山莨菪碱抗休克作用的α7尼古丁受体和β-arrestins抗炎机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:山莨菪碱是中国科学家1965年从茄科植物唐古特莨菪中提取出的生物碱,其人工合成品为654-2。山莨菪碱是托品酸和有机碱形成的酯类,结构与阿托品和东莨菪碱相类似,在托品基的6位炭原子上有不对称的羟基。山莨菪碱属于非选择性的毒蕈碱受体阻断剂,能够阻断M1—M5受体亚型。因此,山莨菪碱有一系列相似于阿托品的药理作用如抑制唾液分泌、抑制胃酸和汗液分泌,抑制胃肠蠕动及膀胱收缩、散瞳、扩张支气管。临床上已经用于由平滑肌痉挛、胃、十二指肠溃疡、胆道痉挛而引起的疼痛,类风湿性关节炎,胃溃疡,急性肾小球肾炎,偏头痛,过敏性紫癜,肺炎、有机磷酸酯类中毒的解救等多种疾病的治疗。自1965年以来,山莨菪碱被用于治疗循环性休克,特别是感染性休克的治疗取得了很好的治疗效果,如北京友谊医院儿科使用山莨菪碱治疗爆发型流行性脑脊髓膜炎,使死亡率从66.9%下降到12.4%,用山莨菪碱治疗中毒性细菌性痢疾,使死亡率从20-30%下降到0.5%。目前关于山莨菪碱抗休克的机制主要包括改善微循环;抑制血栓形成和纤维蛋白溶解作用;稳定溶酶体及抑制组织蛋白酶等,但是其相关的分子生物学机制很少报道。
     Wang等报道乙酰胆碱与巨嗜细胞上尼古丁受体结合能够抑制内毒素诱导的炎性因子TNFα,IL-1β,IL-6,IL-18等分泌。进一步研究发现乙酰胆碱的作用主要是通过与巨嗜细胞上的α7尼古丁受体结合,通过细胞内一系列的信号传递,最终抑制了Jak2-STAT3和NF-κB信号的激活,从而抑制了炎症因子的产生。在内毒素休克大鼠模型中,切断迷走神经能够明显加重内毒素诱导的休克反应,动物对内毒素的致死效应更加敏感。直接刺激迷走神经能够降低内毒素血症大鼠血浆和组织中TNFα和IL-6的含量,阻止血压的持续下降,减缓内毒素引起的低血压休克的发生时相。由于乙酰胆碱是迷走神经末梢分泌的主要神经递质,因此,他们把这条通路命名为胆碱能抗炎通路(cholinergic anti-inflammatory pathway)。胆碱能抗炎通路是通过神经来调节炎症反应程度的重要通路。山莨菪碱是非选择性的M受体阻断剂,因此,我们的第一个假设是:山莨菪碱通过阻断M受体,使迷走神经分泌的乙酰胆碱更多的与α7尼古丁受体结合激活了胆碱能抗炎通路,发挥了抗休克作用。
     β-arrestins是一组多功能的小分子蛋白质,它的经典作用是参与G蛋白偶联受体的脱敏。但是近年来的研究发现,β-arrestins作为脚手架蛋白,也参与了许多非G蛋白偶联受体激活的信号传导,如ERK,JNK,p38,Akt和PI3激酶信号通路等,因此β-arrestins也参与了趋化作用,凋亡作用及肿瘤转移等过程。2006年,Nature上报道了β-arrestins可以和TRAF6结合,负向调节内毒素休克时的信号传导通——TLR-IL-1R(toll-likereceptor-interleukin-1 receptor)信号通路,最终抑制转录因子NF-κB及AP-1的活化,从而抑制炎症因子的产生。此外,Witherow等报道了β-arrestins,特别是β-arrestin-1能够直接与NF-κB的抑制因子IKBα结合,使得IKBα-NF-κB复合体滞留在胞浆中,从而阻止NF-κB进入细胞核而抑制其活化。Gao等研究发现β-arrestin-2能够与IkBα结合,抑制IkBα的磷酸化降解,从而抑制NF-κB信号的激活及炎症因子的表达,并发现刺激β2肾上腺素能受体能够加强β-arrestin2-IkBα复合体的稳定,从而为交感系统的抗炎作用提供了理论依据。Luan等的研究发现β-arrestin-2能够与IkBα结合,抑制紫外线照射引发的NF-κB信号活化。阮等的研究发现在人脐静脉内皮细胞,山莨菪碱能够抑制内毒素诱导的内皮细胞活化,山莨菪碱也能够完全阻断内毒素诱导的NF-κB活化。因此,我们的第二个假设是:山莨菪碱增加了β-arrestins蛋白的表达,β-arrestins蛋白表达增加抑制了NF-κB信号的活化,参与了与山莨菪碱的抗休克作用。
     方法:本研究以内毒素诱导的休克为模型,研究了α7尼古丁受体阻断剂甲基牛扁碱对山莨菪碱抗休克作用的影响;在受体结合实验中,利用激光共聚焦观察了山莨菪碱对乙酰胆碱与α7尼古丁受体结合的影响;在内毒素诱导的RAW264.7巨嗜细胞,利用分子生物学技术研究了山莨菪碱对RAW264.7巨嗜细胞β-arrestin-1蛋白表达的影响及β-arrestin-1蛋白在山莨菪碱抗休克中的作用。
     结果:
     第一部分:山莨菪碱通过激活胆碱能抗炎通路发挥了抗休克作用
     1、α7尼古丁受体特异性阻断剂甲基牛扁碱显著地阻断了山莨菪碱对大鼠内毒素休克低血压的改善作用,同时也阻断了山莨菪碱降低内毒素休克大鼠血清和肝脏炎性细胞因子TSFα和IL-1β水平的作用;甲基牛扁碱也能显著地阻断山莨菪碱改善内毒素休克小鼠存活率的作用;在单侧迷走神经切断的小鼠模型上,山莨菪碱的抗休克作用下降;α7尼古丁受体基因敲除的小鼠与其野生对照小鼠相比,山莨菪碱降低内毒素休克小鼠血清中TNFα和IL-1β的作用显著下降。这些结果说明α7尼古丁受体参与了山莨菪碱的抗休克作用。
     2、受体结合实验结果说明,在RAW264.7巨嗜细胞,山莨菪碱能够通过阻断M受体,增加乙酰胆碱与α7尼古丁受体结合的数量;以α7尼古丁受体基因敲除小鼠和其野生对照小鼠的腹腔巨嗜细胞为模型,发现在野生小鼠的腹腔巨嗜细胞,山莨菪碱能够加强乙酰胆碱抑制内毒素诱导TNFα分泌的作用,但是在α7尼古丁受体基因敲除小鼠的腹腔巨嗜细胞,山莨菪碱则没有此作用。
     第二部分:山莨菪碱通过增加β-arrestin-1蛋白的表达发挥了抗休克作用
     1、在培养的RAW264.7巨嗜细胞,山莨菪碱能够剂量和时间依赖性地上调β-arrestin-1蛋白和mRNA表达;山莨菪碱的这个作用能够被蛋白质合成抑制剂放线菌酮和防线菌素D阻断;山莨菪碱也能够显著的逆转由内毒素引起的细胞内cAMP含量下降;用cAMP-PKA信号通路的特异性阻断剂H-89预处理细胞后,发现山莨菪碱上调β-arrestin-1的作用被阻断;以内毒素诱导的休克小鼠为模型,山莨菪碱能够显著增加脾脏β-arrestin-1的表达。
     2、在β-arrestin-1干扰的RAW264.7巨嗜细胞,山莨菪碱抑制内毒素诱导的TNFα和IL-1β分泌的作用显著下降。
     结论:山莨菪碱通过阻断M受体,使更多的迷走神经分泌的乙酰胆碱与巨嗜细胞上的α7尼古丁受体结合,从而激活了胆碱能抗炎通路,发挥了抗休克作用。此外,山莨菪碱能够通过cAMP-PKA信号通路增加β-arrestin-1蛋白的表达,β-arrestin-1蛋白在参与了山莨菪碱的抗休克作用。
Backgrounds and Objectives:Anisodamine is a naturally occurring atropine derivative that has been isolated,synthesized and characterized by scientists in China in 1965.Like atropine and scopolamine,anisodamine is a non-specific cholinergic antagonist exhibiting the usual spectrum of pharmacological effects such as inhibition of salivation,gastrointestinal and sweat secretion,gastrointestinal motility,respiratory secretion and urinary bladder contraction.Other effects include mydriasis,cycloplegia, bronchodilation,neurological/cognitive impairment and alteration of cardiovascular function.Anisodamine significantly reduced the mortality rate for fulminant epidemic meningitis from 66.9%to 12.4%and for toxic bacillary dysentery from 20-30%to 0.5%. The putative and non-specific mechanisms proposed for the anti-shock effects of anisodamine include vasodilation of the microcirculation,anti-thrombotic and fibrinolytic effects,reversal of endotoxin-induced vascular leakage,stabilization of lysosomes and cathepsin inhibition,resulting to the ultimate improvement of blood flow in the microcirculation,but little molecular mechanism is available.
     It had been reported that acetylcholine inhibits the production of pro-inflammatory cytokines from endotoxin-stimulated macrophages through a mechanism dependent on theα7 nicotinic acetylcholine receptor subunit in 2000.Because acetylcholine is the principal vagus neurotransmitter,the central nervous system also regulates proinflammatory cytokine production through the efferent vagus nerve,termed the "cholinergic anti-inflammatory pathway".It had been reported that activation of this mechanism via vagus nerve stimulation can control the production of pro-inflammatory cytokines in experimental models of systemic inflammation,including lethal endotoxemia, hemorrhagic shock,and ischemia-reperfusion injury.Thus,the "cholinergic anti-inflammatory pathway" can directly modulate the systemic response to pathogenic invasion.Anisodamine is a non-specific cholinergic antagonist,so we supposed that whether anisodamine could indirectly activated the cholinergic anti-inflammatory pathway through its blockade of muscarinic receptor.
     Upon their discovery,β-arrestins were named for their capacity to sterically hinder the G protein coupling of agonist-activated seven-transmembrane receptors,ultimately resulting in receptor desensitization.Surprisingly,recent evidence shows thatβ-arrestins can also function to activate signaling cascades independently of G protein activation.By serving as multiprotein scaffolds,they direct the recruitment,activation,and scaffolding of cytoplasmic signaling complexes and thereby regulate aspects of cell motility,chemotaxis, apoptosis,and likely other cellular functions through a rapidly expanding list of signaling pathways.In 2006,Pei et al reported that association ofβ-arrestin and TRAF6 negatively regulated Toll-like receptor-interleukin 1 receptor signaling.Witherow et al reported thatβ-arrestin-1 inhibited NF-κB activity by means of its interaction with the NF-κB inhibitor IκBα.Gao et al had identified thatβ-arrestin-2 is a G protein coupled receptor stimulated regulator in NF-κB signal pathways and stimulation ofβ2-adrenergic receptor significantly enhancesβ-arrestin2-IκBαinteraction and greatly promotesβ-arrestin-2 stabilization of IκBα,indicating thatβ-arrestin-2 mediates a crosstalk betweenβ2-adrenergic receptor and NF-κB signal pathways and thus present a novel mechanism for regulation of the norepi-immune system by the sympathetic nervous system.Moreover,Luan et al identifiedβ-arrestin-2 as a phosphorylation-regulated suppressor of UV response andβ-arrestin-2 played a functional role in the response of epidermal cells to UV.Soβ-arrestins,which not only were important cross-talk point for several signal pathways,but also played an important role in the activation of NF-κB signal pathway.Ruan et al showed that in human umbilical vein endothelial cells,anisodamine counteracts endothelial cell activation induced by LPS through its inhibitory effect on the expression of PAI-1 and TF in these cells.Anisodamine also completely abolished LPS-induced NF-κB DNA binding activity in nuclear extracts from human umbilical vein endothelial cells.Our purpose is to identify whetherβ-arrestins was involved in the anti-shock effect of anisodamine.
     Methods:The conscious rats were given LPS to make a model ofendotoxemia.The results of receptor binding lebelled FITC-taggedα-bungarotoxin were ovserved under a confocal microscope.Quantitative PCR and Western Blotting were respectively used to measure the mRNA and protein expression of the objective protein.The genotypes ofα7 nicotinic acetylcholine receptor andβ-arrestin-2 knock-out mice were confirmed by PCR. Knock-down ofβ-arrestin-1 and muscurinic acetylcholine receptor 1 were attained by siRNA.
     Results:
     PartⅠ
     1.Anisodamine blunted both the acute drop in BP and the mortality in LPS-induced shock,resulting in significantly reduced TNFa and IL-1βexpression in response to LPS. Methyllycaconitine,a selective inhibitor of alpha7 nicotinic acetylcholine receptor subunit, antagonized the above effects of anisodamine.The anti-shock effects of anisodamine were markedly attenuated inα7nAchR knockout mice and by unilateral vagotomized mice. These results showed thatα7nAchR was involved in the anti-shock effect of anisodamine.
     2.In RAW264.7 macrophage cells,pretreated with anisodamine significantly augmented the acetylcholine-induced fluorescence density stained with FITC-taggedα-bungarotoxin compared with cells incubated with acetylcholine alone observed under the cofocal microscope.In the peritoneal macrophages from WT mice,anisodamine significantly augmented the inhibitory effect of acetylcholine on TNFαproduction induced by LPS.
     PartⅡ:
     1.It was showed that incubation with anisodamine dose- and time-dependently increased the mRNA and protein expression ofβ-arrestin-1 in RAW264.7 macrophage cells stimulated with LPS.This effect of anisodamine was significantly prevented by the inhibitor of protein synthesis cycloheximide and actinomycin D.Anisodamine also significantly increased the mRNA and protein expression ofβ-arrestin-1 in spleen in shocked-mice induced by LPS.Moreover anisodamine could significantly reverse the decrease of cAMP induced by LPS in RAW264.7 macrophage cells.H-89,a specific inhibitor of protein kinase A,could significantly prevent the effect of anisodamine on the expression ofβ-arrestin- 1 in RAW264.7 macrophage cells.
     2.Anisodamine could significantly inhibit the production of TNFαand IL-1βfrom RAW264.7 macrophage cells challenged by LPS.But inβ-arrestin-1 siRNA RAW264.7 maerophage cells,the effect of anisodamine were significantly attenuated compared with those WT controls.
     Conclusion:Our results provide evidences that the anti-shock effect of anisodamine is intimately linked to theα7nAchR-dependent pathway through blockade of muscarinic receptors and thus allowing more endogenous aeetylcholine binding to theα7nAchR. Moreover,anisodarnine increased the expression ofβ-arrestin-1 through the cAMP-PKA signal pathway in septic shock,and accordinglyβ-arrestin-1 plays an important role in the anti-shock effect of anisodamine.
引文
[1]Tracey,K.J.and Cerami,A.Tumor necrosis factor:a pleiotropic cytokine and therapeutic target.Anna Rev.Med.1994;45:491-503.
    [2]Ulloa,L.,Doody,J.and Massague,J.Inhibition of transforming growth factor-β/SMAD signalling by the interferon-γ/STAT pathway.Nature 1999;397:710-713.
    [3]Monteleone,G.,Pailone,F.and MacDonald,T.T.Smad7 in TGF- β-mediated negative regulation of gut inflammation.Trends Immunol.2004;25:513-517.
    [4]MVan der Poll,T.and Lowry,S.F.Tumor necrosis factor in sepsis:mediator of multiple organ failure or essential part of host defense? Shock 1995;3:1-12
    [5]Poupko JM,Baskin SI,Moore E.The pharmacological properties of anisodamine.J Appl Toxicol 2007;27:116-121
    [6]Anonymous.Anisodamine in treatment of some diseases with manifestations of acute microcirculatory insufficiency.Chin Med J.1975;1:127-32
    [7]Xiu Rui-juan.Studies on microcirculation in the Institute of Basic Medical Sciences,Chinese Academy of Medical Sciences.Microvasc Res.1980;20:71-373
    [8]Zhang H-M,Ou ZL,Yamamoto T.Anisodamine inhibits shiga toxin type 2-mediated tumor necrosis factor-α production in vitro and in vivo.Exp.Biol.Med.2001;226:597-604
    [9]Ruan Q-R,Song J,Deng Z.Anisodamine inhibits endotoxin-induced tissue factor expression in human endothelial cells.J.Huazhong Univ.Sci.Technol.2002;22:273-275
    [10]Kushiya K,Nakagawa S,Taneike I,Iwakura N,Imanishi K,Uchiyama T,Tsukada H,Gejyo F,Yamamoto T.Inhibitory effect of antimicrobial agents and anisodamine on the staphylococcal superantigenic toxin-induced overproduction of proinflammatory cytokines by human peripheral blood mononuclear cells.J Infect Chemother.2005;11:192-195
    [11]Nakagawa S,Kushiya K,Taneike I,Imanishi K,Uchiyama T,Yamamoto T:Specific inhibitory action of anisodamine against a staphylococcal superaatigenic toxin,toxic shock syndrome toxin 1(TSST-1),leading to down-regulation of cytokine production and blocking of TSST-1 toxicity in mice.Clin Diagn Lab Immunol 2005;12:399-408
    [12]Ruan Q-R,Zhang WJ,Hufnagl P,Kaun C,Binder BR,Wojta J.Anisodamine counteracts lipopolysaccharideinduced tissue factor and plasminogen activator inhibitor-1 expression in human endothelial cells:contribution of the NF-kB pathway.J.Vasc.Res.2001;38:13-19
    [13]Wang H,Yu M,Ochani M,Amelia CA,Tanovic M,Susarla S,Li JH,Wang H,Yang H,Ulloa L,Al-Abed Y,Czura CJ,Tracey KJ.Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of inflammation.Nature 2003;421:384-388
    [14]Borovikova LV,Ivanova S,Zhang M,Yang H,Botchkina GI,Watkins LR,Wang H,Abumrad N,Eaton JW,Tracey KJ.Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin.Nature 2000;405:458-462
    [15]Bernik TR,Friedman SG.,Ochani M,DiRaimo R,Ulloa L,Yang H,Sudan S,Czura CJ,Ivanova SM,Tracey KJ.Pharmacological stimulation of the cholinergic antiinflammatory pathway.J Exp Med 2002;195:781-788
    [16]Andersson J.The inflammatory reflex - Introduction.Journal of Internal Medicine 2005;257:122-125
    [17]Shen FM,Guan YF,Xie HH,Su DF.Arterial baroreflex function determines the survival time in lipopolysaccharide-induced shock in rats.Shock 2004;21:556-560
    [18]Chen H,Li M,Campbell RA,Burkhardt K,Zhu D,Li SG,et al.Interference with nuclear factor kappa B and c-Jun NH2-terminal kinase signaling by TRAF6C small interfering RNA inhibits myeloma cell proliferation and enhances apoptosis.Oncogene.2006;25(49):6520-6527
    [19]Schwandner R,Yamaguchi K,Cao Z.Requirement of tumor necrosis factor receptor-associated factor(TRAF)6 in interleukin 17 signal transduction.J Exp Med.2000;191(7):1233-1240
    [20]Lefkowitz,R.J.and Whalen,E.J.Beta-arrestins:traffic cops of cell signaling.Curr.Opin.Cell Biol.2004;16:162-168
    [21]Lefkowitz.R.J.and Shenoy S.K.Transduction of receptor signals by betaarrestins.Science 2005;308:512-517.
    [22]Lefkowitz,R.J.,Pierce,K.L.and Luttrell L.M.Dancing with different partners:protein kinase a phosphorylation of seven membrane-spanning receptors regulates their G protein-coupling specificity.Mol.Pharmacol.2002;62:971-974
    [23]Shenoy,S.K.,McDonald,P.H.,Kohout,T.A.and Lefkowitz,R.J.Regulation of receptor fate by ubiquitination of activated β2-adrenergic receptor and beta-arrestin.Science 2001;294:1307-1313
    [24]Wang,P.,Gao,H.,Ni,Y.,Wang,B.,Wu,Y.,Ji,L.,Qin,L.,Ma,L.and Pei,G..Beta-arrestin 2functions as a G-protein-coupled receptor-activated regulator of oncoprotein Mdm2.J.Biol.Chem.2003;278:6363-6370
    [25]Witherow,D.S.,Garrison,T.R.,Miller,W.E.and Lefkowitz,R.J.beta-arrestin inhibits NF-κB activity by means of its interaction with the NF-κB inhibitor IκBα.Proc.Natl.Acad.Sci.USA 2004;101:8603-8607
    [26]Gao,H.,Sun,Y.,Wu,Y.,Luan,B.,Wang,Y.,Qu,B.and Pei,G..Identification of beta-arrestin2 as a G protein-coupled receptor-stimulated regulator of NF-kappaB pathways.Mol.Cell 2004;14:303-317
    [27]Wang,Y.Y.,Tang,Y.,Teng,L.,Wu,Y.,Zhao,X.and Pei,G..Association of beta-arrestin and TRAF6 negatively regulates Toll-like receptor-interleukin 1 receptor signaling.Nat.Immun.2006;7:139-147
    [28]Miao CY,Xie HH,Zhan LS,Su DF.Blood pressure variability is more important than blood pressure level in determination of end-organ damage in rats.J Hypertens 2006;24:1125-1135
    [29]Xie HH,Miao CY,Jiang YY,Su DF.Synergism of atenolol and nitrendipine on hemodynamic amelioration and organ protection in hypertensive rats.JHypertens 2005;23:193-201
    [30]Kane GC,Lam CF,O'Cochlain F,Hodgson DM,Reyes S,Liu XK,Mild T,Seino S,Katusic ZS,Terzic A.Gene knockout of the KCNJ8-encoded Kir6.1 K(ATP) channel imparts fatal susceptibility to endotoxemia.FASEB J 2006;20:2271-2280
    [31]Wang LZ,Liu YQ,Cui YH,Zhu FH,Wang BS,Lun N.Effects of dexamethasone,cyproheptadine,anisodamine,and dinoprostone on TNF alpha production in endotoxic shock.Acta Pharmacol Sin 1999;20:171-174
    [32]Zhang HM,Ou ZL,Yamamoto T.Anisodamine inhibits shiga toxin type 2-mediated tumor necrosis factor-alpha production in vitro and in vivo.Exp Biol Med(Maywood) 2001;226:597-604
    [33]Blondel A,Sanger DJ,Moser PC.Characterisation of the effects of nicotine in the five-choice serial reaction time task in rats:antagonist studies.Psychopharmacology,2000;149:293-305
    [34]Chilton M,Mastropaolo J,Rosse RB,Bellack AS,Deutsch SI.Behavioral consequences of methyllycaconitine in mice:a model of α7 nicotinic acetylcholine receptor deficiency.Life Sci 2004;74:3133-3139
    [35]van Westerloo DJ,Giebelen IA,Florquin S,Daalhuisen J,Bruno MJ,de Vos AF,Tracey KJ,van der Poll T.The cholinergic anti-inflammatory pathway regulates the host response during septic peritonitis.J Infect Dis 2005;191:2138-2148
    [36]Chen HH.Large dose atropine alkaloids in the treatment of shock.Resuscitation 1983;10:149-151
    [37]Hinshaw LB,Archer LT,Black MR,Greenfield LJ,Guenter CA.Prevention and reversal of myocardial failure in endotoxin shock.Surg Gynecol Obstet 1973;36:1-11.
    [38]Li QB,Pan R,Wang GF,Tang SX.Anisodamine as an effective drug to treat snakebites.J Nat Toxins 1999;8:327-330
    [39]Viiliger Y,Szanto I,Jaconi S,Blanchet C,Buisson B,Krause KH,Bertrand D,Romand JA.Expression of an alpha7 duplicate nicotinic acetylcholine receptor-related protein in human leukocytes.J Neurommul 2002;126:86-98
    [40]Anonymous.Anisodamine in treatment of some diseases with manifestations of acute microcirculatory insufficiency.Chin Med J.1975;1:127-132
    [41]Xiu Ri-Juan.Studies on microcirculation in the Institute of Basic Medical Sciences,Chinese Academy of Medical Sciences.Microvasc Res.1980;20:371-373
    [42]De Simone R,Ajmone-Cat MA,Carnevale D,Minghetti L.Activation of alpha7 nicotinic acetylcholine receptor by nicotine selectively up-regulates cyclooxygenase-2 and prostaglandin E2in rat microgliai cultures.J Neuroinflammation 2005;2:4
    [43]Su JY,Wu L,Tang C.Experimental study in rabbits of the antishock effect of anisodamine(654-2),and its mechanism of action.Resuscitation 1983;10:173-184
    [44]Feldmann M.Development of anti-TNF therapy for rheumatoid arthritis.Nature Rev Immunol 2002;2:364-371
    [45]Van Assche G,Rutgeerts P.Anti-TNF agents in Crohn's disease.Expert Opin Investig Drugs 2000; 9:103-111
    [46]Dinarello,C.A.The interleukin-1 family:10 years of discovery.FASEB J.1994;8:314-1325.
    [47]Abraham E,Anzueto A,Gutierrez G,Tessler S,San Pedro G,ET AL.Double-blind randomised controlled trial of monoclonal antibody to human tumour necrosis factor in treatment of septic shock.NORASEPT Ⅱ Study Group.Lancet 1998;351:929-933
    [48]Abraham E,Laterre PF,Garbino J,Pingleton S,Butler T,Dugernier T,Margolis B,Kudsk K,Zimmerli W,Anderson P,Reynaert M,Lew D,Lesslauer W,Passe S,Cooper P,Burdeska A,Modi M,Leighton A,Salgo M,Van der Auwera P;Lenercept Study GroupLenercept(p55 tumor necrosis factor receptor fusion protein) in severe sepsis and early septic shock:a randomized,double-blind,placebo-controlled,muiticenter phase ⅲ trial with 1,342 patients.Crit.Care Med.2001;29:503-510
    [49]Fisher CJ Jr,Dhainaut JF,Opal SM,Pribble JP,Balk RA,Slotman GJ,Iberti TJ,Rackow EC,Shapiro MJ,Greenman RL,et al.Recombinant human interleuldn 1 receptor antagonist in the treatment of patients with sepsis syndrome.Results from a randomized,double-blind,placebo-controlled trial.Phase ⅢII rhlL-1RA sepsis syndrome study group.JAMA 1994;271:1836-1843[
    50]Guarini S,Altavilla D,Cainazzo MM,Giuliani D,Bigiani A,Marini H,Squadrito G,Minutoli L,Bertolini A,Marini R,Adamo EB,Venuti FS,Squadrito F.Efferent vagal fiber stimulation blunts nuclear factor-kappa B activation and protects against hypovolemic hemorrhagic shock.Circulation 2003;107:1189-1194
    [51]Li M,Zheng C,Sato T,Kawada T,Sugimachi M,Sunagawa K.Vagal nerve stimulation markedly improves long-term survival after chronic heart failure in rats.Circulation 2004;109:120-124
    [52]Pavlov VA,Ochani M,Yang LH,Gallowitsch-Puerta M,Ochani K,Lin X,Levi J,Parrish WR,Rosas-Ballina M,Czura CJ,Larosa GJ,Miller EJ,Tracey KJ,Al-Abed Y.Selective alpha7-nicotinic acctylcholine receptor agonist GTS-21 improves survival in mutine endotoxemia and severe sepsis.Crit Care Med 2007;35:1139-1144
    [53]de Jonge WJ,Ulloa L.The alpha7 nicotinic acetylcholine receptor as a pharmacological target for inflammation.Br J Pharmacol 2007;151:915-929
    [54]Ulloa L:The vagus nerve and the nicotinic anti-inflammatory pathway.Nat Rev Drug Discov 2005;4:673-684
    [55]Martin LF,Kem WR,Freedman R.Alpha-7 nicotinic receptor agonists:potential new candidates for the treatment of schizophrenia.Psychopharmacology 2004;174:54-64
    [56]Akk G,StcinbAch JH:Galantamine activates muscle-type nicotinic acetylcholine receptors without binding to the acetylcholine-binding site.J Neurosci 2005;25:1992-2001
    [57]De Wire SM,Ahn S,Lefkowitz PJ,Shenoy SK.Beta-arrestins and cell signaling.Annu Rev Physiol 2007;69:483-510
    [58]Reiter E,Lefkowitz RJ.GRKs and beta-arrestins:roles in receptor silencing,trafficking and signaling.Trends Endocrinol Metab 2006;17:159-165
    [59]Luttrell LM.Transmembrane signaling by G protein-coupled receptors.Methods Mol Biol.2006;332:3-49
    [60]Lefkowitz RJ,Shenoy SK.Transduction of receptor signals by beta-arrestins.Science 2005;308:512-517
    [61]Lin FT,Miller WE,Luttrell LM,Lefkowitz RJ.Feedback regulation of beta-arrestin-1 function by extracellular signal-regulated kinases.J..Biol.Chem.1999;274:15971-15974
    [62]Kim YM,Barak LS,Caron MG,Benovic JL.2002.Regulation of arrestin-3 phosphorylation by casein kinase Ⅱ.J.Biol.Chem.277:16837-16846
    [63]Lin FT,Chen W,Shenoy S,Cong M,Exum ST,Lefkowitz RJ.2002.Phosphorylation of β-arrestin2 regulates its function in internalization of β2-adrenergic receptors.Biochemistry 41:10692-10699
    [64]Paing MM,Stutts AB,Kohout TA,Lefkowitz RJ,Trejo J.β-Arrestins regulate protease-activated receptor-1 desensitization but not internalization or down-regulation.J.Biol.Chem.2002;277:1292-1300
    [65]Moore CAC,Milano SK,Benovic J.Regulation of receptor trafficking by GRKs and arrestins.Annu.Rev.Physiol.2007;69:in press
    [66]Krupnick JG,Goodman OB,Jr.,Keen JH,Benovic JL.Arrestin/clathrin interaction.Localization of the clathrin binding domain of nonvisual arrestins to the carboxy terminus.J.Biol.Chem.1997;272:15011-15016
    [67]Goodman OB Jr,Krupnick JG,Santini F,Gurevich VV,Penn RB,et al.Beta-arrestin acts as a clathrin adaptor in endocytosis of the beta2-adrenergic receptor.Nature 1996;383:447-450
    [68]Shenoy SK,Barak LS,Xiao K,Ahn S,Berthouze M,Shukla AK,Luttrell LM,Lefkowitz RJ.Ubiquitination of beta-arrestin links seven-transmembrane receptor endocytosis and ERK activation.J Biol Chem.2007;282:29549-29562
    [69]Markovic D,Punn A,Lehnert H,Grammatopoulos DK.Intracellular mechanisms regulating corticotropin-releasing hormone receptor-2beta endocytosis and interaction with extracellularly regulated kinase 1/2 and p38 mitogen-activated protein kinase signaling cascades.Mol Endocrinol 2008;22:689-706
    [70]Sun Y,Cheng Z,Ma L,Pei G.Beta-arrestin2 is critically involved in CXCR4-mediated chemotaxis,and this is mediated by its enhancement of p38 MAPK activation.J Biol Chem.2002;277:49212-49219
    [71]Kang J,Shi Y,Xiang B,Qu B,Su W,Zhu M,Zhang M,Bao G,Wang F,Zhang X,Yang R,Fan F,Chen X,Pei G,Ma L.A nuclear function of beta-arrestini in GPCR signaling:regulation of histone acetylation and gene transcription.Cell 2005;123:833-847
    [72]Wang Y,Tang Y,Teng L,Wu Y,Zhao X,Pei G.Association of beta-arrestin and TRAF6 negatively regulates Toll-like receptor-interleukin 1 receptor signaling.Nat Immunol.2006;7:139-147
    [73]Sprague RS,Bowles EA,Stumpf MS,Rickettes G,Freidman A,Hou WH,Stephenson AH,Lonigro AJ:Rabbit erythrocytes possess adenylyl cyclase Ⅱ that is activated by the heterotrimeric G proteins Gs and Gi.Pharmacol 2005;57:222-228
    [74]Sprague RS,Stephenson AH,Bowles EA,Stumpf MS,Lonigro AJ.Reduced Expression of Gi in Erythrocytes of Humans With Type 2 Diabetes Is Associated With Impairment of Both cAMP Generation and ATP Release.Diabetes 2006;55:3588-3593
    [75]William J.RoeslerS,George R.Vandenhark,and Richard W.Hanson.Cyclic AMP and the Induction of Eukaryotic Gene Transcription.J Bio.Chem.1988;263:9063-9066.
    [76]Parruti G,Peracchia F,Sallese M,Ambrosini G,Masini M,et al.Molecular analysis of human beta-arrestin-1:cloning,tissue distribution,and regulation of expression.Identification of two isoforms generated by alternative splicing.J Biol Chem.1993;268:9753-9761
    [77]Silverman N,Maniatis T.NF-kB signaling pathways in mammalian and insect innate immunity.Genes Dev 2001;15:2321-2342
    [78]Israel A.The IKK complex:an integrator of all signals that activate NF-kB? Trends Cell Biol 2000;10:129-133
    [79]Karin M,Ben-Neriah Y.Phosphorylation meets ubiquitination:the control of NF-kB activity.Annu Rev Immunol 2000;18:621-663
    [80]Baeuerle PA,Baltimore D.Ikappa B:a specific inhibitor of the NF-kappa B transcription factor.Science.1988;242:540-546
    [81]Baeuerle PA,Baltimore D.Ikappa B:a specific inhibitor of the NF-kappa B transcription factor.Science.1988;242:540-546
    [82]Witherow DS,Garrison TR,Miller WE,Lefkowitz RJ.beta-Arrestin inhibits NF-kappaB activity by means of its interaction with the NF-kappaB inhibitor IkappaBalpha.Proc Natl Acad Sci U S A.2004;101:8603-8607
    [83]Gao H,Sun Y,Wu Y,Luan B,Wang Y,Qu B,Pei G..Identification of beta-arrestin2 as a G protein-coupled receptor-stimulated regulator of NF-kappaB pathways.Mol Cell.2004;14:303-317
    [84]Defea K.Beta-arrestins and heterotrimeric G-proteins:collaborators and competitors in signal transduction.Br J Pharmacol.2008;153 Suppl 1:S298-309
    [85]Luan B,Zhang Z,Wu Y,Kang J,Pei G..Beta-arrestin2 functions as a phosphorylation-regulated suppressor of UV-induced NF-kappaB activation.EMBO J.2005;24:4237-4246
    [86]Richmond A,Fan GH,Dhawan P,Yang J.How do chemokine/chemokine receptor activations affect tumorigenesis? Novartis Found Syrup.2004;256:74-89
    [87]Chen F.Arresting NF-kappaB by beta-arrestin2.Cell Death Differ.2004;11:1155-1156
    [88]Ma L,Pei G.Beta-arrestin signaling and regulation of transcription,J Cell Sci.2007;120:213-218.[89]Chen F.Endogenous inhibitors of nuclear factor-kappaB,an opportunity for cancer control.Cancer Res.2004;64:8135-8138
    [90]Benovic,J.L.,Pike,L.J.,Cerione,R.A.,Staniszewski,C.,Yoshimasa,T.,Codina,J.,Caron,M.G.and Lefkowitz R.J.Phosphorylation of the mammalian beta-adrenergic receptor by cyclic AMP-dependent protein kinase.Regulation of the rate of receptor phosphorylation and dephosphorylation by agonist occupancy and effects on coupling of the receptor to the stimulatory guanine nucleotide regulatory protein.J.Biol.Chem.1985;260,7094-7101
    1.Sands,K.E.et al.Epidemiology of sepsis syndrome in 8 academic medical centers.Academic Medical Center Consortium Sepsis Project Working Group.JAMA 1997;278:234-240.
    2.Angus,D.C.et al.Epidemiology of severe sepsis in the United States:analysis of incidence,outcome,and associated costs of care.Crit.Care Med 2001;29:1303-1310.
    3.Martin,G.S.et al.The epidemiology of sepsis in the United States from 1979 through 2000.N.Engi.J.Med 2003;348:1546-1554.
    4.Friedman,G.,Silva,E.and Vincent,J.L.Has the mortality of septic shock changed with time.Crit.Care Med 1998;26:2078-2086.
    5.Abraham,E.et al.Consensus conference definitions for sepsis,septic shock,acute lung injury,and acute respiratory distress syndrome:a reevaluation.Crit.Care Med.2000;28:232-235.
    6.Matot,I.and Sprung,C.L.Definition of sepsis.Intensive Care Med.2001;27:3-9.
    7.Ulloa,L.and Tracey,K.J.The 'cytokine profile':a code for sepsis.Trends Mol.Med.2005;11:56-63.
    8.Riedemann,N.C.et al.Novel strategies for the treatment of sepsis.Nature Med.2003;9:517-524.
    9.Hotkiss,R.S.and Karl,I.E.The pathophysiology and treatment of sepsis.N.Engl.J.Meal 2003;348:138-150.
    10.Tracey,K.J.and Cerami,A.Tumor necrosis factor:a pleiotropic cytokine and therapeutic target.Annu.Rev.Meal 1994;45:491-503.
    11.Tracey,K.J.and Cerami,A.Tumor necrosis factor,other cytokines and disease.Annu.Rev.Cell Biol.1993;9:317-343.
    12.Ulloa,L.,Doody,J.and Massague,J.Inhibition of transforming growth factor-β/SMAD signalling by the interferon-γ/STAT pathway.Nature 1999;397:710-713.
    13.Monteleone,G.,Pallone,F.and MacDonald,T.T.Smad7 in TGF- β-mediated negative regulation of gut inflammation.Trends Immunol.2004;25:513-517.
    14.Van der Poll,T.and Lowry,S.F.Tumor necrosis factor in sepsis:mediator of multiple organ failure or essential part of host defense? Shock 1995;3:1-12.
    15.Feldmann,M.Development of anti-TNF therapy for rheumatoid arthritis.Nature Rev.Immunol.2002;2:364-371.
    16.Van Assche,G.and Rutgeerts,P.Anti-TNF agents in Crohn's disease.Expert Opin.Investig.Drugs 2000;9:103-111.
    17.Dinarello,C.A.The interleukin-1 family:10 years of discovery.FASEB J.1994;8:1314-1325.
    18.Abraham,E.et al.Double-blind randomised controlled trial of monoclonal antibody to human tumour necrosis factor in treatment of septic shock.Norasept ⅱ study group.Lancet 1998;351:929-933().
    19.Abraham,E.et al.Lenercept(p55 tumor necrosis factor receptor fusion protein) in severe sepsis and early septic shock:a randomized,double-blind,placebo-controlled,multicenter phase ⅲ trial with 1,342 patients.Crit.Care Med 2001;29:503-510.
    20.Fisher,C.J.et al.Recombinant human interleukin 1 receptor antagonist in the treatment of patients with sepsis syndrome.Results from a randomized,double-blind,placebo-controlled trial.Phase Ⅲ rhIL-1RA sepsis syndrome study group.JAMA 1994;271:1836-1843.
    21.Van der,P.T.,Coyle,S.M.,Barbosa,K.,Braxton,C.C.and Lowry,S.F.Epinephrine inhibits tumor necrosis factor-α and potentiates intedeukin 10 production during human endotoxemia.J.Clin.Invest.1996;97:713-719.
    22.Scheinman,R.I.,Cogswell,P.C.,Lofquist,A.K.and Baldwin,A.S.Jr.Role of transcriptional activation of IκBκ in mediation of immunosuppression by glucocorticoids.Science 1995;270:283-286.
    23.Madden,K.S.,Sanders,V.M.and Felten,D.L.Catecholamine influences and sympathetic neural modulation of immune responsiveness.Annu.Rev.Pharmacol.Toxicol.1995;35:417-448.
    24.Borovikova,L.V.et al.Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin.Nature 2000;405:458-462.
    25.Wang,H.et al.Cholinergic agonists inhibit HMGB1 release and improve survival in experimental sepsis.Nature Med 2004;10:121 6-1221.
    26.Matthay,M.A.and Ware,L.B.Can nicotine treat sepsis? Nature Med.2004;10:1161-1162.
    27.Wang,H.et al.Nicotinic acetylcholine receptor α7 subunit is an essential regulator of inflammation.Nature 2003;421:384-388.
    28.Tracey,K.J.The inflammatory reflex.Nature2002;420:853-859.
    29.Bernik,T.R.et al.Pharmacological stimulation of the cholinergic antiinflammatory pathway.J.Exp.Med.2002;195:781-788.
    30.Borovikova,L.V.et al.Role Of vagus nerve signaling in CNI-1493-mediated suppression of acute inflammation.Auton.Neurosci.2000;85:141-147.
    31.Sitaraman,S.V.,Hoteit,M.and Gewirtz,A.T.Semapimod.Cytokine.Curr.Opin.Investig.Drugs 2003;4:1363-1368.
    32.Ben Menachem,E.Vagus nerve stimulation,side effects,and long-term safety.J.Clin Neurophysiol.2001;18:415-418.
    33.Wucherpfennig,K.W.Infectious triggers for inflammatory neurological diseases.Nature Med.2002;8:455-457.
    34.Aarli,J.A.Role of cytokines in neurological disorders.Curr.Med.Chem.2003;10:931-1937.
    35.Guarini,S.et al.Adrenocorticotropin reverses hemorrhagic shock in anesthetized rats through the rapid activation of a vagal anti-inflammatory pathway.Cardiovasc.Res.2004;63:357-365.
    36.Larsson,E.et al.CNI-1493,an inhibitor of proinflammatory cytokines,retards cartilage destruction in rats with collagen induced arthritis.Ann.Rheum.Dis.2005;64:494-496.
    37.D'Haens,G.Anti-TNF therapy for Crohn's disease.Curr.Pharm.Des.2003;9:289-294.
    38.Ulloa,L.,Batliwalla,F.M.,Andersson,U.,Gregersen,P.K.and Tracey,K.J.High mobility group box chromosomal protein 1 as a nuclear protein,cytokine,and potential therapeutic target in arthritis.Arthritis Rheum.2003;48:876-881.
    39.Gault,J.et al.Genomic organization and partial duplication of the human α7 neuronal nicotinic acetylcholine receptor gene(CHRNA7).Genomics 1998;52:173-185.
    40.Villiger,Y.et al.Expression of an α7 duplicate nicotinic acetylcholine receptor-related protein in human leukocytes.J..Neuroimmunol.2002;126:86-98.
    41.Miyazawa,A.,Fujiyoshi,Y.and Unwin,N.Structure and gating mechanism of the acetylcholine receptor pore.Nature 2003;423:949-955.
    42.Marubio,L.M.and Changeux,J.-P.Nicotinic acetylcholine receptor knockout mice as animal models for studying receptor function.Eur.J.Pharmacol.2000;393:113-121.
    43.Hogg,R.C.,Raggenbass,M.and Bertrand,D.Nicotinic acetylcholine receptors:from structure to brain function.Rev.Physiol.Biochem.Pharmacol.2003;147:1-46.
    44.Peng,X.et al.Human α7 acetylcholine receptor:cloning of the α7 subunit from the SH-SYSY cell line and determination of pharmacological properties of native receptors and functional α7 homomers expressed in Xenopus oocytes.Mol.Pharraacol.1994;45:546-554.
    45.Drisdel,R.C.and Green,W.N.Neuronal α-bungarotoxin receptors are α7 subunit homomers.J.Neurosci.2000;20:133-139.
    46.Andersson,U.et al.High mobility group 1 protein(HMG-1) stimulates pro-inflammatory cytokine synthesis in human monocytes,J.Exp.Med.2000;192:565-570.
    47.Orr-Urtreger,A.et al.Mice deficient in the α7 neuronal nicotinic acetylcholine receptor lack α-bungarotoxin binding sites and hippocampal fast nicotinic currents,J.Neurosci.1997;17:9165-9171.
    48.Franceschini,D.et al.Altered baroreflex responses in α7 deficient mice.Behav.Brain Res.2000;113:3-10.
    49.Wang,H.et al.Hmg-1 as a late mediator of endotoxin lethality in mice.Science 1999;285:248-251.
    50.Ulloa,L.et al.Ethyl pyruvate prevents lethality in mice with established lethal sepsis and systemic inflammation.Proc.Natl Acad.Sci.USA 2002;99:12351-12356.
    51.Ulloa,L.et al.Ethyl pyruvate protects against lethal systemic inflammation by preventing HMGB1 release.Ann.NY Acad.Sci.2003;987:319-321.
    52.Yang,H.et al.Reversing established sepsis with antagonists of endogenous high-mobility group box 1.Proc.Natl Acad.Sci.USA 2004;101:296-301.
    53.Calogero,S.et al.The lack of chromosomal protein Hmgl does not disrupt cell growth but causes lethal hypoglycaemia in newborn mice.Nature Genet.1999;22:276-280.
    54.Bustin,M.At the crossroads of necrosis and apoptosis,signaling to multiple cellular targets by HMGB1.Sci STKE 2002;151:298-311.
    55.Yang,H.et al.Reversing established sepsis with antagonists of endogenous high-mobility group box 1.Proc.Natl Acad.Sci.USA 2004;101:296-301.
    56.Bonaldi,T.et al.Monocytic cells hyperacetylate chromatin protein HMGB1 to redirect it towards secretion.EMBO J.2003;22:5551-5560.
    57.Scaffidi,P.,Misteli,T.and Bianchi,M.E.Release of chromatin protein HMGB1 by necrotic cells triggers inflammation.Nature 2002;418:191-195.
    58.Stemmer,C.,Schwander,A.,Bauw,G.,Fojan,P.and Grasser,K.D.Protein kinase CK2 differentially phosphorylates maize chromosomal high mobility group B(HMGB)proteins modulating their stability and DNA interactions.J.Biol.Chem.2002;277:1092-1098.
    59.Lee,J.C.et al.A protein kinase involved in the regulation of inflammatory cytokine biosynthesis.Nature 1994;372:739-746.
    60.Derijard,B.et al.Independent human Map kinase signal transduction pathways defined by mek and mkk isoforms.Science 1995;267:682-685.
    61.Baeuerle,P.A.and Henkel,T.Function and activation of NF-κB in the immune system.Annu.Rev.Immunol.1994;12:141-179.
    62.Li,Q.and Verma,I.M.NF-κB regulation in the immune system.Nature Rev.Immunol.2002;2:725-734.
    63.Ando,Y.Transdermal nicotine for ulcerative colitis.Ann Intern.Med.1997;127:491-492.
    64.Guarini,S.et al.Efferent vagal fibre stimulation blunts nuclear factor-κB activation and protects against hypovolemic hemorrhagic shock.Circulation 2003;107:1189-1194.
    65.Motley,R.J.,Rhodes,J.,Kay,S.and Morris,T.J.Late presentation of ulcerative colitis in ex-smokers.Int.J.Colorectal Dis.1988;3:171-175.
    66.Roberts,C.J.and Diggle,R.Non-smoking:a feature of ulcerative colitis.BMJ 1982;285:440-440.
    67.Harries,A.D.,Baird,A.and Rhodes,J.Non-smoking:a feature of ulcerative colitis.BMJ 1982;284:706-707.
    68.Logan,R.F.A.,Edmond,M.,Somerville,K.W.,Langman,M.J.Smoking and ulcerative colitis.BMJ 1984;288:751-753.
    69.Motley,R.J.et al.Time relationships between cessation of smoking and onset of ulcerative colitis.Digestion 1987;37:125-127.
    70.de Castella,H.Non-smoking:a feature of ulcerative colitis.BMJ 1982;284:1706-1706.
    71.Srivastava,E.D.et al.Transdermal nicotine in active ulcerative colitis.Eur.J.Gastroenterol.1991;3:815-818.
    72.Pullan,R.D.et al.Transdermal nicotine for active ulcerative colitis.N.Engl.J.Med 1994;330:811-815.
    73.Benoni C,Nilsson A.Smoking habits in patients with inflammatory bowel disease.Scand.J.1984;19:824-830.
    74.Tapper,A.R.et al.Nicotine activation of α4 receptors:sufficient for reward,tolerance,and sensitization.Science 2004;306:1029-1032.
    75.Avila,J.and Diaz-Nido,J.Tangling with hypothermia.Nature Med.2004;10:460-461.
    76.Zijlstra,F.J.et al.Effect of nicotine on rectal mucus and mucosal eicosanoids.Gut 1994;35:247-251.
    77.Thomas,G.A.et al.Transdermal nicotine as maintenance therapy for ulcerative colitis.N.Engl.J.Med.1995;332:988-992.
    78.Cope,G.F.,Heatley,R.V.,Kelleher,J.and Axon,A.T.R.In vitro mucus glycoprotein production by colonic tissue from patients with ulcerative colitis.Gut 1988;29:229-234.
    79.Calandra,T.et al.Protection from septic shock by neutralization of macrophage migration inhibitory factor.Nature Med.2000;6:164-170.
    80.Martin,T.R.Mif mediation of sepsis.Nature Med 2000;6:140-142.
    81.Mandavilli,A.Nicotine fix.Nature Med.2004;10:660-661.
    82.Libert,C.Inflammation:A nervous connection.Nature 2003;421:328-329.
    83.Gotti,C.and Clementi,F.Neuronal nicotinic receptors:from structure to pathology.Prog.Neurobiol.2004;74:363-396.
    84.Kitagawa,H.et al.Safety,pharmacokinetics,and effects on cognitive function of multiple doses of GTS-21 in healthy,male volunteers.Neuropsychopharmacology 2003;28:542-551.
    85.Nanri,M.,Kasahara,N.,Yamamoto,J.,Miyake,H.and Watanabe,H.A comparative study on the effects of nicotine and GTS-21,a new nicotinic agonist,on the locomotor activity and brain monoamine level.Jpn J.Pharmacol.1998;78:385-389.
    86.Crespi,F.Nefiracetam.Daiichi Seiyaku.Curr.Opin.Investig.Drugs 2002;3:788-793.
    87.Meyer,E.M.,Kuryatov,A.,Gerzanich,V.,Lindstrom,J.and Papke,R.L.Analysis of 3-(4-hydroxy,2-Methoxybenzylidene) anabaseine selectivity and activity at human and rat α-7 nicotinic receptors.J.Pharmacol.Exp.Ther.1998;287:918-925.
    88.Lang,P.M.,Burgstahler,R.,Haberberger,R.V.,Sippel,W.and Grafe,P.A conus peptide blocks nicotinic receptors of unmyelinated axons in human nerves.Neuroreport 2005;16:479-483.
    89.Dussor,G.O.et al.Potentiation of evoked calcitonin generelated peptide release from oral mucosa:a potential basis for the pro-inflammatory effects of nicotine.Eur.J.Neurosci.2003;18:2515-2526.
    90.Vincler,M.and Eisenach,J.C.Plasticity of spinal nicotinic acetylcholine receptors following spinal nerve ligation.Neurosci.Res.2004;48:139-145.
    91.Vincler,M.A.and Eisenach,J.C.Knock down of the α5 nicotinic acetylcholine receptor in spinal nerve-ligated rats alleviates mechanical allodynia.Pharmacol.Biochem.Behav.2005;80:135-143.
    92.Sixma,T.K.and Smit,A.B.Acetylcholine binding protein(AChBP):a secreted glial protein that provides a highresolution model for the extracellular domain of pentameric ligand-gated ion channels.Annu.Rev.Biophys.Biornol.Struct.2003;32:311-334.
    93.Brejc,K.et al.Crystal structure of an ACh-binding protein reveals the ligand-binding domain of nicotinic receptors.Nature 2001;411:269-276.
    94.Smit,A.B.et al.A gila-derived acetylcholine-binding protein that modulates synaptic transmission.Nature 2001;411:261-268.
    95.Karlin,A.Emerging structure of the nicotinic acetylcholine receptors.Nature Rev.Neurosci.2002;3:102-114.
    96.Celie,P.H.et al.Nicotine and carbamylcholine binding to nicotinic acetylcholine receptors as studied in AChBP crystal structures.Neuron 2004;41:907-91.
    97.Parpura,V.et al.Glutamate-mediated astrocyte-neuron signalling.Nature 1994;369:744-747.
    98.Pasti,L.,Volterra,A.,Pozzan,T.and Carmignoto,G.Intracellular calcium oscillations in astrocytes:a highly plastic,bidirectional form of communication between neurons and astrocytes in situ.J.Neurosci.1997;17:7817-7830.
    99.Akk,G.and Steinbach,J.H.Galantamine activates muscletype nicotinic acetylcholine receptors without binding to the acetylcholine-binding site.J.Neurosci.2005;25:1992-2001.
    100.Pereira,E.F.et al.Unconventional ligands and modulators of nicotinic receptors,J.Neurobiol.2002;53:479-500
    101.Cooper,J.C.,Gutbrod,O.,Witzemann,V.and Methfessel,C.Pharmacology of the nicotinic acetylcholine receptor from fetal rat muscle expressed in Xenopus oocytes.Eur.J.Pharmacol.1996;309:287-298.
    102.Fayuk,D.and Yakel,J.L.Regulation of nicotinic acetylcholine receptor channel function by acetylcholinesterase inhibitors in rat hippocampal CA1 interneurons.Mol.Pharmacol.2004;66:658-66.
    103.Ueno,S.,Bracamontes,J.,Zorumski,C.,Weiss,D.S.and Steinbach,J.H.Bicuculline and gabazine are allosteric inhibitors of channel opening of the GABAA receptor.J.Neurosci.1997;17:625-634.
    104.Sugano,N.,Shimada,K.,Ito,K.and Murai,S.Nicotine inhibits the production of inflammatory mediators in U937 cells through modulation of nuclear factor-κB activation.Biochem.Biophys.Res.Commun.1998;252:25-28.
    105.Saeed,R.W.et al.Cholinergic stimulation blocks endothelial cell activation and leukocyte recruitment during inflammation.J.Exp.Med.2005;201:1113-1123.
    106.Westerloo,D.J.et al.The Cholinergic Anti-Inflammatory Pathway Regulates the Host Response during Septic Peritonitis.J.Infect.Dis.2005;191:2138-2148.
    107.Han,Y.,Englert,J.A.,Yang,R.,Delude,R.L.and Fink,M.P.Ethyl pyruvate inhibits nuclear factor-κB-dependent signaling by directly targeting p65.J.Pharmacol.Exp.Ther.2005;312:1097-1105.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700