蛋白酶体β5亚基在人动脉粥样硬化斑块中表达的变化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:蛋白酶体是细胞内一类重要的蛋白水解酶体系,参与包括细胞信号传递、细胞周期、细胞凋亡等在内的诸多重要事件的调控,进而对炎症、免疫和肿瘤发生等过程产生深远的影响。值得注意的是,该体系在动脉粥样硬化的整个病理生理进程,如内皮功能障碍、泡沫细胞形成、平滑肌细胞增殖、血管重塑等环节中都发挥着重要作用。而其中的β5亚基位于蛋白酶体的核心部分,在蛋白酶体的组装、成熟以及发挥蛋白水解功能中都起主导作用。本研究选取了颈动脉狭窄并行颈动脉内膜切除术患者的动脉粥样硬化斑块,采用免疫组织化学及Western Blot蛋白质定量的分析方法,来研究蛋白酶体β5亚基在人动脉粥样硬化斑块中的表达水平的变化,以期探讨蛋白酶体水平、活性与动脉粥样硬化病变之间的相互关联。
     方法:选取严重的颈动脉粥样硬化并行颈动脉内膜切除术的患者,取手术切除的动脉粥样硬化斑块组织作为病例组(16例),根据动脉狭窄程度不同,分为核心部分(狭窄>50%,A组)和边缘部分(狭窄≤50%,B组)。选取主动脉瘤患者行主动脉置换术中切除的相对正常的锁骨下动脉、无名动脉作为对照组(4例,C组)。采集患者相关临床资料,如年龄、性别、吸烟史、高血压病史、糖尿病病史、高脂血症病史等,记录各项生化指标。取术中切除的新鲜组织,一部分样本进行10%福尔马林固定、梯度酒精脱水、二甲苯透明、石蜡包埋,制备成切片进行HE染色及免疫组织化学分析;另一部分提取组织总蛋白、进行Western Blot分析。最后对上述结果进行统计学处理,组间比较采用卡方检验,P < 0. 05为有统计学意义。
     结果:1.与对照相比,病例组呈现较高的高脂血症、糖尿病的比率,并多伴有吸烟史;2.免疫组织化学分析显示,在平滑肌细胞的胞浆及胞核中均存在蛋白酶体β5亚基的阳性信号,且以在胞浆表达为主;3.综合免疫组织化学和Western Blot分析的结果,在病例组和对照组之间,以及在病例组不同类别的患者之间,蛋白酶体β5亚基的表达水平都存在差异:A组(动脉狭窄程度>50%)< B组(动脉狭窄程度≤50%)β5亚基活性在动脉粥样硬化核心斑块中表达明显下降。
     结论:在动脉粥样硬化斑块中,蛋白酶体β5亚基蛋白质水平显著降低,提示该亚基可能在蛋白酶体介导动脉粥样硬化进展的功能中起主导作用。
Objective. Proteasome is a mutiple-unit protease working on non-lysosomal protein degradation in cells. Recent studies have illuted its potential roles in the whole process of atherosclerosis including endothelial dysfunction,formation of foam cells, smooth muscle cell proliferation, and vascular remodeling. This research is designated to evaluate the expression of the proteasomeβ5 subunit in atherosclerotic plaques from patients subjected to aortic replacement surgery.
     Methods. Take the atherosclerotic plaque tissue, from carotid endarterectomy for carotid stenosis patients, as the case group (16 cases). According to different degrees of arterial stenosis, divided into the core portion (stenosis> 50%, A group) and the edge portion (stenosis≤50%, B group). Carotid endarteriums were obtained from 4 patients undergoing Aortic replacement surgery, select relatively normal arterial intima (Subclavian artery and Innominate artery)as the control group ; Collected clinical data of patients, such as age, sex, smoking history, hypertension, diabetes, hyperlipidemia, and the biochemical indicators. A portion of the sample was fixed in 10% formalin, dehydrationed in gradient alcohol, Transparented in xylene, embedded in paraffin, sections were prepared for HE staining and immunehistochemical analysis. Another part of the tissue was frozened in liquid nitrogen, for extracting Total protein, and Western Blot analysis. Data are expressed as percentage or mean±SE for continuous variables and by percentage for qualitativevariables. The proteasomeβ5 subunit activity variables were compared by use of theχ2 test. Statistical significance was assumed for P<0.05.
     Results.1.The decrease in the level ofβ5 had something to do with the risks of diabetes、hyperlipidemia and possibility of smoking in the patients we observed; 2.β5 was expressed in all samples, most of which accumulated in cytoplasm with few exceptions in nucleu; 3. There was significant divergence in the expression ofβ5 in different sub-groups of samples: A group (arterial stenosis> 50%)﹤B group (arterial stenosis≤50%)﹤C group (control group).
     Conclusion. The expression ofβ5 was decreased in the atherosclerotic plaques of patients, implying it might play important roles in the progress of atherosclerosis.
引文
1. Moran A, Gu D, Zhao D, et al. Future cardiovascular disease in china: markov model and risk factor scenario projections from the coronary heart disease policy model-china. Circ Cardiovasc Qual Outcomes, 2010, 3(3):243-52.
    2.陆再英等主编.内科学.人民卫生出版社, 2008.
    3. Lakota K, Mrak-Poljsak K, Rozman B, et al. Serum amyloid A activation of inflammatory and adhesion molecules in human coronary artery and umbilical vein endothelial cells. European Journal of Inflammation, 2007, 5(2):73-81.
    4. Ross R. The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature. 1993, 362:801-809.
    5. Vita JA, Keaney JF. Endothelial function: a barometer for cardiovascular risk? Circulation, 2002, 106(6):640-642.
    6. Patterson C. Search and destroy: the role of protein quality control in maintaining cardiac function. J Mol Cell Cardiol, 2006, 40: 438 - 441.
    7. Herrmann L, Ciechanover A, Lerman LO, et al. The ubiquitin- proteasome system in cardiovascular diseases a hypothesis extended . Cardiovasc Res, 2004, 61(1): 11 - 21.
    8. Unno M, Mizushima T, Morimoto Y, et al. The structure of the mammalian 20S proteasome resolution. Structure, 2002, 10 (5): 609 - 618.
    9. Groll M, Clausen T. Molecular shredders : how proteasome fulfill their role . Curr Opin Struct Biol , 2003 ,13 (6):665-673.
    10. Feng B, Zhang Y, Mu J, et al. Preventive effect of a proteasome inhibitor on the formation of accelerated atherosclerosis in rabbits with uremia. J Cardiovasc Pharmacol, 2010, 55(2):129-38.
    11.谭春江.泛素蛋白酶体通路在动脉粥样硬化中作用的研究.汕头大学. 2007.
    12. Marfella R, Di Filippo C, D’Amico M, et al. Diabetes, UbiquitinProteasome System and Atherosclerotic Plaque Rupture. Circ. Res, 2007, 100:84-85.
    13.许良中,杨文涛,免疫组织化学反应结果的判断标准.中国癌症杂志, 1996, 6:229-231.
    14. Qureshi N, Vogel SN, Van Way C, et al. The proteasome: a central regulator of inflammation and macrophage function. Immunol Res, 2005, 31:243-260.
    15. Di Filippo C, Marfella R, D’Amico M, et al. Possible dual role of ubiquitin-proteasome system in the atherosclerotic plaque progression. J Am Coll Cardiol, 2008, 52:1350-1351.
    16. Li F, Xie P, Fan Y, et al. Cterminus of Hsc70-interacting protein promotes smooth muscle cell proliferation and survival through ubiquitin-mediated degradation of FoxO1. J Biol Chem, 2009, 284: 20090 -20098.
    17. Demartion GN, Slarghter CA. The proteasome, a novel protease regulated by multiple mechanisms. J Biol Chem, 1999, 274 (32): 22123 - 22126.
    18. Faries PL, Rohan DI, Wyers MC, et al. Relationship of the 20S proteasome and the proteasome activator PA28 to atherosclerosis and intimal hyperplasia in the human vascular system. Ann Vasc Surg, 2001, 15: 628-633.
    19. Herrmann L, Ciechanover A, Lerman LO, et al. Increased ubiquitin immunoreactivity in unstable atherosclerotic plaques associated with acute coronary syndromes. J Am Coll Cardiol, 2002, 40(11):1919-27.
    20. Marfella R, Di Filippo C, Laieta MT, et al. Effects of ubiquitin proteasome system deregulation on the vascular senescence and atherosclerosis process in elderly patients. J Gerontol A Biol SciMed Sci, 2008, 63:200 -203.
    21. Marfella R, D’Amico M, Esposito K, et al. The ubiquitin proteasome system and inflammatory activity in diabetic atherosclerotic plaques: effects of rosiglitazone treatment. Diabetes, 2006, 55:622-632.
    22. Marfella R, Siniscalchi M, Portoghese M, et al. Morning blood pressure surge as a destabilizing factor of atherosclerotic plaque: role of ubiquitin–proteasome activity. Hypertension, 2007, 49:784-791.
    23. Marfella R, Di Filippo C, Portoghese M, et al. Proteasome activity as a target of hormone replacement therapy-dependent plaque stabilization in postmenopausal women. Hypertension, 2008, 51: 1135-1141.
    24. Thomas S, Kotamraju S, Zielonka J, et al. Hydrogen peroxide induces nitric oxide and proteasome activity in endothelial cells: a bell-shaped signaling response . Free Radic Biol Med, 2007, 42: 1049 - 1061.
    25. Froment C, Joseph SU, Dubouch MP, et al. A quantitative proteomic approach using two-dimensional gel electrophoresis and isotope-coded affinity tag labeling for studying human 20S proteasome heterogeneity. Proteomics, 2005, 5:2351 - 2363.
    26. Shrikhande GV, Scali ST, da Silva CG, et al. O-glycosylation regulates ubiquitination and degradation of the anti-inflammatory protein A20 to accelerate atherosclerosis in diabetic ApoE-null mice. PLoS One, 2010, 5(12):14240.
    27. Lorenz M, Wilck N, Meiners S, et al. Proteasome inhibition prevents experimentally-induced endothelial dysfunction. Life Sci, 2009, 84: 929-934.
    28. Chen L, Kong X, Fu J, et al. CHIP facilitates ubiquitination of inducible nitric oxide synthase and promotes its proteasomal degradation. Cell Immunol, 2009, 258:38-43.
    29. Xu J, Wu Y, Song P, et al. Proteasome-dependent degradation of guanosine 5′-triphosphate cyclohydrolase I causes tetrahydrobiopterin deficiency in diabetes mellitus. Circulation , 2007 , 116 : 944 - 953.
    30. Schmidtke G, Kalveram B, Groettrup M. Degradation of FAT10 by the
    26S proteasome is independent of ubiquitylation but relies on NUB1L. FEBS Lett, 2009, 583:591-594.
    31. Stangl V, Lorenz M, Meiners S,et al. Long-term up-regulation of eNOS and improvement of endothelial function by inhibition of theubiquitin-proteasome pathway. FASEB J, 2004, 18:272-279.
    32. Libby P. Changing concepts of atherogenesis. J Intern Med, 2000, 247:349-358.
    33. Xu G, Sztalryd C, Londos C. Degradation of perilipin is mediated through ubiquitination-proteasome pathway. Biochim Biophys Acta, 2006, 1761 (1): 83-90.
    34. Yamamoto Y, Gaynor RB. Therapeutic potential of inhibition of the NF-κB pathway in the treatment of inflammation and cancer. J Clin Invest, 2001, 107(2): 135-142.
    35. Marfella R, D’Amico M, Di Filippo C, et al. Increased activity of the ubiquitin-proteasome system in patients with symptomatic carotid disease is associated with enhanced inflammation and may destabilize the atherosclerotic plaque: effects of rosiglitazone treatment. J Am Coll Cardiol, 2006, 47:2444-2455.
    36. CalabròP, Cirillo P, Limongelli G, et al. Tissue factor is induced by resistin in human coronary artery endothelial cells by the NF-?B dependent pathway. J Vasc Res, 2011, 48(1):59-66.
    37. Lalor PF, Sun PJ, Weston CJ, et a1. Activation of vascular adhesion protein-1 on liver endothelium results in an NF-kappaB-dependent increase in lymphocyte adhesion. Hepatology, 2007, 45(2): 465-474.
    38. Takami Y, Nakagami H, Morishita R, et al. Ubiquitin carboxyl-terminal hydrolase L1, a novel deubiquitinating enzyme in the vasculature, attenuates NF-kappaB activation. Arterioscler Thromb Vasc Biol , 2007, 27:2184-2190.
    39. Xie P, Fan Y, Zhang H, et al. CHIP represses myocardin-induced smooth muscle cell differentiation via ubiquitin-mediated proteasomal degradation. Mol Cell Biol, 2009, 29:2398-2408.
    40. Van Herck JL, De Meyer GR, Martinet W, et al. Proteasome inhibitor bortezomib promotes a rupture-prone plaque phenotype in ApoE-deficient mice, Basic Res Cardiol, 2010 , 105(1):39-50.
    41. Ding WX, Ni HM, Gao W, et al. Linking of autophagy toubiquitin–proteasome system is important for the regulation of endoplasmic reticulum stress and cell viability. Am J Pathol, 2007, 171:513-524.
    42. Um JW, Im E, Lee HJ, et al. Parkin directly modulates 26S proteasome activity. J Neurosci, 2010, 30(35):11805-14.
    43. Halawani D, Tessier S, Anzellotti D, et al. Identification of Caspase-6-mediated processing of the valosin containing protein (p97) in Alzheimer's disease: a novel link to dysfunction in ubiquitin proteasome system-mediated protein degradation. J Neurosci, 2010, 30(17):6132-42.
    44. Gomes AV, Young GW, Wang Y, et al. Contrasting proteome biology and functional heterogeneity of the 20S proteasome complexes in mammalian tissues. Mol Cell Proteomics, 2009, 8(2):302-15.
    45. Chondrogianni N, Tzavelas C, Pemberton AJ, et al. Overexpression of proteasome beta5 assembled subunit increases the amount of proteasome and confers ameliorated response to oxidative stress and higher survival rates. J Biol Chem, 2005, 280(12):11840-50.
    46.陈川;中国人肝脏26S蛋白酶体亚基间的相互作用.厦门大学, 2006.
    47. Kane RC, Bross PF, Farrell AT, et al. Velcade: U. S. FDA approval for the treatment of multiple myeloma progressing on prior therapy. Oncologist, 2003, 8 (6): 508-513.
    48. Hussain AR, Ahmed M, Ahmed SO, et a1. Proteasome inhibitor MG-132 mediated expression of p27Kip1 via S-phase kinase protein 2 degradation induces cell cycle coupled apoptosis in primary effusion lymphoma cells. Leuk Lymphoma, 2009, 50(7):1204-1213.
    49.郭芳;孙文清;屈顺林,等.蛋白酶体抑制剂MG132对球囊损伤后血管狭窄的影响.中国动脉硬化杂志, 2009,17(1):53-55.
    50. Barringhaus KG, Matsumura ME.The proteasome inhibitor lactacystin attenuates growth and migration of vascular smooth muscle cells and limits the response to arterial injury. Exp Clin Cardiol, 2007, 12(3): 119-24.
    1. Patterson C. Search and destroy: the role of protein quality control in maintaining cardiac function. J Mol Cell Cardiol, 2006, 40: 438 - 441.
    2. Demartion GN, Slarghter CA. The proteasome, a novel protease regulated by multiple mechanisms. J Biol Chem, 1999, 274(32): 22123 - 22126.
    3. Groll M, Clausen T. Molecular shredders: how proteasome fulfill their role. Curr Opin Struct Biol, 2003, 13(6):665-673.
    4. Unno M, Mizushima T, Morimoto Y, et al. The structure of the mammalian 20S proteasome resolution. Structure, 2002, 10(5): 609- 618.
    5. Schubert U, Anton LC, Gibbs J, et a1. Rapid degradation of a large fraction of newly synthesized proteins by proteasomes, Nature, 2000, 404(6779):770-774.
    6. Karin M, Cao Y, Greten FR, et a1. NF-kappaB in cancer: from innocent bystander to major culprit. Nat ReV Cancer, 2002, 2(4): 30l-310.
    7. King RW, Deshaies RJ, Peters JM, et a1. How proteolysis drives the cell cycle. Science, l 996, 274(5293):1 652-1659.
    8. Lakota K, Mrak-Poljsak K, Rozman B, et al. Serum amyloid A activation of inflammatory and adhesion molecules in human coronary artery and umbilical vein endothelial cells. European Journal of Inflammation, 2007, 5(2):73-81.
    9. Ross R. The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature. 1993, 362:801-809.
    10.陆再英等主编.内科学.人民卫生出版社, 2008.
    11. Faries PL, Rohan DI, Wyers MC, et al. Relationship of the 20S proteasome and the proteasome activator PA28 to atherosclerosis and intimal hyperplasia in the human vascular system. Ann Vasc Surg, 2001, 15: 628-633.
    12. Qureshi N, Vogel SN, Van Way C, et al. The proteasome: a central regulator of inflammation and macrophage function. Immunol Res, 2005, 31:243-260.
    13. Di Filippo C, Marfella R, D’Amico M, et al. Possible dual role of ubiquitin-proteasome system in the atherosclerotic plaque progression. J Am Coll Cardiol, 2008, 52:1350-1351.
    14. Li F, Xie P, Fan Y, et al. Cterminus of Hsc70-interacting protein promotes smooth muscle cell proliferation and survival through ubiquitin-mediated degradation of FoxO1. J Biol Chem, 2009, 284: 20090 -20098.
    15. Kotamraju S, Matalon S, Matsunaga T, et al. Upregulation of immunoproteasomes by nitric oxide: potential antioxidative mechanism in endothelial cells. Free Radic Biol Med, 2006, 40:1034-1044.
    16. Chen L, Kong X, Fu J, et al. CHIP facilitates ubiquitination of inducible nitric oxide synthase and promotes its proteasomal degradation. Cell Immunol, 2009, 258:38-43.
    17. Xu J, Wu Y, Song P, et al. Proteasome-dependent degradation of guanosine 5′-triphosphate cyclohydrolase I causes tetrahydrobiopterin deficiency in diabetes mellitus. Circulation, 2007, 116: 944-953.
    18. Schmidtke G, Kalveram B, Groettrup M. Degradation of FAT10 by the 26S proteasome is independent of ubiquitylation but relies on NUB1L. FEBS Lett, 2009, 583:591-594.
    19. Stangl V, Lorenz M, Meiners S, et al. Long-term up-regulation of eNOS and improvement of endothelial function by inhibition of theubiquitin-proteasome pathway. FASEB J, 2004, 18:272-279.
    20. Libby P. Changing concepts of atherogenesis. J Intern Med, 2000, 247:349-358.
    21. Xu G, Sztalryd C, Londos C. Degradation of perilipin is mediated through ubiquitination-proteasome pathway. Biochim Biophys Acta, 2006, 1761 (1): 83-90.
    22. CalabròP, Cirillo P, Limongelli G, et al. Tissue factor is induced by resistin in human coronary artery endothelial cells by the NF-?B dependent pathway. J Vasc Res, 2011, 48(1):59-66
    23. Lalor PF, Sun PJ, Weston CJ, et a1. Activation of vascular adhesion protein-1 on liver endothelium results in an NF-kappaB-dependent increase in lymphocyte adhesion.Hepatology,2007, 45(2):465-474.
    24. Takami Y, Nakagami H, Morishita R, et al. Ubiquitin carboxyl-terminal hydrolase L1, a novel deubiquitinating enzyme in the vasculature, attenuates NF-kappaB activation. Arterioscler Thromb Vasc Biol , 2007, 27:2184-2190.
    25. Meiners S, Laule M, Rother W, et al. Ubiquitin-proteasome pathway as a new target for the prevention of restenosi. Circulation, 2002, 105(4): 483-489.
    26. Marfella R, D’Amico M, Esposito K, et al. The ubiquitin proteasome system and inflammatory activity in diabetic atherosclerotic plaques: effects of rosiglitazone treatment. Diabetes, 2006, 55:622-632.
    27. Marfella R, Siniscalchi M, Portoghese M, et al. Morning blood pressure surge as a destabilizing factor of atherosclerotic plaque: role of ubiquitin–proteasome activity. Hypertension, 2007, 49:784-791.
    28. Marfella R, Di Filippo C, Portoghese M, et al. Proteasome activity as a target of hormone replacement therapy-dependent plaque stabilization in postmenopausal women. Hypertension, 2008, 51: 1135- 1141.
    29. Herrmann J, Ciechanover A, Lerman LO, et al. The ubiquitinproteasome system in cardiovascular diseases-a hypothesis extended. Cardiovasc Res, 2004, 61:11-21.
    30. Xie P, Fan Y, Zhang H, et al. CHIP represses myocardin-induced smooth muscle cell differentiation via ubiquitin-mediated proteasomal degradation. Mol Cell Biol, 2009, 29:2398-2408.
    31. King RW, Deshaies R J, Peters J M, et a1. How proteolysis drives the cell cycle. Science, 1996, 274: 1652-1659.
    32. Barringhaus KG, Matsumura ME. The proteasome inhibitor lactacystin attenuates growth and migration of vascular smooth muscle cells and limits the response to arterial injury. Exp Clin Cardio, 2007, 12:119 -124.
    33. Hussain AR, Ahmed M, Ahmed SO, et a1. Proteasome inhibitor MG-132 mediated expression of p27Kip1 via S-phase kinase protein degradation induces cell cycle coupled apoptosis in primary effusion lymphoma cells. Leuk Lymphoma, 2009, 50(7):1204-1213.
    34. Ying WZ, Zhang HG, Sanders PW. EGF receptor activity modulates apoptosis induced by inhibition of the proteasome of vascular smooth muscle cells. J Am Soc Nephrol, 2007, 18:131-142.
    35. Kapadia MR, Eng JW, Jiang Q, et a1. Nitric oxide regulates the 26S proteasome in vascular smooth muscle cells. Nitric Oxide, 2009, 20: 279-288.
    36. Zhang F, Laiho M. On and off: proteasome and TGF-beta signaling. Exp Cell Res, 2003, 291:275-281.
    37. Meiners S, Hocher B, Weller A, et al. Downregulation of matrix metalloproteinases and collagens and suppression of cardiac fibrosis by inhibition of the proteasome. Hypertension, 2004, 44:471-477.
    38. Herrmann J, Lerman LO, Mukhopadhyay D, et a1. Angiogenesis in atherogenesis. Arterioscler Thromb Vasc Biol, 2006, 26:1948-1957.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700