial epithelial cells. Respiration. 2005 Nov-Dec; 72(6):629-635.
    [42] Hill AT, Bayley D, Stockley RA. The interrelationship of sputum inflammatory markers in patients with chronic bronchitis. Am J Respir Crit Care Med. 1999 Sep; 160(3): 893-898.
    
    [43] Gompertz S, Bayley DL, Hill SL, et al. Relationship between airway infla mmation and the frequency of exacerbations in patients with smoking related COPD. Thorax. 2001 Jan; 56(1): 36-41.
    [44] Suzuki T, Wang W, Lin JT, et al. Aerosolized human neutrophil elastase induces airway constriction and hyperresponsiveness with protection by intravenous pretreatment with half-length secretory leukoprotease inhibitor. Am J Respir Crit Care Med. 1996 Apr; 153(4 Pt 1): 1405-1411.
    [45] Rudolphus A, Kramps JA, Dijkman JH. Effect of human antileucoprotease on experimental emphysema. Eur Respir J. 1991 Jan; 4(1): 31-39.
    [46] Rudolphus A, Stolk J, Dijkman JH, et al. Inhibition of lipopolysaccharide- induced pulmonary emphysema by intratracheally instilled recombinant secretory leukocyte proteinase inhibitor. Am Rev Respir Dis. 1993 Feb; 147 (2): 442-447.
    [47] Massague J. TGF-beta signal transduction. Annu Rev Biochem, 1998, 67: 753-791.
    [48] Border WA, Noble NA .Transforming growth factor beta in tissue fibrosis. N Engl J Med, 1994 Nov10, 331(19): 1286-1292 .
    [49] Piek E, Heldin CH, Ten Dijke P. Specificity, diversity, and regulation inTGF-beta superfamily signaling. FASEB J, 1999 Dec, 13(15): 2105-2124.
    [50] Isaka Y, Tsujie M, Ando Y, et al. Transforming growth factor-beta 1 antisense oligodeoxynucleotides block interstitial fibrosis in unilateral ureteral obstruction. Kidney Int, 2000 Nov, 58(5):1885-1892.
    [51] Nunes I, Gleizes PE, Metz CN, et al. Latent transforming growth factor-[beta] binding protein domains involved in activation and transglutaminase- dependent cross-linking of latent transforming growth factor-beta. J Cell Biol, 1997 Mar 10,136(5): 1151-1163.
    [52] Lopez-Casillas F, Payne HM, Andres JL, et al. Betaglycan can act as a dual modulator of TGF-beta access to signaling receptors: mapping of ligand binding and GAG attachment sites . J Cell Biol, 1994 Feb, 124(4): 557-568.
    [53] Wrana JL, Attisano L, Wieser R, et al. Mechanism of activation of the TGF-beta receptor. Nature, 1994 Aug 4, 370(6488): 341-347.
    [54] Massague J, Chen YG Controlling TGF-beta signaling. Genes Dev, 2000 Mar 15,14(6): 627-644.
    [55] Shi Y, Hata A, Lo RS, et al. A structure basis for mutational inactivation of the tumor suppress or Smad4. Nature, 1997 Jun 3, 388(6637): 87-93.
    [56] Imamura T, Takase M, Nishihara A, et al. Smad6 inhibits signaling by the TGF- beta superfamily. Nature, 1997 Oct 9, 389(6651): 622-626.
    [57] Sterner-Kock A, Thorey IS, Koli K, et al. Disruption of the gene encoding the latent transforming growth factor-beta binding protein 4 (LTBP-4) causes abnormal lung development, cardiomyopathy, and colorectal cancer. Genes Dev. 2002 Sep 1; 16(17): 2264-2273.
    
    [58] Morris DG, Huang X, Kaminski N, et al. Loss of integrin alpha(v)beta6-mediated TGF-beta activation causes Mmpl2-dependent emphysema. Nature. 2003 Mar 13; 422(6928): 169-173.
    
    [59] Colarossi C, Chen Y, Obata H, et al. Lung alveolar septation defects in Ltbp-3-null mice. Am J Pathol. 2005 Aug; 167(2): 419-428.
    [60] Sugiura H, Liu X, Kobayashi T, et al. Reactive Nitrogen Species Augment Fibroblast-Mediated Collagen Gel Contraction, Mediator Production, and Chemotaxis. Am J Respir Cell Mol Biol. 2006 May; 34(5): 592-599. Epub 2006 Jan 6.
    [61]Kim H,Liu X,Kobayashi T,et al.Ultrafine carbon black particles inhibit human lung fibroblast-mediated collagen gel contraction.Am J Respir Cell Mol Biol.2003 Jan;28(1):111-121.
    [62]Yang X,Letterio JJ,Lechleider RJ,et al.Targeted disruption of SMAD3 results in impaired mucosal immunity and diminished T cell responsiveness to TGFbeta.EMBO J.1999 Mar 1;18(5):1280-1291.
    [63]李广虎、李志平,TGF-β信号转导在放射性肺纤维化形成中的作用和意义,中华放射学与防护杂志,2005年2月第25卷第1期,P97-99。
    [64]Jono H,Xu H,Kai H,et al.Transforming growth factor-beta-Smad signaling pathway negatively regulates nontypeable Haemophilus influenzae-induced MUC5AC mucin transcription via mitogen-activated protein kinase(MAPK)phosphatase-1-dependent inhibition of p38 MAPK.J Biol Chem.2003 Jul 25;278(30):27811-27819.Epub 2003 May 6.
    [65]王秀梅、付松滨,TGF-β/Smads信号传导通路与肿瘤关系的研究进展,国外医学遗传学分册,2004年12月15日第27卷第6期,P341-344。
    [66]杨玲、罗勇、徐卫国等,谷氨酰胺对COPD营养不良患者免疫功能的影响,实用医学杂志,2004年第20卷第8期P869-871。
    [67]杜雪梅、崔玉芳、孙启鸿等,SMADs介导的TGF-β信号转导通路及其在放射性肺损伤中的作用,科学技术与工程,2003年第3卷第1期。P91-93。
    [68]Celedon JC,Lange C,Raby BA,et al.The transforming growth factor-betal (TGFB1)gene is associated with chronic obstructive pulmonary disease (COPD).Hum Mol Genet.2004 Aug 1;13(15):1649-1656.Epub 2004 Jun 2.
    [69]Hersh CP,Demeo DL,Lazarus R,et al.Genetic Association Analysis of Functional Impairment in Chronic Obstructive Pulmonary Disease.Am J Respir Crit Care Med.2006 May 1;173(9):977-984.Epub 2006 Feb 2.
    [70]Su ZG,Wen FQ,Feng YL,et al.Transforming growth factor-betal gene polymorphisms associated with chronic obstructive pulmonary disease in Chinese population.Acta Pharmacol Sin.2005.Jun;26(6):714-720.
    [71]de Boer WI,van Schadewijk A,Sont JK,et al.Transforming growth factor betal and recruitment of macrophages and mast cells in airways in chronic obstructive pulmonary disease.Am J Respir Crit Care Med.1998 Dec;158(6):1951-1957.
    [72]葛晓娜、熊密、郝春荣,肌动蛋白和转化生长因子-β1在大鼠试验性肺气肿发生中的作用,中华病理学杂志,2003年4月第32卷第2期,P142-P146。
    [73]钟小宁、白晶、施焕中等,慢性支气管炎与肺气肿大鼠气道炎症与重塑的实验研究,中华结核和呼吸杂志,2003年12月第26卷第12期,P750-P755。
    [74]Higashimoto Y,Elliott WM,Behzad AR,et al.Inflammatory mediator mRNA expression by adenovirus ElA-transfected bronchial epithelial ceils.Am J Respir Crit Care Med.2002 Jul 1.5;166(2):200-207.
    [75]李莉、阮英茆、陈颖等,转化生长因子β1在吸烟诱发地鼠慢性支气管炎与肺气肿肺组织中的表达,中华结核和呼吸杂志,2002年5月第25卷第5期,P284-P286。
    [76]Takizawa H,Tanaka M,Takami K,et al.Increased expression of transforming growth factor-betal in small airway epithelium from tobacco smokers and patients with chronic obstructive pulmonary disease(COPD).Am J Respir Crit Care Med.2001 May;163(6):1476-1483.
    [77]吴定钱、刘进、鲁晓勇等,早期药物干预对慢性阻塞性肺疾病大鼠转化生长因子β1的表达影响,浙江大学学报(医学版),2004年第33卷第5期,P427-P432。
    [78]Ogawa E,Elliott WM,Hughes.F,et al.Latent adenoviral infection induces production of growth factors relevant to airway remodeling in COPD.Am J Physiol Lung Cell Mol Physiol.2004 Jan;286(1):L189-197.Epub 2003 Sep 26.
    [79]宋一平、崔德健、茅培英等,慢性阻塞性肺疾病大鼠模型气道重塑及生长因子的研究,中华结核和呼吸杂志,2001年5月第24卷第5期,P283-P287。
    [80]宋一平、崔德健、茅培英等,生长因子在慢性阻塞性肺疾病大鼠模型气道重塑中的作用,中华内科杂志,2000年11月第39卷第11期,P751-P754。
    [81]Zhao J,Crowe DL,Castillo C,et al.Smad7 is a TGF-beta-inducible attenuator of Smad2/3-mediated inhibition of embryonic lung morphogenesis.Mech Dev. 2000 May; 93(1-2): 71-81.
    [82] Rosendahl A, Checchin D, Fehniger TE, et al. Activation of the TGF-beta/ activin-Smad2 pathway during allergic airway inflammation. Am J Respir Cell Mol Biol. 2001 Jul; 25(1): 60-68.
    [83] Wen FQ, Liu X, Kobayashi T, et al. Interferon-gamma inhibits transforming growth factor-beta production in human airway epithelial cells by targeting Smads. Am J Respir Cell Mol Biol. 2004 Jun; 30(6): 816-822. Epub 2004 Jan 12.
    [84] Springer J, Scholz FR, Peiser C, et al. SMAD-signaling in chronic obstructive pulmonary disease: transcriptional down-regulation of inhibitory SMAD 6 and 7 by cigarette smoke. Biol Chem. 2004 Jul; 385(7): 649-653.
    [85] Sumi Y, Muramatsu H, Hata K, et al. Secretory leukocyte protease inhibitor is a novel inhibitor of fibroblast-mediated collagen gel contraction. Exp Cell Res. 2000 Apr 10; 256(1): 203-212.
    [86] Ashcroft GS, Lei K, Jin W, et al. Secretory leukocyte protease inhibitor mediates non-redundant functions necessary for normal wound healing. Nat Med. 2000 Oct; 6(10): 1147-1153.
    [87] Ace CI, Okulicz WC. Microarray profiling of progesterone-regulated endometrial genes during the rhesus monkey secretory phase. Reprod Biol Endocrinol. 2004 Jul 7; 2:54.
    [88] Zhang XL, Simmen FA, Michel FJ, et al. Increased expression of the Zn-finger transcription factor BTEB1 in human endometrial cells is correlated with distinct cell phenotype, gene expression patterns, and proliferative responsiveness to serum and TGF-beta1. Mol Cell Endocrinol. 2001 Jul 5; 181(1-2): 81-96.
    [89] Zhang D, Simmen RC, Michel FJ, et al. Secretory leukocyte protease inhibitor mediates proliferation of human endometrial epithelial cells by positive and negative regulation of growth-associated genes. J Biol Chem. 2002 Aug 16; 277(33): 29999-30009. Epub 2002 May 22.
    [90] Jaumann F, Elssner A, Mazur G, et al. Transforming growth factor-beta1 is a potent inhibitor of secretory leukoprotease inhibitor expression in a bronchial epithelial cell line.Munich Lung Transplant Group.Eur Respir J.2000 Jun;15(6):1052-1057.
    [91]Sano C,Shimizu T,Sato K,et al.Effects of secretory leucocyte protease inhibitor on the production of the anti-inflammatory cytokines,IL-10 and transforming growth factor-beta(TGF-beta),by lipopolysaccharide-stimulated macrophages.Clin Exp Immunol.2000 Jul;121(1):77-85.
    [92]Sano C,Shimizu T,Sato K,et al.Effects of secretory leukocyte protease inhibitor on the production of some cytokines and nitric oxide by murine peritoneal macrophages in response to lipopolysaccharide stimulation and M.avium complex infection.Kekkaku.1999 Jul;74(7):563-570.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700