316L及420不锈钢粉末温压工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
粉末不锈钢密度低,耐腐蚀性能与力学性能比传统致密不锈钢材料低,从而限制了其广泛应用。本研究采用温压技术提高粉末不锈钢件的密度。研究中,采用Archimede法测量样品密度,利用金显微镜观察样品显微组织,扫描电镜(SEM)观察粉末形貌及断口形貌,能谱技术(EDS)分析断口微区成分。系统地研究了润滑剂含量、压制压力、粉末温度、模具温度,以及细粉添加种类与含量对压坯密度的影响。同时,比较了温压工艺与冷压工艺所制备样品的密度及弹性后效差异。本研究所有样品于分解氨气氛下经1130℃烧结。对烧结后部分样品的硬度与抗拉强度进行了分析。
     研究结果显示,对420粉末不锈钢而言,适宜的温压工艺为:润滑剂含量0.7%,粉末温度90℃、模具温度120℃。在压制压力为784MPa时,压坯密度为6.86g/cm~3,与冷压工艺比提高了0.18g/cm~3。烧结后样品硬度为33HRC,而密度为6.83g/cm~3,较压坯密度降低了0.03g/cm~3。对于316L粉末不锈钢,适宜的温压工艺为:润滑剂含量0.8%,粉末温度90℃,模具温度120℃。在压制压力为784MPa时,压坯密度为6.92g/cm~3。比冷压的压坯密度提高了0.26g/cm~3。烧结后样品硬度为76HRB,密度为7.02g/cm~3,较压坯密度提高了0.10g/cm~3。
     316L不锈钢压坯密度与细粉添加量的关系曲线呈双峰分布,峰值对应细粉添加量为2%和30%。添加粒度小于20μm的球形细粉后,当压制压力为784MPa时,峰值处的压坯密度为7.00g/cm~3和7.09g/cm~3。添加粒度小于43μm的水雾化细粉后,当压制压力为784MPa时,峰值处的压坯密度为6.972/cm~3和7.03g/cm~3。
     添加细粉后的316L粉末不锈钢压坯经烧结后,密度有所提高。密度增幅随细粉添加量的提高而增大,且添加球形细粉样的密度增幅高于添加水雾化细粉样的密度增幅。密度的增幅与压制压力无明显关系。当样品的烧结密度为7.21g/cm~3时,对应硬度为95HRB,与同条件下没有添加细粉的316L粉末不锈钢样品的硬度(76HRB)比,提高25%。同时,对于密度近的样品,添加细粉后的样品硬度更高。样品抗拉强度随密度增大而增大,且当密度大于7.00g/cm~3时,增大趋势明显。当样品的烧结密度为7.14g/cm~3时,对应抗拉强度为486MPa。本研究中,公式σ_b=σ_0exp(-bθ)中的b值为6-7,与文献中b为4-7的结论符。
The resistance to chemical corrosion and the mechanical property of powder stainless steels is poor compared to the conventional wrought stainless steels because of their lower densities, which limits their wide applications. In order to increase the density, warm-pressing was used for powder stainless steel in this research. During the present experiment, density was examined by Archimedes' method, optical microscope was used to observe the micro-structure,SEM was used to observe the particle morphology and fracture morphology, EDS was used to analyse the component in microregions. Effects of the contents of lubricant, compacting pressure, temperature of powder and die, contents and types of fine powders on green density were studied systematically. And the comparison of green density and spring back between warm-pressing and conventional pressing were also carried out in the experiment. Samples were sintered in cracked ammonia at 1130℃.
     Results show that, the optimum condition to product stainless steel is that, the maximum green density are obtained at 784MPa as they are, lubricant contents is 0.7% for 420 powder stainless steel and 0.8% for 316L powder stainless steel, temperatures of powder and die are 90℃and 120℃respectively. The green density of 420 powder stainless steel obtained by this process is 6.86g/cm~3, which is 0.18g/cm~3 higher than conventional pressing. The hardness is 33HRC and the density is 6.83g/cm~3 which is 0.03g/cm~3 lower than the green density after sintering. The green density of 316L stainless steel obtained by the optimum process is 6.92 g/cm~3, which is 0.26g/cm~3 higher than conventional pressing. The hardness is 76HRB and the density is 7.02g/cm~3 which is 0.10g/cm~3 higher than the green density after sintering.
     The green density exhibits bimodal distribution, when the fine powder contents is 2% and 30% , on the curve which is about the relation between the green density and the fine powder contents. When adding spherical fine powders( < 20μm) , the peak values of green density are 7.00 g/cm~3 and 7.09g/cm~3 respectively at 784MPa. When adding water atomized fine powders( < 43μm) ,the peak values of green density are 6.97 g/cm~3 and 7.03g/cm~3 respectively at 784MPa.
     For Samples which were added with fine powders, the density are improved after sintering. The extent of density improvement, which is greater when adding spherical fine powders than water atomized fine powders and is almost irrelated with the pressing pressure, increases with the contents of fine powders. The hardness is 95HRB when the sample's density is 7.21 g/cm~3. Comparing with samples with no fine powders, the hardness is improved even when the density is almost the same. The tensile strength, which increases with the density, especially when the density is bigger than 7.0g/cm~3, is 486MPa while the density is 7.14 g/cm~3. The b in formulaσ_b=σ_0exp(-bθ)is 6-7 which matches with the conclusion of that b is 4-7.
引文
[1]张存信,项炳和.我国不锈钢产业的发展与问题[J].新材料产业.2007,11:39-41
    
    [2]李烈军.不锈钢生产现状及广钢开发不锈钢的探讨[J].南方金属.2003(6):6-8
    
    [3]本书编委会.不锈钢、不锈钢制品加工工艺性能图解与冶炼、生产、加工新 工艺新技术和质量控制及技术标准规范实用手册[M].北京:北方工业出版 社,2007:108
    
    [4]孙胜英,袁书强,周根树,等.稀土对低铬铁素体不锈钢组织与力学性能的影响 [J].材料热处理学报,2007,28(Supplement):22-24
    
    [5]王龙妹,徐飙,朱京希,等.奥氏体不锈钢中稀土的作用研究及应用前景[J].稀 土,2005,26(5):42-47
    
    [6]丁辉.稀土对铬锰氮不锈钢在稀硫酸介质中腐蚀磨损性能的影响[J].中国稀 土学报,1997,15(2):146.
    
    [7]孙长庆.超级奥氏体不锈钢的发展,性能与应用(上)[J].化工设备设 计,1999,36(6):38-44
    
    [8]章守华,吴承建.钢铁材料学[M].北京:冶金工业出版社,1992:10-12
    
    [9]曾德麟.粉末冶金材料[M].北京:冶金工业出版社,1997:141
    
    [10]肖纪美.不锈钢的金属学问题[M].北京:冶金工业出版社,1983:41
    
    [11]付嫚.压力容器用不锈钢[J].舰船防化,2007(7):48-51
    
    [12]张承忠.金属的腐蚀与防护[M].北京:冶金工业出版社,2000,128-130
    
    [13]A.约翰.塞得赖克斯.不锈钢的腐蚀[M].北京:机械工业出版社,1986:1
    
    [14]钟海林,况春江,匡星,等.粉末冶金高氮不锈钢的研究与发展现状[J].粉末冶金 工业,2007,17(3):44-47
    
    [15]Speidel M O.CAMP-ISIJ,2000,13:372
    
    [16]颜慧成,刘浏.含氮奥氏体不锈钢及其冶金工艺[J].不锈开发,2003(4):12-19
    
    [17]于福洲.金属材料的耐腐蚀性[M].北京:科学出版社,1982:92
    
    [18]Sim mous J W. Overview:High-Nitrogen Alloying of Stainless Steels[J]. Materials Science and Engineering,1996,A207:159-169
    
    [19]赵贵东,刘一笑.自控工程设计中不锈钢中合金元素的作用[J].石油化工自动 化,2007,6(5):5-6
    
    [20]陆世英,等.不锈钢[M].北京:原子能出版社,1995:8
    
    [21]刘新忠,韩静涛,余万年,等.碳含量对430不锈钢组织的影响[J].材料热处理 2007,36(14):18-20
    
    [22]Hans Wohlfromm.Martin Blomacher,Dieter Weinand.粉末注射成形不锈钢??---制取工艺/性能/应用[J].粉末冶金工业,2002,12(4):7-15
    
    [23]郭庚辰.液烧结粉末冶金材料[M].北京:化学工业出版社,2003:240
    
    [24]王贺利.提高430铁素体不锈钢连铸坯等轴晶比例的工艺实践[J].上海金 属,2007,29(6):27-30
    
    [25]任智勇,辛建卿,韩启彪.提高铁素体不锈钢质量的主要措施[J].山西冶 金,2005,98:31-32
    
    [26]李晓波.国内铁素体不锈钢的最新进展[J].铸造设备研究,2006,4:52-54
    
    [27]张兰,王立新,任学平.超塑性奥氏体-铁素体双不锈钢00Cr25Ni7Mo3N的 研制[J].特殊钢,2005,26(6):44-46
    
    [28]李益民.K.A.Khalil.黄伯云.金属注射成形17-4PH不锈钢的研究[J].粉末 冶金技术,2005,23(4):254
    
    [29]柯美元,李谟树,成伟华.316L不锈钢粉末温压技术的研究[J].顺德职业技术 学院学报,2005,3(6):11-14
    
    [30]李松林,曲选辉,李益民,黄伯云.国外注射成形不锈钢研究的进展[J].粉末冶 金工业,2001,11(3):18-22
    
    [31]曹勇家.金属注射成形不锈钢[J].粉末冶金技术,2000,17(4):274-282
    
    [32]姜峰,李益民,李松林.MIM 316L不锈钢致密化和尺寸精度的研究[J]. 2002,7(4):324-329
    
    [33]MOLINS C,BAS J,PLANAS J. P/M stainless steel: Types and their characteristics and applications[C]//CAPUS M,GERMAN R M. Advances in powder Metallurgy &Particulate Materials[C].New Jersey: M P I F, 1992 ,5:345-357
    
    [34] Hale T.PM stainless steels uses in automotive exhausts[J] .Metal Powder Report,1998,53(5):22-26
    
    [35]Beiss P. Effects of density on properties,conductivity and machinability of stainless steel[J]. Metal Powder Report,1998,6(7):37-41
    
    [36]Albano-Mueller L.新千年初的欧洲粉末冶金[J].粉末冶金工业,2001,11(2):7
    
    [37]Cimino T M, Rawlings A J, Rutz H G Properties of several ANCOR-DENSE?processed high performance materials[A]. Terry C M,et al. Advances In Powder Metallurgy& Paniculate Materials[C].New Jersey:MPIF,1996,6:337-352
    
    [38] Rutz HG, Murphy T, Cimino T M. The effect of microstructure on fatigue properties of high density ferrous P/M materials[A]. Terry C M,et al. Advances In Powder Metallurgy& Particulate Materials[C].New Jersey: MPIF, 1996, 6:375-389
    
    [39] Laurent S ST, Chagnon F. Key parameters for warm compaction of high densitymaterials[A]. Terry C M. Advances In Powder Metallurgy& ParticulateMaterials[C] .New Jersey :MPIF, 1996,3:125-13 8
    
    [40]Rutz H G, Hanejko F G High density processing of high performance ferrousmaterials[A]. Terry C M, et al. Advances In Powder Metallurgy& ParticulateMaterials[C] .New Jersey :MPIF, 1994,5:117-124
    
    [41]Rutz H G, Hanejko F G, Luk S H.Warm compaction offers high density at lowcost[J]. Metal Powder Report, 1994,49(9):40-47
    
    [42]Christophe N D, Athony G, German R M. Effect of lubricantion mode andcompaction temperature on the properties of Fe-Ni-Cu-Mo-C[J]. TheInternational Journal of Powder Metallugy,1998,34(2):29-33
    
    [43]李元元,项品峰,夏伟,等.温压工艺制备高密度粉末冶金零件的新技术[J].材料 导报,2000,14(2):25-27
    
    [44]林涛,果世驹,李明怡,等.粘结剂和润滑剂对铁粉流动性和松装密度的影响[J]. 粉末冶金技术,2000,18(1):8-11
    
    [45]李金花,倪东惠,潘国如,等.几种润滑剂对温压工艺的影响[J].粉末冶金工 业,2004,14(3):5-8.
    
    [46]李明怡,果世驹,康志君等.不同类型金属粉末的温压行为[J].粉末冶金技术, 2000,18(4):261-264
    
    [47]林信平,曹顺华,李炯义.温压在硬质合金制备中的应用[J].中国钼业, 2004,28(3):29-33
    
    [48]肖志瑜,李元元,倪东惠.粉末冶金温压的致密化机理[J].粉末冶金材料科学 与工程,2006,11(2):85-90
    
    [49]肖志瑜,陈维平,温利平,等.温压动态压制曲线及颗粒重排贡献率的探讨[J]. 粉末冶金材料科学与工程,2005,10(2):96-99
    
    [50]曹顺华,曲选辉,黄伯云.温压致密化机理及其在温压粉末设计中的应用[J]. 机械工程材料,2002,26(6):9-11
    
    [51]彭元东,易健宏,叶途明,等.温压工艺的研究进展[J].粉末冶金材料科学与工 程,2006,11(3):133-139
    
    [52]曾德麟.粉末冶金材料[M].北京:冶金工业出版社,1997:8
    
    [53]Hwan-Jin Sung,Tae Kwon Ha,Sangho Ahn,et al. Powder injection molding of a 17-4 PH stainless steel and the effect of sintering temperature on its microstructure and mechanical properties[J]. Journal of Materials Processing Technology,2002,130/131:321-327
    
    [54]郭林,果世驹,孟飞,等.添加青铜粉对烧结316L不锈钢组织和性能的影响 [J].2006,11(4):225-228
    
    [55]何朋,王均安,徐新平.粉末冶金制备不锈钢的研究及发展[J].2004,29(7):1-4
    
    [56]孟飞,果世驹,张恒,等.添加金属粉末对粉末冶金316L不锈钢性能的影响 [J].2006,11(6):341-344
    
    [57]果世驹,杨霞,陈邦峰,等.316L不锈钢粉末温压与模壁润滑的高密度成形[J]. 粉末冶金技术,2004,23(6):403-408
    
    [58]曹顺华,张立华,易健宏,曲选辉,杨屹.温压粉末的制备及其温压行为[J].粉体 材料科学与工程,1999,4(3):218-221
    
    [59]赵密,郭英奎,俞泽民,等.烧结温度对不锈钢(316L)致密性及其强度的影响[J], 哈尔滨理工大学学报,2000,5(3):105-107
    
    [60]张双益.李元元.铁基粉末冶金材料的温压工艺[J].机械工程材料,2000,24 (1):26-28
    
    [61]李元元.李金花.倪东惠.润滑剂含量对模壁润滑温压工艺的影响[J].粉末冶金 技术,2004,22(6):341
    
    [62]曹顺华,林信平,李迥义,等.铁基合金粉末低温温压工艺研究[J].机械工程材 料,2005,29(7):38-41
    
    [63]BOCCHINI G F. Warm compaction of metal powders :why it works , why it requires a sophisticated engineering approach [J ] . Powder Metallurgy , 1999 , 42(2):171-180
    
    [64]黄培云.粉末冶金原理[M].北京:冶金工业出版社,1997.173
    
    [65]李艳萍,胡学晟,果世驹.含Fe2Mo2B预合金粉的铁基合金温压行为[J].粉末 冶金材料科学与工程,2005,10(5):305-308
    
    [66]S.Li,B.Huang,D.Li,et al..Influences of sintering atmosphericals on densification process of injection moulded gas atomised 316L stainless steel[J]. Powder Metallurgy, 2003,46 (3):242-245
    
    [67]朱凤霞,易健宏,周承商,彭元东,李丽娅.微波烧结对粉末冶金铜材显微组织与 性能的影响[J].粉末冶金材料科学与工程,2007,12(6):364-368
    
    [68]黄培云.粉末冶金原理[M].北京:冶金工业出版社,1997:385
    
    [69]崔约贤,王长利.金属断口分析[M].哈尔滨:哈尔滨工业大学出版社,1998:38
    
    [70]崔忠圻,刘北兴.物理冶金基础[M].哈尔滨:哈尔滨工业大学出版 社,1989:278-279
    
    [71]胡赓祥,蔡殉.材料科学基础[M].上海:上海交通大学出版社,2000:195
    
    [72]姜峰,李益民,李松林.烧结气氛对MIM316L不锈钢致密化及尺寸精度的影响 [J],材料科学与工艺,2005,13(1):4-7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700