老鹰茶总黄酮中黄酮类单体对TGF-β1诱导的肝星状细胞增殖的影响及部分机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肝纤维化是一种严重危害人类健康的疾病,是细胞外基质(Extracellur matrix, ECM)合成和降解失衡,引起过多的ECM在肝脏沉积所致。肝星状细胞(Hepatic stellate cells, HSC)的激活、增生、转化是肝纤维化的中心环节,其中活化的HSC大量增殖和胶原的过度生成是导致ECM大量沉积的重要原因。
     老鹰茶,又名豹皮樟,系樟科木姜子属毛豺皮樟(Litsea coreana leve)的叶,其中黄酮类成分是老鹰茶的主要成分。药理学实验证明老鹰茶总黄酮(Total flavonids of Litsea coreana L, TFLC)具有抗氧化、降糖、降脂、抗肝纤维化、抗炎及免疫调节等功效。本课题组前期分离出四个黄酮苷类化合物,分别为:槲皮素-3-O-β-D-葡萄糖苷(I)、槲皮素-3-O-β-D-半乳糖苷(II)、山柰酚-3-O-β-D-葡萄糖苷(Ⅲ)、山柰酚-3-O-β-D-半乳糖苷(IV)。因此,本实验通过探讨黄酮类单体是否能通过调节TGF-β1来改善肝纤维化,从而进一步了解老鹰茶总黄酮抗肝纤维化的作用机制。具体研究内容包括以下两个部分:
     1.老鹰茶总黄酮中四种黄酮类单体的提取与分离
     以黄酮含量为评价指标,采用L9(33)正交试验对老鹰茶总黄酮水提取工艺进行优化,结果优化的生产工艺为用12倍量水提取3次,每次1小时。本文采用非极性的D101型大孔吸附树脂纯化老鹰茶总黄酮,采用该工艺纯化TFLC后,紫外分光光度法测定总黄酮回收率>90 %,平均纯度为48.59%。本文采用正、反相硅胶色谱法反复对老鹰茶总黄酮进行分离,分别得四种黄酮类化合物,经与已知化合物比较,鉴定为:槲皮素-3-O-β-D-半乳糖苷、槲皮素-3-O-β-D-葡萄糖苷、山柰酚-3-O-β-D-半乳糖苷和山柰酚-3-O-β-D-葡萄糖苷。
     2.黄酮类单体对TGF-β1诱导的肝星状细胞增殖的影响及部分机制的研究
     本文采取肝脏灌流来分离出正常大鼠的肝星状细胞,并进行培养。此法分离的肝星状细胞得率为2×107/肝,细胞活力及纯度都在90%以上。MTT法检测四种黄酮类单体对HSC增殖的抑制作用,结果发现,四种黄酮类单体在培养24、48及72h时均对HSC的增殖具有不同程度的抑制作用,且山柰酚-3-O-β-D-葡萄糖苷在培养48h时对HSC的增殖的抑制作用最强。RT-PCR法检测山柰酚-3-O-β-D-葡萄糖苷对TGF-β1诱导的HSC中Ⅰ型胶原、Ⅲ型胶原、Smad2、Smad3及Smad7中mRNA的表达的影响,结果发现,能够明显下调HSC的Ⅰ型胶原、Ⅲ型胶原、Smad2及Smad3中mRNA的表达,上调Smad7 mRNA的表达。
Liver fibrosis is a serious public health problem of disease, which mainly result from the unbalance between synthesis and degradation of extracellular matrix (ECM), lead to excessive ECM deposition in the liver. Hepatic stellate cells (HSC) activation, proliferation; transformation is the central link of liver fibrosis, which leads to the important cause of sedimentary ECM is the activation of the proliferation and HSC collagen excessive formation.
     Laoying tea(also called Litsea coreana )is leaf of Litsea Coreana Leve which belongs to Neolitsea Lauraceae department,flavonoids is the main component of Laoying tea. It has been reported that the extract of Litsea Coreana L. exerts various pharmacological effects including antioxygen, antihyperlipidemic, antihypertensive, anti-inflammatory anti-hyperlipidemic and immunomodulation. In the pre-study, four effective flavonoids have been separated from the plant. Their structures are identified as quercetin-3-O-β-D-glucoside (I), quercetin-3-O-β-D-galactoside (II), kaempferol-3-O-β- D-glucoside (Ⅲ) and kaempferol-3-O-β-D-galactose (IV). Therefore, this study is to investigate whether the flavonoid monomers through regulating TGF-β1 to improve liver fibrosis, thus further understanding of total flavonids of litsea coreana of hepatic fibrosis antioxidant mechanism. Specific content includes the following two parts:
     1. Studies on the extraction and separation of four flavonoids monomer from Litsea Coreana L.
     With the flavonoids content as a evaluation index, orthogonal design L9(33) is applied to optimize the water extraction technique for total flavonoids of Litsea Coreana L. The best extraction technology is that 12BV water, 1 hour of reflux, and 3 times of extraction. The D101 macroporous resin (non-polar type) is the suitable medium to prepare TFLC. After adsorption on macroporous resin and desorption by ethanol, the content of total flavonoids in Litsea Coreana L is 48.59%, and the recovery rate is > 90 %. In this paper, four flavonoids are separated from TFLC by the normal-phase and reversed-phase silica gel column chromatography. Compared with the known compounds, they are identified as: quercetin-3-O-β-D-galactoside, quercetin-3-O-β-D-glucoside, kaempferol-3-O-β-D-galactoside, and kaempferol-3-O-β-D-glucoside.
     2. Studies on the effects and mechanisms of flavonoids monomer on the proliferation of hepatic stellate cells induced by TGF-β1
     The article adopts the liver perfusion to isolate the normal rat hepatic stellate cells, and culture it. This separation of hepatic stellate cell ratio of 2 x 107 / liver, the cell vitality and purity is more than 90%. By MTT method for detecting four flavonoids monomer proliferation of inhibition on HSC, the result shows that, after cultivating 24、48、72hour, four kinds of flavonoids monomer have varying levels of inhibition on the proliferation of HSC, but kaempferol-3-O-β-D-glucoside have the strongest effective at 48h. Reverse transcription - polymerase chain reaction (RT-PCR) analysis of kaempferol-3-O-β-D-glucoside on HSC which was induced by TGF-β1 was detected in collagenⅠ,collagenⅢ,Smad2, Smad3 and Smad7 receptor mRNA expression in the impact. it can obviously down-regulate collagenⅠ, collagenⅢ, Smad2 and Smad3 receptor mRNA expression,and it can up-regulate Smad7 mRNA expression.
引文
1. Albanis E, Friedman SL. Hepatic fibrosis. Pathogenesis and principles of therapy[J]. Clin Liver Dis, 2001, 5(2):315-34.
    2. Lamireau T, Desmouliere A, Bioulac-Sage P, et al. Mechanisms of hepatic fibrogenesis[J]. Arch Pediatr, 2002, 9(4):392-405.
    3. Friedman SL. The cellular basis of hepatic fibrosis. Mechanisms and treatment strategies[J]. N Engl J Med.1993 Jun 24;328(25):1828-35
    4.陈俊,余光开.转化生长因子β1与肝纤维化关系的研究进展[J].西南军医, 2008,10(6):132-4.
    5. Long JY,Wang GN,Matsuura,et al. Activation of Smad transcriptional activity by protein inhibitor of activated STAT3(PLAS3). Proc Natl Acad Sci USA,2004,101(1):99-104.
    6.叶辉.老鹰茶中三种黄酮类物质抗脂质过氧化作用初探[J].中药材, 2004, 27(2): 113- 5.
    7.王婷玉,李俊,等.豹皮樟总黄酮对大鼠佐剂性关节炎的作用及部分机制研究[J].中国药理学通报, 2007, 23 (12): 1618-23.
    8.倪鸿昌,李俊,等.豹皮樟总黄酮对大鼠非酒精性脂肪性肝炎的防治作用[J].中国药理学通报, 2006, 22 (5): 591-4.
    9.吕雄文,李俊等.老鹰茶总黄酮降血糖作用的实验研究[J].中国中医药科技, 2008, 15 (2): 119-21.
    10.朱鹏里,李俊等.豹皮樟总黄酮抗肝纤维化作用及对肝组织中TGF-β1、CTGFmRNA表达的影响[J].安徽医科大学学报, 2009, 44(2):232-5.
    11.陈玉璞,程文明,李俊.老鹰茶中黄酮类化学成分分析[J].安徽医科大学学报, 2008, 43(1):65-7.
    12.刘文丽,于鲁海,马燕.紫外分光光度法在黄酮类化合物含量测定中的应用[J].新疆中医药, 2006, 24(3): 85-6.
    13.吴素玲,孙晓明,张卫明,等.紫外分光光度法测定刺梨黄酮含量的研究[J] .粮油食品科技, 2006, 14(5): 54-6.
    14.张磊,黄成,李俊,等.大鼠肝星状细胞和枯否细胞的分离与培养方法[J].安徽医科大学学报, 2007, 42(6): 692-4.
    15.陈爽,李孝生,王文丽.川芎嗪对转化生长因子β1刺激肝星状细胞CTGF及I型胶原表达的影响[J].生命科学研究, 2009, 13(2):146-51.
    16.何德华,詹镕洲.肝胆病理学.第二军医大学出版社.1997;12:序
    17. Eataller R, Brenner DA. Liver fibrosis.J Clin Invest[J].2005,115:209-18.
    18. Tsukada S, Parsons CJ, Rippe RA. Mechanisms of liver fibrosis[J].Clin Chim Acta,2006;364:33-60
    19. Gordon KJ, Dong M, Chislock EM, Fields TA, Blobe GC. Loss of typeⅢtransforming growth factor beta receptor expression increases motility and invasiveness associated with epithelial to mesenchymal transition during pancreatic cancer progression. Carcinogenesis 2008;29:252-62.
    20.黄瑾.肝星状细胞活化的启动、维持和调控.国外医学·消化系疾病分册, 2002; 22(4):227-30.
    21. Mann DA, Smart DE. Transcriptional regulation of hepatic stellate cell activation. Gut, 2002; 50(6):891-6.
    22. Kobayashi H, Hayashi N, Hayashi K,et al. Connective tissue growth factor and progressive fibrosis in biliary atresia[J]. Pediatr Surg Int, 2005, 21(1):12-6.
    23.刘菲,谢建萍,黄柳云,等。β-雌二醇及其纳米粒对肝星状细胞TGF-β1和CTGF的影响[J]。胃肠病学和肝病学杂志, 2007, 16(6):561-5.
    24. Jobling AI, Wan R, Gentle A, Bui BV, McBrien NA. Retinal and choroidal TGF-beta in the tree shrew model of myopia: isoform expression, activation and effects on function. Experimental eye research 2009;88:458-66.
    25. Arias M, Lahme B, Van de Leur E, Gressner AM, Weiskirchen R. Adenoviral delivery of an antisense RNA complementary to the 3’coding sequence of transforming growth factor-beta1 inhibits fibrogenic activities of hepatic stellate cells. Cell Growth Differ 2002;13:265-73.
    26. Nagashio Y, Ueno H, Imamura M, et al. Inhibition of transforming growth factor beta decreases pancreatic fibrosis and protects the pancreas against chronic injury inmice[J]. Lab Invest, 2004, 84(12):1610-8.
    27. Inkinen K, Lahesmaa R, Brandt A, et al. DNA microarray-based gene expression profiles of cytomegalovirus infection and acute rejection in liver transplants. Transplantation proceedings 2005;37:1227-9.
    28. Gressner OA, Lahme B, Demirci I, Gressner AM, Weiskirchen R. Differential effects of TGF-beta on connective tissue growth factor (CTGF/CCN2) expression in hepatic stellate cells and hepatocytes. Journal of hepatology 2007;47:699-710.
    29. Calabrese F, Valente M, Giacometti C, et al. Parenchymal transforming growth factor beta-1:its typeⅡreceptor and Smad signaling pathway correlate with inflammation and fibrosis in chronic liver disease of viral etiology. Journal of gastroenterology and hepatology 2003;18:1302-8.
    30. Yang KL, Chang WT, Huang KC, Li EI, Chuang CC. Inhibition of transforming growth factor-beta-induced liver fibrosis by a retinoic acid derivative via the suppression of Col 1A2 promoter activity. Biochemical and biophysical research communictions 2008; 373: 219-23.
    31. Gulcan E, Helvaci MR, Aksoy KA, Gulcan A, Akcan Y. TGF-beta1 is the possible shared pathogenetic factor on a patient with muscular dystrophy and congenital hepatic fibrosis. Medical hypotheses 2006; 67:428-9.
    32. Seki E, De Minicis S, Osterreicher CH, et al. TLR4 enhances TGF-beta signaling and hepatic fibrosis. Nature medicine 2007; 13: 1324-32.
    33. Robert A B ,Piek E ,Gillian Asheroft E P,et al . Is Smad3 a major player in signal transduction pathways leading to fibrogenesis [J] . Chest, 2001; 120(1): 43-7.
    34. Wells RG. Fibrogenesis.V. TGF-beta signaling pathways. American journal of physiology 2000; 279: G845-50.
    35. Uemura M,Swenson ES,Gaca MD,Giordano FJ,Reiss M,Wells RG. Smad2 and Smad3 play different roles in rat hepatic stellate cell function and alpha-smooth muscle actin organization. Molecular biology of the cell 2005; 16: 4214-24.
    36. Liu X, Hu H, Yin JQ. Therapeutic strategies against TGF-beta signaling pathwayin hepatic fibrosis. Liver Int 2006; 26: 8-22.
    37. Ten Dijke P , Hill CS. New insight s into TGF-β-Smad signalling. Trend Biochem Sci, 2004, 29: 265-73.
    1. Li JH, Huang XR, Zhu HJ, et a1.Role of TGF-beta signaling in extracellular matrix production under high glucose conditions. Kidney Int, 2003, 63: 2010-9.
    2.游晶,袁丽芳,陈红英,等. TGF-β1与慢性乙型肝炎的关系[J] .世界华人消化杂志,2007, 15 (8):869.
    3. Nagashio Y, Ueno H, Imamura M,et al . Inhibition of transforming growth factor beta decreases pancreatic fibrosis and protects the pancreas against chronic injury in mice[J]. Lab Invest, 2004, 84(12):1610-8.
    4. Liu X,Hu H ,Yin JQ. Therapeutic strategies against TGF-beta signaling pathway in hepatic fibrosis [J]. Liver Int, 2006, 26:8-22.
    5. Wells RG. Fibrogenesis V. TGF-beta signaling pathways[J] . AmJ Physiol Gastrointest Liver Physiol, 2000, 279: 845-50.
    6.陈俊,余光开.转化生长因子β1与肝纤维化关系的研究进展[J].西南军医, 2008, 20(6): 132-4.
    7.徐宁,石小枫,刘杞. TGF-β1与肝纤维化的关系再探讨[J].重庆医学, 2008, 37(20):2356-7.
    8.周晓倩,何云. Smads在TGF-β信号转导途径中的致肝纤维化作用[J].实用肝脏病杂志, 2006, 9(3): 190-2.
    9. Chen W, Fu X, Sheng Z. Review of current progress in the structure and function of Smad proteins. Chinese medical journal, 2002, 115: 446-50.
    10.吴晓玲,曾维政,王丕龙. TGF-β/Smad信号转导通路与肝纤维化[J].世界华人消化杂志, 2003, 11(10): 1601-5.
    11. Makkar P, Metpally RP, Sangadala S, Reddy BV. Modeling and analysis of MH1 domain of Smads and their interaction with promoter DNA sequence motif. Journal of molecular graphics & modelling 2009, 27:803-12.
    12. Bai S, Cao X. A nuclear antagonistic mechanism of inhibitory Smads in transforming growth factor-beta signaling.J Biol Chem, 2002, 277(6): 417682.
    13. Long JY, Wang GN, Matsuura I, et a1. Activation of Smad transcfiptiona1 activity by protein inhibitor of activated STAT3(PLAS3). Proc Natl Acad Sci USA,2004, 101(1): 99-104.
    14. Masayuki UE, Scott S. Smad2 and Smad3 play different roles in rat hepatic stellate cell function andα-smooth muscle actin organization. Mol Biol Cell, 2005, 16: 4214-24.
    15. Li Q,Ye F, Shi Y, et a1. Nuclear translocation of Smad3 may enhance the TGF-β/Smads pathway in high glucose circumstances. Transpl Proc, 2006, 38:2158-60.
    16. Cho IJ, Kim SH, Kim SG. Inhibition of TGF beta1-mediated PAI-l induction by oltipraz through selective interruption of Smad3 activation. Cytokine, 2006, 35(5-6): 284-94.
    17. Liu C, Gaca MD, Swenson ES, et a1. Smads 2 and 3 are differentially activated by transforming growth factor-beta(TGF-beta) in quiescent and activated hepatic stellate cells. J Biol Chem, 2003, 278(13): 1172l-8.
    18.张国,王天才,唐望先,等. Smad3、Smad7基因表达与肝纤维化发病关系研究.中华消化杂志, 2002, 22(11): 647-50.
    19. Dooley S, Hamzavi J, Breitkopf K, et a1. Smad7 prevents activation of hepatic stellate cells and liver fibrosis in rats. Gastroenterology, 2003, 125(1): 178-91.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700