二相粒子材料动态再结晶行为的元胞自动机模型及其模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着材料科学和计算机仿真技术的发展,材料制备科学正从传统的正向研究向向研究过渡:从材料的组分、微观组织结构出发,借助计算机模拟来设计工艺和预测材料性能,以便生产满足使用要求的材料。
     材料中存在的第二相粒子主要是加入合金元素以改善性能的产物。其中,随着合金化和控轧控冷技术的普遍应用,性能优越的合金钢和微合金钢不断得到开发和应用。这两类钢在热塑性变形过程中往往会形成一定数量和尺寸的第二相粒子,进而导致了它们的动态再结晶行为及其相应的微观组织变化,在很大程度上决定了最终钢材产品的组织结构和力学性能。
     元胞自动机(cellular automata,简称CA)模型是近年来发展起来的一种材料组织模拟模型,其算法结构简单、计算效率高,可直接考察体系局部交互作用及其产生的复杂行为对模拟系统的影响,在材料晶粒长大、静态再结晶和动态再结晶模拟中得到了成功应用。但是,在二相粒子材料动态再结晶行为模拟中的应用还未及时开展,特别是考虑位错密度非均匀分布的模拟模型也未见报道。构建含有第二相的材料动态再结晶CA模型不仅可以实现变形温度、应变速率、初始晶粒尺寸、非均匀变形、第二相粒子尺寸和体积分数等参数对流变应力、再结晶体积分数、稳态平均晶粒尺寸等动态再结晶表征参数影响的模拟研究,为更好地认识和控制热塑性变形组织以优化热塑性变形工艺提供指导,而且进一步挖掘了CA模型的潜力,拓展了其应用范围。因此,及时展开二相粒子材料动态再结晶CA建模、模拟技术开发及其模拟研究具有重要的理论和实际意义。
     本文依据CA法、金属材料热变形物理冶金相关理论和相关实验结果,建立了位错密度均匀分布及位错密度非均匀分布的单相材料动态再结晶CA模型,随后引入第二相粒子的影响,创建了位错密度非均匀分布的二相粒子材料动态再结晶CA模型;自主开发了相关动态再结晶模拟的关键技术;采用Visual Fortran语言编制上述模型的应用程序,并通过系统的模拟研究和相关的实验研究对所建模型及其模拟关键技术的合理性和应用效果进行了检验。
     首先,依据热变形物理冶金学原理,在变形均匀和位错密度均匀分布的假设前提下,建立了具有可靠物理机制的单相材料元胞自动机模型及其模拟算法,进行了相应的应用程序开发,并且以无氧高导电性铜(OFHC)为例,成功地模拟和解释了动态再结晶应力-应变曲线单峰/多峰现象。
     其次,考虑了材料热塑性变形时晶粒尺寸、晶界和局部缺陷等对位错运动及其分布的影响机制,提出了位错密度非均匀分布模型,并据其建立了新的单相材料动态再结晶CA模型。对相同变形条件下HPS485wf钢的动态再结晶仿真结果比较表明,新模型较原模型更有效地模拟了动态再结晶过程,位错密度非均匀模型更接近实际。应用新模型全面、合理地模拟和探讨了单一变形参数对HPS485wf钢动态再结晶行为的影响规律。
     然后,根据细小弥散的第二相粒子和大尺寸的第二相粒子对动态再结晶行为的影响机制,在新的单相材料动态再结晶CA模型的基础上,创建了位错密度非均匀分布的二相粒子材料动态再结晶CA模型。该模型综合考虑了第二相粒子对位错密度累积、动态再结晶形核及再结晶晶粒长大的影响,模拟结果较好地反映了第二相尺寸、体积分数及动态析出对动态再结晶组织演变、动力学的影响规律,且经受了相关实验和理论的有效检验。
     最后,为了验证本文创建的二相粒子材料动态再结晶CA模型的合理性及其应用效果,以典型二相粒子材料Q420qE钢为研究对象,进行了动态再结晶过程的热模拟实验研究;采用这一模型模拟了该钢的动态再结晶过程,并与热模拟实验相应结果进行了对比。结果表明:本文所建模型较准确地模拟了该钢动态再结晶形核位置、动态再结晶晶粒长大组织及动态再结晶完成时的微观组织;模拟的动态再结晶力学、动力学变化规律及变形参数对动态再结晶行为的影响规律与相关理论及热模拟实验结果相符合;同时,由于模型假设和实验精度等的影响,动态再结晶速度模拟值与实际值之间存在一定误差,进一步完善该模型有助于提高模拟精度从而提升其实际应用价值。
Along with the development of materials science and computer simulation technology, materials fabrication science is changing from traditional design manner to its reverse one. By the aid of computer simulation, material properties can be predicted based on the components and microstructures, and the optimum manufacturing technology can be determined to produce materials which can satisfy the actual requirements.
     The second phase particles are the products to improve materials performance by adding alloy elements. With the application of alloying technology and controlled rolling and controlled cooling technology, alloyed and microalloyed steels with high performance are widely developed. The precipitation of second phase particles will occur during thermo-mechanical working of this kind of steels. The effects of these precipitated second phase particles on dynamic recrystallization behavior and corresponding microstructure evolution largely determine the microstructures and mechanical properties of the final product.
     Cellular automata (CA) model, which is of simplity, short run time and can directly investigate the local interaction and its influence, has been successfully used in the simulation of grain growth, static recrystallization and dynamic recrystallization in recent years. However, it is has not been applied in the simulation of dynamic recrystallization for hot deforming materials with second phase particles. Establishing dynamic recrystallization CA model for hot deformation materials with second phase particles can not only investigate the effects of deformation temperature, strain rate, initial grain size, heterogeneous deformation and the volume fraction and size of second phase particles on flow stress, recrystallization volume fraction and steady state mean grain size of dynamic recrstallization to understand and control the microstructure evolutions of hot deformation materials, in order to provide guidance for hot deformation technology optimization, but also extend the range of application for CA model. Therefore, it is of theoretical and practical significance to carry out the modeling and simulation research of dynamic recrystallization CA model for materials with second phase particles.
     In the present thesis, based on the CA model and metallurgical principles of hot deformation, dynamic recrystallization CA models with homogeneous distributed dislocation model and heterogeneous distributed dislocation model for single phase materials were established, respectively. On the basis of the two models, dynamic recrystallization CA model for materials with second phase particles was proposed. According to the CA models and the corresponding key technologies of dynamic recrystallization simulation, applications were written in the Visual Fortran6programming language. Related research on simulation and experiment of dynamic recrystallization were employed to verify the rationality of the CA models.
     Firstly, under the homogeneous deformation and homogeneous dislocation distribution hypothesis, based on the metallurgical principles of hot deformation, the dynamic recrystallization CA model with dependable physical mechanism for single phase materials was constructed and corresponding application was developed..Taking oxygen-free high-conductivity copper (OFHC) for example, the single peak/multiple peak phenomenon of stress-strain curves for dynamic recrystallization was successfully represented and explained.
     Secondly, taking consideration of the effects of grain size, grain boundary and local defect on dislocation movement and distribution, a new mesoscopic heterogeneous distributed dislocation model was established and dynamic recrystallization CA model with this heterogeneous distributed dislocation model for single phase materials was established. Compared with the homogeneous distributed dislocation model, the heterogeneous distributed dislocation model could simulate dynamic recrystallization more effectively. Then, the impact of deformation parameters on dynamic recrystallization of HPS485wf steel was simulated and discussed by using the heterogeneous distributed dislocation model.
     Then, according to the different acting mechanism of small and large second phase particles on dynamic recrystallization behavior, base on dynamic recrystallization CA model with heterogeneous distributed dislocation model for single phase materials, dynamic recrystallization CA model with heterogeneous distributed dislocation model for materials with second phase particles was constructed. In this model, the influence of second phase particles on dislocation accumulation, dynamic recrystallization nucleation and growth of recrystallized grain was considered. The simulated results are in good agreement with related theory and experiment results.
     To verify the rationality and application effect of dynamic recrystallization CA model for materials with second phase particles, experimental researches on hot compressive dynamic recrystallization behavior of Q420qE steel were carried out. Then, the CA model was applied to simulate the dynamic recrystallization of Q420qE steel. The comparison of simulated and experimental results indicates that the nucleation site, recrystallized microstructure and steady state microstructure can be accurately simulated by the CA model. Simulated dynamic recrystallization mechanics, kinetics rules and the effects of deformation parameters on dynamic recrystallization behavior are in agreement with related dynamic recrystallization theory and experimental results. Meanwhile, there is certain error between simulated and experimental dynamic recrystallization rate because of the hypothesis of CA model and the precision of experiment. To perfect the model further is helpful to improve its simulation accuracy and practical application.
引文
[1]熊家迥.材料设计[M].天津:天津大学出版社,2000:1-2.
    [2]F.J. Humphreys, M. Hatherly. Recrystallization and related annealing phenomena (second edition) [M]. Oxford:Elsevier Ltd,2004:232-234.
    [3]刘智恩.材料科学基础[M].西安:西安工业大学出版社,2003:248-276.
    [4]S.S.葛列里克著.仝健民等译.金属和合金的再结晶[M].北京:机械工业出版社,1985:193.
    [5]毛卫民,赵新兵.金属的再结晶和晶粒长大[M].北京:冶金工业出版社,1994:29-30.
    [6]王有铭.李曼云.韦光.钢材的控制轧制和控制冷却[M].北京:冶金工业出版社,1995:20.
    [7]R. Ding, Z.X. Guo. Coupled quantitative simulation of microstructural evolution and plastic flow during dynamic recrystallization[J]. Acta Materialia,2001,49(16): 3163-3175.
    [8]P.R. Paulo, F.D. Angelo. Microstructural path of recrystallization in a commercial Al-Mn-Fe-Si (AA3003) alloy [J]. Materials Research,2003,6(4):1516-1530.
    [9]赵晶,谢辅洲,孙振国.材料科学基础教程[M].哈尔滨:哈尔滨工业大学出版社.2001.
    [10]W.R. Hibbard, C.G. Dunn. A study of 112 edge dislocations in bent silicon-iron single crystals [J]. Acta Metallurgica,1956,4(3):306-315.
    [11]H.J. MeQueen. Development of dynamic recrystallization theory [J]. Materials Science and Engineering A,2004,387-389:203-208.
    [12]李龙飞.低碳钢中铁素体动态再结晶规律及机制的研究[D].北京:北京科技大学博士学位论文.2005.
    [13]P.R. Cetlin, S Yue. J.J. Jonas. Warm working of ferrite in the simulated rod rolling of IF steels [J]. Materials Science Forum,1993,113-115:405-410.
    [14]J.J. Jonas. Dynamic recrystallization-scientific curiosity or industry tool? [J]. Materials Science and Engineering A,1994,184(2):155-165.
    [15]I. Tamura, H. Sekine, T. Tanaka, et al. Thermomechanical processing of high strength low alloy steels [M]. New York:Butterworth-Heinemann,1988.
    [16]P.R. Rios, F.S. Jr, H.R.Z. Sandim, et al. Nucleation and growth during Recrystallization. [J]. Materials Research,2005,8(3):225-238.
    [17]C.M. Sellars, J.A. Whiteman. Recrystallization and growth in hot rolling [J]. Metal Science,1979,13(34):187-194.
    [18]M. Muraki, T. Toge, K. Sakata, et al. Formation mechanism of{111} recrystallization texture in ferritic steels [J]. Tetsu-to-Hagane/Journal of the Iron and Steel Institute of Japan,1999,85(10):751-757.
    [19]T. Urabe, J.J. Jonas. Modeling texture change during recrystallization of an IF steel [J]. ISIJ International,1994,34(5):435-442.
    [20]U. Andrade, M.A. Meyers, K.S. Vecchio. Dynamic recrystallization in high-strain, high-strain-rate plastic deformation of copper [J]. Acta Metallurgica et Materialia,1994, 42(9):3183-3195.
    [21]I. Tamura. Some elementary steps in the thermomechanical processing of steels [J]. Tstsa-to-Hagae,1988,74(1):18-35.
    [22]A.M. Wusatowska-Sarnek, H. Miura, T. Sakai. Nucleation and microtexture development under dynamic recrystallization of copper [J]. Materials Science and Engineering A,2002,323(1-2):177-186.
    [23]H. Miura, T. Sakai, H. Hamaji, et al. Preferential nucleation of dynamic recrystallization at triple junction [J]. Scripta Materialia,2004,50(1):65-69.
    [24]S. Andiarwanto, H. Minra, T. Sakai. Strain rate effect on dynamic nucleation at triple junctions in a copper tricrystal [J]. Materials Transactions,2003,44(10):2213-2219.
    [25]M.J. Luton, C.M. Sellars. Dynamic recrystallization in nickel and nickel-iron alloys during high temperature deformation [J]. Acta Metallurgica et Materialia,1969,17(8): 1033-1043.
    [26]T. Sakai, J.J. Jonas. Dynamic recrystallization:Mechanical and microstructural considerations [J]. Acta Metallurgica et Materialia,1984,32(2):189-209.
    [27]E. Brunger, X. Wang, G. Gottstein. Nucleation mechanisms of dynamic recrystallization in austenitic steel alloy 800H [J]. Scripta Materialia,1998,38(12):1843-1849.
    [28]H.J. McQueen, S. Yue, N.D. Ryan, et al. Hot working characteristics of steels in austenitic state [J]. Journal of Materials Processing Technology,1995,53(1-2):293-310.
    [29]H.J. McQueen, C.A.C. Imbert. Dynamic recrystallization:plasticity enhancingstructural development [J]. Journal of Alloys and Compounds,2004,378(1-2):35-43.
    [30]S.E. Ion, F.J. Humphreys, S.H. White. Dynamic recrystallization and the development of microstructure during the high temperature deformation of magnesium [J]. Acta Metallurgica et Materialia,1982,30(10):1909-1919.
    [31]肖福仁,乔桂英,胡怡,等86CrMoV7钢动态再结晶行为[J].钢铁,2001,36(11):55-58.
    [32]X. Wang, E. Brunger, G. Gottstein, Mocrosture characterization and dynamic recrystallization in an alloy 800H [J]. Materials Science and Engineering A,2000, 290A(1-2):180-185.
    [33]X. Wang, E. Brunger, G. Gottstein. The role of twinning during dynamic recrystallization in alloy 800H [J]. Scripta Materialia,2002,46(12):875-880.
    [34]D. Ponge, G. Gottstein. Necklace formation during dynamic recrystallzation: mechanisms and impact on flow behavior [J]. Acta Metallurgica et Materialia,1998, 46(1):69-80.
    [35]朱志远.高速变形条件下动态再结晶机制的研究进展[J].铝合金组织与性能,2000,23(3):43-54.
    [36]J. Flaquer, S. J. Gil. Dynamic subgrain coalescence during low-temperature large plastic strains [J]. Journal of Materials Science,1984,19(2):423-427.
    [37]T. Sakai. Dynamic recrystallization microstructures under hot working conditions [J]. Journal of Materials Processing Technology,1995,53(1-2):349-361.
    [38]L. Backe. Modeling the microstructural evolution during hot deformation of microalloyed steels [D]. Stockholm:Royal Institute of Technology,2009.
    [39]F. Siciliano, J.J. Jonas. Mathematical modeling of the hot strip rolling of microalloyed Nb, multiply-alloyed Cr-Mo, and plain C-Mn steels [J]. Metallurgical and Materials Transactions A,2000,31 (2):511-530.
    [40]郑成武.低碳钢热变形中微观组织演变的元胞自动机模拟[D].沈阳:中国科学院金属学研究所博士论文,2009.
    [41]肖纳敏.低碳钢形变-相变耦合过程的介观模拟组织[D].沈阳:中国科学院金属研究所博士论文,2008.
    [42]李曼云,孙本荣.钢的控制轧制和控制冷却技术手册[M].北京:冶金工业出版社,1990.
    [43]T. Sakai, J.J. Jonas. Overview on dynamic recrystallization:Mechanical and microstructural considerations [J]. Acta Metallurgica,1984,32(2):189-209.
    [44]S. Sakui, T. Sakai, K. Takeishi. Hot deformation of austenite in a plain carbon steel [J]. Transaction ISIJ,1977,17:718-725.
    [45]C.M. Sellars, W.J. McTegart. On the mechanism of hot deformation [J]. Acta Metallurgica,1966,14(9):1136-1138.
    [46]H.J. McQueen, W.J.M. Tegart. Deformation of metals at high-temperatures [J]. Scientific American,1975,232:116-125.
    [47]雍岐龙.钢铁材料中的第二相[M].北京:冶金工业出版社,2006.
    [48]C. Zener. Private communication to smith [J]. Transaction of American Institute of Mining, Metallurgical, and Petroleum Engineers,1949,175:15-17.
    [49]T. Gladman. The physical metallurgy of microalloyed steels [M]. London:The Institute of Materials,1997.
    [50]东涛,付俊岩.试论我国钢的微合金化发展方向[J].中国冶金,2005,5:16-19.
    [51]M.D.C. Sobral, P.R. Mei. Effect of carbonitride particles formed in austenite on the strength of microalloyed steel [J]. Materials Science and Engineering A,2004,367(1-2): 317-321.
    [52]B. Dutta, C.M. Sellars. Effect of composition and process variables on Nb(C,N) precipitation in niobium microalloyed austenite [J]. Materials Science and Technology, 1987,3(3):197-203.
    [53]B. Edutta, E. Valdes, CM. Sellars. Mechanism and kinetics of strain induced precipitation of Nb(C, N) in Austenite [J]. Acta Metallurgica et Materialia,1992,40(4): 653-659.
    [54]W.B. Lee. S.G. Hong, C.G. Park, et al. Influence of Mo precipitation hardening in hot rolled HSLA steels containing Nb [J]. Scripta Materialia,2000,43(4):319-324.
    [55]苑少强,张凤梅.含Nb多元微合金钢的应变诱导析出行为[J].辽宁工程技术大学 学报,2006,25(4):592-594.
    [56]赵英利,时捷,刘苏,等.中碳钢微合金钢的应变诱导析出行为[J].钢铁,2010,45(2):99-101.
    [57]X. WANG, T. Siwecki, G. Engberg. A physical model for prediction of microstructure evolution during thermo mechanical processing [J]. Materials Science Forum,2003, 426-432:3801-3806.
    [58]刘红,王西涛,陈冷.含铌微合金钢的再结晶组织演化模拟[J].北京科技大学学报,2008,30(12):1333-1337.
    [59]刘红,王西涛,陈冷.含Nb微合金钢应变诱导析出的模拟[J].物理学报,2009,58(s):151-155.
    [60]陈礼清,赵阳,徐秋香,等.一种低碳钒微合金钢的动态再结晶与析出行为[J].金属学报,2010,46(10):1215-1222.
    [61]Xinhua Wang, Xinyu Liu, Dexin Du, et al. Hot ductility of vanadium micro-alloying steel continuous casting slabs [J]. Journal of University of Science and Technology Beijing,2002,9(1):9-12.
    [62]张玲TSDR工艺热加工过程的组织演变与控制[D].北京:北京科技大学博十论文,2007.
    [63]E.T. Turkdogan. Cause and effects of nitride and carbonitride precipitation in HSLA steels in relation to continuous casting [C]. Steelmaking Conference Proceedings,1987, 399-416.
    [64]Yuanli Wang, Delu Liu, Yonglin Kang. Ultrafine microstructure in microalloyed steel by a new thermomechnical process [J]. Journal of University of Science and Technology Beijing,2002,9(2):114-117.
    [65]A.J. DeArdo铌在钢中物理冶金基本原理.铌·科学与技术[M].北京:冶金工业出版社,2003.
    [66]丁汉林.AZ91镁合金高温变形行为的实验研究与数值模拟[D].上海:上海交通大学博士学位论文,2007.
    [67]赵国丹.AZ31镁合金热变形力学行为和动态再结晶的研究[D].重庆:重庆大学硕士学位论文,2005.
    [68]D. Raabe编著,项金钟,吴兴惠译.计算材料学[M],北京:化学工业出版社,2002.
    [69]陈舜麟.计算材料科学[M].北京:化学工业出版社,2005.
    [70]R. Sandstrom, R. Lagneborg. A model for hot working occurring by recrystallization [J]. Acta Metallurgica,1975,23(3):387-398.
    [71]H.P. Stuwe, B. Ortner. Recrystallization in hot working and creep [J]. Metal Science, 1974,8(1):161-167.
    [72]A.D. Rollett, D.J. Srolovitz, M.P. Anderson. Simulation and theory of abnormal grain growth-variable grain boundary energies and mobilities [J]. Acta Metallurgica,1989, 37(4):1227-1240.
    [73]A. Laasraoui A, J.J. Jonas. Prediction of steel flow stresses at high temperatures and strain rates [J]. Metallurgical and Materials Transactions A,1991,22(7):1545-1558.
    [74]金泉林.金属动态再结晶的数值模拟[C].第七届锻压学术年会论文集,北京:1995.
    [75]高维林.金属塑性变形的耗散结构和协同学模型及含铌低碳钢的热变形行为[D].东北大学博士学位论文,1993.
    [76]杜随更,吴诗,段立宇,等.初始动态再结晶过程中的位错动态行为[J].西北工业大学学报,1997,15(3):333-337.
    [77]王健.基于流变曲线的热塑性变形过程微观组织模拟建模研究[D].秦皇岛:燕山大学博士学位论文,2009.
    [78]W.A. Johnson, R.F. Mehl. Reaction kinetics in processes of nucleation and growth [J]. Transaction of the American Institute of Mining and Metallurgical Engineers,1939, 135(8):416-442.
    [79]M. Avrami. Kinetics of phase change. Ⅰ:general theory [J]. Journal of Chemical Physics, 1939,7(12):1103-1112.
    [80]张继祥,杨钢,钟厉.金属再结晶Monte Carlo Potts模拟新模型[J].重庆交通大学学报(自然科学版),2009,28(4):789-793.
    [81]C.M. Sellars. The physical metallurgy of hot working [C]. Proceeding of International Conference on Hot Working and Forming Processes, The Metal Society of London, 1980:3-15.
    [82]H. Yada, T. Senuma. Resistance to hot deformation of steels [J]. Journal of the Japan Society for Technology of Plasticity,1986,27(30):34-44.
    [83]T. Senuma, H. Yada. Structure of austenite of carbon steels in high speed hot working processes [J]. Tetsu-to-Hagane,1984,70(15):2112-2118.
    [84]Y. Satio. Modelling of microstructural evolution in thermomechanical processing of structural steel [J]. Materials Science and Engineering A,1997,223(1-2):134-145.
    [85]J.J. Jonas, X. Quelennec, L. Jiang, et al. The Avrami kinetics of dynamic recrystallization [J]. Acta Materialia,2009,57(9):2748-2756.
    [86]窦晓峰,鹿守礼,赵辉.Q235钢动态再结晶模型的建立[J].北京科技大学学报,1998,20(5):467-470.
    [87]何宜柱,陈大宏,雷廷权,等.动态再结晶动力学模型的研究[J].华东冶金学院学报,1995,12(1):146-151.
    [88]沈丙振,方能炜,沈厚发,等.低碳钢奥氏体再结晶模型的建立[J].材料科学与工艺,2005,13(5):516-520.
    [89]C.M. Sellars. Computer modeling of hot-working processes [J]. Materials Science and Technology,1985,1(4):325-332.
    [90]C.M. Sellars. Modelling microstructural development during hot rolling [J]. Materials Science and Technology,1990,6(11):1072-1081.
    [91]张斌.结构钢热加工过程的物理与数值模拟[D].上海:上海交通大学博十学位论文,2003.
    [92]牛济泰.材料和热加工过程领域的物理模拟技术[M].北京:国防工业出版社,1999.
    [93]雍岐龙,马鸣图,吴宝榕.微合金钢—物理和力学冶金[M].北京:机械工业出版社,1989.
    [94]廖舒纶.GCr15轴承钢棒线材热连轧过程微观组织演化的数值模拟[D].大连:大连理工大学博士学位论文,2008.
    [95]肖纳敏,岳珠峰,兰勇军,等.介观尺度上热变形奥氏体储存能演化的计算机模拟[J].金属学报,2005,41(5):496-502.
    [96]J. Yanagimoto, M. Kiuchi, Y. Inoue. Characterization of wire and rod rolling with front and back tensions by three-dimensional rigid-plastic finite element method [C]. Proceedings of 4th I CTP,1993:764-769.
    [97]张先宏.镁合金热变形过程试验研究和数值模拟[D].上海:上海交通大学博士学位论文,2006.
    [98]张晓明.双辊铸轧薄带钢过程数值模拟及实验研究[D].沈阳:东北大学博十学位 论文,2005.
    [99]原思宇.特殊钢棒线材热连轧过程的有限元模拟与分析[D].大连:大连理工大学博士学位论文,2007.
    [100]李立新.热轧板带的数值模拟、组织预报及工艺优化[D].重庆:重庆大学博士学位论文,2003.
    [101]王丽君.桥梁钢热压缩变形动态再结晶行为的双尺度模拟[D].济南:山东大学博士学位论文,2011.
    [102]李雄.结构钢热变形行为研究[D].上海:上海交通大学博士学位论文,2004.
    [103]刘娟.镁合金锻造成形性研究及数值模拟[D].上海:上海交通大学博士学位论文,2008.
    [104]王进.非调质钢三维复杂热锻造过程多物理场数值模拟研究[D].上海:上海交通大学博十学位论文,2007.
    [105]王丽君,赵健,关小军,等.应变量对HPS485wf钢动态再结晶影响的模拟[J].材料热处理学报,2011,32(8):153-158.
    [106]赵健.桥梁钢热压缩过程中动态再结晶的实验研究与有限元模拟[D].济南:山东大学硕十学位论文,2010.
    [107]宋晓艳.介观层次优化设计在高新材料开发中的应用[J].自然科学进展,2004,14(5):481-487.
    [108]M.P. Anderson, G.S. Grest, D.J. Srolovitz. Grain growth in three dimensions:A lattice model [J]. Scripta Metallurgica,1985,19(2):225-230.
    [109]M.P. Anderson, D.J. Srolovitz, G.S. Grest, et al. Computer simulation of grain growth-Ⅰ. Kinetics [J]. Acta Metallurgica,1984,32(5):783-791.
    [110]D.J. Srolovitz, G.S. Grest, M.P. Anderson. Computer simulation of grain growth-Ⅴ. Abnormal grain growth [J]. Acta Metallurgica,1985,33(12):2233-2247.
    [111]D.J. Srolovitz, M.P. Anderson, G.S. Grest, et al. Computer simulation of grain growth-Ⅲ. Influence of a particle dispersion [J]. Acta Metallurgica,1984,32(9): 1429-1438.
    [112]A.D. Rollett, D.J. Srolovitz, R.D. Doherty, et al. Computer simulation of recrystallization in non-uniformly deformed metals [J]. Acta Metallurgica,1989,37(2): 627-639.
    [113]A.D. Rollett, D.J. Srolovitz, M.P. Anderson, et al. Computer simulation of recrystallization -Ⅲ. Influence of a dispersion of fine particles [J]. Acta Metallurgica et Materialia,1992,40(12):3475-3495.
    [114]A.D. Rollett, M.J. Luton, D.J. Srolovitz. Microstructural simulation of dynamic recrystallization [J]. Acta Metallurgica et Materialia,1992,40(1):43-55.
    [115]P. Peczak, M.J. Luton. The effect of nucleation models on dynamic recrystallization I. Homogeneous stored energy distribution [J]. Philosophical Magazine:Part B,1993, 68(1):115-144.
    [116]P. Peczak. A Monte Carlo study of influence of deformation temperature on dynamic recrystallization [J]. Acta Metallurgica et Materialia,1995,43(3):1279-1291.
    [117]佟铭明,莫春利,李殿中,等.纯铜动态再结晶的Monte Carlo方法[J].金属学报,2002,38(7):745-749.
    [118]J.S. Langer. Models of pattern formation in first-order phase transitions [M]. Singapore: World Scientific,1986.
    [119]A.A. Wheeler, W.J. Boettinger, G.B. Mcfadden. Phase-Field Model for Isothermal Phase- Transitions in Binary-Alloys [J]. Physical Review A.1992,45(10):7424-7439.
    [120]S.G. Kim, W.T. Kil, J.S. Lee, et al. Large scale simulation of dentritic growth in pure undercooled melt by phase-field model [J]. ISIJ International,1999,39(4):335-340.
    [121]D. Fan, L.Q. Chen. Computer simulation of grain growth using a continuum field model [J]. Acta Materialia,1997,45(2):611-622.
    [122]G. Pariser, P. Schaffnit, I. Steinbach, et al. Simulation of the gamma-alphatransformation using the phase-field method [J]. Steel Research,2001,72(9):354-360.
    [123]http://web.access.rwth-aachen.de/MICRESS/
    [124]B. Bottger, M. Apel, J. Eiken, et al. Phase-field simulation of solidification and solid-state transformations in multicomponent steels [J]. Steel Research International, 2008,79(8):608-616.
    [125]Y. Takahama, J. Sietsma. Mobility analysis of the Austenite to ferrite transformation in Nb microalloyed steel by phase field modeling [J]. ISIJ International,2008.48(4): 512-517.
    [126]T. Takaki, T. Hirouchi, Y. Hisakuni, et al. Multi-Phase-Field model to simulate microstructure evolutions during dynamic recrystallization [J]. Materials Transactions, 2008,49(11):2559-2565.
    [127]T, Takaki, Y. Hisakuni, T. Hirouchi, et al. Multi-phase-field simulations for dynamic recrystallization [J]. Computational Materials Science,2009,45(4):881-888.
    [128]L.D. Landau, E.M. Lifshitz. Statistical physics [M]. London:Pergamon Press,1980.
    [129]M.G. Mecozzi, J. Sietsma, S. van der Zwaag, et al. Analysis of the γ→α transformation in a C-Mn steel by phase field modeling [J]. Metallurgical and Materials Transactions A, 2005,36(6):2327-2340.
    [130]肖帕德.物理系统的元胞自动机模拟[M].北京:清华大学出版社,2003.
    [131]邓小虎,张立文,何燕,等.应变速率对金属动态再结晶影响的数值模拟[J].塑性工程学报,2007,14(2):24-29.
    [132]N. Packard. Theory and applications of cellular automata [M]. Singapore:World Scientific,1986.
    [133]J.A. Spittle, S.G.R. Brown. Computer simulation of the effects of alloy variables on the grain structures of castings [J]. Acta Metallurgica,1989,37(7):1803-1810.
    [134]M. Rappaz, C.A. Gandin. Probabilistic modelling of microstructure formation in solidification processes [J]. Acta Metallurgica et Materialia,1993,41(2):345-360.
    [135]J.A. Spittle, S.G.R. Brown. A 3D cellular automaton model of coupled growth in two component systems [J]. Acta Metallurgica et Materialia,1994,42(6):1811-1815.
    [136]C.A. Gandin, M. Rappaz. A coupled finite element-cellular automaton model for the prediction of dendritic grain structures in solidification processes [J]. Acta Metallurgica et Materialia,1994,42(7):2233-2246.
    [137]C.A. Gandin, C. Charbon, M. Rappaz. Stochastic modelling of solidification grain structures [J]. ISIJ International,1995,35(6):651-657.
    [138]A. Jacot, M. Rappaz. A pseudo-front tracking technique for the modeling of solidification microstructures in mutli-component alloys [J]. Acta Materialia,2002, 50(8):1909-1926.
    [139]M.A. Martorano, V.B. Biscuola. Predicting the columnar-to-equiaxed transition for a distribution of nucleation undercoolings [J]. Acta Materialia,2009,57(2):607-615.
    [140]李殿中,苏仕方,徐雪华,等.镍基合金叶片凝同过程微观组织模拟及工艺优化研 究[J].铸造,1997,(8):1-7.
    [141]张林,王元明,张彩培.Ni基耐热合金凝固过程的元胞自动机方法模拟[J].金属学报,2001,37(8):882-888.
    [142]Q. Y. Xu, B. C. Liu. Modeling of as-cast microstructure of Al alloy with a modified cellular automaton method [J]. Materials Transactions,2001,42(11):2316-2321.
    [143]严卫东,刘汉武,熊玉华,等.非定向熔模铸造过程中高温合金叶片晶粒组织的计算机模拟[J].材料工程,2002,(4):43-47.
    [144]戴挺,朱鸣芳,陈双林,等.铝基四元合金枝晶组织及微观偏析的数值模拟[J].金属学报,2008,44(10):1175-1182.
    [145]H.W. Hesselbarth, I.R. Gobel. Simulation of recrystallization by cellular automata [J]. Acta Metallurgica et Materialia,1991,39(9):2135-2143.
    [146]C.F. Pezzee, D.C. Dunand. The impingement effect of an inert, immobile second phase on the recrystallization of a matrix [J]. Acta Metallurgica et Materialia,1994,42(5): 1509-1524.
    [147]C.H.J. Davies. The effect of neighbourhood on the kinetics of a cellular automaton recrystallisation model [J]. Scripta Metallurgica et Materialia,1995.33(7):1139-1143.
    [148]C.H.J. Davies. Growth of nuclei in a cellular automaton simulation of recrystallization [J]. Scripta Materialia,1997,36(1):35-40.
    [149]C.H.J. Davies, L. Hong. The cellular automata simulation of static recrystallization in cold-rolled AA 1050 [J]. Scripta Materialia,1999,40(10):1145-1150.
    [150]R.L. Goetz, V. Seetharaman. Static recrystallization kinetics with homogeneous and heterogeneous nucleation using a cellular automata model [J]. Metallurgical and Materials Transactions A,1998,29(9):2307-2321.
    [151]V. Marx, F.R. Reher, G. Gottstein. Simulation of primary recrystallization using a modified three-dimentional cellular automaton [J]. Acta Materialia,1999,47(4): 1219-1230.
    [152]D. Raabe. Introduction of a scalable three-dimensional cellular automaton with a probabilistic switching rule for the discrete mesoscale simulation of recrystallization phenomena [J]. Philosophical Magazine A,1999,79(10):2339-2358.
    [153]D. Raabe, R.C. Becker. Coupling of a crystal plasticity finite-element model with a probabilistic cellular automaton for simulating primary static recrystallization in aluminum [J]. Modelling and Simulation in Materials Science and Engineering,2000, 8(4):445-462.
    [154]A.D. Rollett, D. Raabe. A hybrid model for mesoscopic simulation of recrystallization [J]. Computational Materials Science,2001,21(1):69-78.
    [155]D. Raabe, L. Hantcherli.2D cellular automaton simulation of the recrystallization texture of an IF sheet steel under consideration of Zener pinning [J]. Computational Materials Science,2005,34(4):299-313.
    [156]G. Kugler, R. Turk. Study of the influence of initial microstructure topology on the kinetics of static recrystallization using a cellular automata model [J]. Computational Materials Science,2006,37(3):284-291.
    [157]P. Mukhopadhyay, M. Loeck, G. Gottstein. A cellular operator model for the simulation of static recrystallization [J], Acta Materialia,2007,55(2):551-564.
    [158]R.L. Goetz, V. Seetharaman. Modeling dynamic recrystallization using cellular automata [J]. Scripta Materialia,1998,38(3):405-413.
    [159]J. Kroc. Application of cellular automata simulations to modelling of dynamic recrystallization [C]. Lecture Notes in Computer Science,2002,2329:773-782.
    [160]M. Qian, Z.X. Guo. Cellular automata simulation of microstructural evolution during dynamic recrystallization of an HY-100 steel [J]. Material Science and Engineering A, 2004,365(1-2):180-185.
    [161]G. Kugler, R. Turk. Modeling the dynamic recrystallization under multi-stage hot deformation [J]. Acta Materialia,2004,52(15):4659-4668.
    [162]R.L. Goetz. Particle stimulated nucleation during dynamic recrystallization using a cellular automata model [J]. Scripta Materialia,2005,52(9):851-856.
    [163]N. Yazdipour, C.H.J. Davies, P.D. Hodgson. Microstructural modeling of dynamic recrystallization using irregular cellular automata [J]. Computational Materials Science, 2008,44(2):566-576.
    [164]N. Yazdipour, P.D. Hodgson, C.H.J. Davies. Microstructure evolution modeling during and after deformation in 304 austenitic stainless steel through cellular automaton approach [J]. International Journal for Multiscale Computational Engineering,2009, 7(5):381-393.
    [165]H. Hallberg, M. Wallin, M. Ristinmaa. Simulation of discontinuous dynamic recrystallization in pure Cu using a probabilistic cellular automaton [J]. Computational Materials Science,2010,49(1):25-34.
    [166]H.W. Lee, Y.T.Im. Cellular automata Modeling of grain coarsening and refinement during the dynamic recrystallization of pure copper [J]. Materials Transactions,2010, 51(9):1614-1620.
    [167]Chengwu Zheng, Namin Xiao, Dianzhong Li, et al. Microstructure prediction of the austenite recrystallization during multi-pass steel strip hot rolling:A cellular automaton modeling [J]. Computational Materials Science,2008,44(2):507-514.
    [168]Namin Xiao, Chengwu Zheng, Dianzhong Li, et al. A simulation of dynamic recrystallization by coupling a cellular automaton method with a topology deformation technique [J]. Computational Materials Science,2008,44(3):366-374.
    [169]肖宏,徐玉辰,闫艳红.考虑晶粒变形动态再结晶过程模拟的元胞自动机法[J].中国机械工程,2005,16(24):2245-2248.
    [170]H. Xiao, H.B. Xie. Y.H. Yan, et al. Simulation of dynamic recrystallization using cellular automaton method [J]. Journal of Iron and Steel Research,2004,11(2):42-45.
    [171]张立文,卢瑜,邓小虎,等.不同形核机制下对动态再结晶过程模拟研究[J].大连理工大学学报,2008,48(3):351-355.
    [172]卢瑜,张立文,邓小虎,等.纯铜动态再结晶过程的元胞自动机模拟[J].金属学报,2008,44(3):292-296.
    [173]H.L. Ding, L.F. Liu, S. Kamado, et al. Investigation of the hot compression behavior of the Mg-9Al-1Zn alloy using EBSP analysis and a cellular automata simulation [J]. Modelling and Simulation in Materials Science and Engineering,2009,17(2):1-14.
    [174]刘六法,丁汉林,鎌土重晴,等.AZ91镁合金的热压缩行为(Ⅱ)—元胞自动机模拟[J].中国有色金属学报,2008,18(2):243-249.
    [175]刘六法,丁汉林,鎌土重晴,等.AZ91镁合金的热压缩行为(Ⅲ)—基于元胞自动机模拟的再结晶动力学[J].中国有色金属学报,2008,18(2):250-253.
    [176]Zhaoyang Jin, Zhenshan Cui. Investigation on strain dependence of dynamic recrystallization behavior using an inverse analysis method [J]. Materials Science and Engineering A,2010,527(13-14):3111-3119.
    [177]Zhao-yang JIN, Juan LIU, Zhen-shan CUI, et al. Identification of nucleation parameter for cellular automaton model of dynamic recrystallization [J]. Transactions of Nonferrous Metals Society of China,2010,20(3):458-464.
    [178]Zhaoyang Jin, Zhenshan Cui. Modelling the effect of initial grain size on dynamic recrystallization using a modified cellular automata and an adaptive response surface method [J]. Journal of Materials Science and Technology,2010,26(12):1063-1070.
    [179]Fei Chen, Zhenshan Cui, Juan Liu, et al. Modeling and simulation on dynamic recrystallization of 30Cr2Ni4MoV rotor steel using the cellular automaton method [J]. Modelling and Simulation in Materials Science and Engineeing,2009,17(7):5015.
    [180]Fei Chen, Zhenshan Cui, Juan Liu, et al. Mesoscale simulation of the high-temperature austenitizing and dynamic recrystallization by coupling a cellular automaton with a topology deformation technique [J]. Materials Science and Engineering,2010, 527(21-22):5539-5549.
    [181]麻晓飞.二相粒子材料再结晶退火的元胞自动机模型及其模拟研究[D].济南:山东大学博士学位论文,2008.
    [182]K. Janssens, D. Raabe, E. Kozeschnik, et al. Computational Materials Engineering [M]. Burlington:Elsevier Academic Press,2007.
    [183]D. Raabe. Cellular automata in materials science with particular reference to recrystallization simulation [J]. Annual Review of Materials Research,2002,32:53-76.
    [184]黄始全.7050铝合金锻造过程动态再结晶元胞自动机模拟[D].长沙:中南大学硕士学位论文,2009.
    [185]F.J. Humphreys. Unified theory of recovery, recrystallization and grain growth, based on the stability and growth of cellular microstructures-Ⅰ. The basic model [J]. Acta Materialia,1997,45(12):4231-4240.
    [186]F. Montheillet, O. Lurdos, G. Damamme. A grain scale approach for modeling steady-state discontinuous dynamic recrystallization [J]. Acta Materialia,2009,57(5): 1602-1612.
    [187]R.D. Doherty, D.A. Hughes, F.J. Humphreys, et al. Current issues in recrystallization:a review [J]. Materials Science and Engineering A,1997,238(2):219-274.
    [188]W. Roberts, B. Ahlblom. A nucleation criterion for dynamic recrystallization during hot working [J]. Acta Metallurgica,1978,26(5):801-813.
    [189](法)J.P.普瓦里耶著,关德林译.晶体的高温塑性变形.大连:大连理工大学出版社,1989:88.
    [190]B. Derby. The dependence of grain size on stress during dynamic recrystallisation [J]. Acta Metallurgica et Materialia,1991,39(5):955-962.
    [191]L. Blaz, T. Sakai, J.J. Jonas. Effect of initial grain size on dynamic recrystallization of copper [J]. Metal Science,1983,17(12):609-616(8).
    [192]X.G. Fan, H. Yang, Z.C. Sun, et al. Quantitative analysis of dynamic recrystallization behavior using a grain boundary evolution based kinetics model [J]. Materials Science and Engineering A,527(21-22):5368-5377.
    [193]Y. Hisakuni, T. Takaki, Y. Tomita. Phase-field simulations during dynamic recrystallization [C]. Proceedings of Third Asian-Pacific Congress on Computational Mechanics (CD-ROM),2007, MS28-2-3:1-9.
    [194]E.A. Bonifaz, N.L. Richards. The plastic deformation of non-homogeneous polycrystals [J]. International Journal of Plasticity,2008,24(2):289-301.
    [195]申孝民.有限元与蒙特卡罗方法耦合的退火过程模拟模型及其关键技术研究[D].济南:山东大学博士学位论文,2008.
    [196]U.F. Kocks, R.E. Cook, A. Mulford. Strain aging and strain hardening in Ni-C alloys [J]. Acta Metallurgica,1985,33(4):623-638.
    [197]K.K. Singh, S. Sangal, G.S. Murgy. Hall-Petch behavior of 316L austenitic stainless steel at room temperature [J]. Materials Science and Technology,2002,18(2):165-172.
    [198]D.S. Balint, V.S. Deshpande, A. Needleman, et al. A discrete dislocation plasticity analysis of grain-size strengthening [J]. Materials Science and Engineering A,2005, 400-401(25):186-190.
    [199]A.W. Thompson, M.I. Bakes, W.F. Flanagan. The dependence of polycrystal work hardening on grain size [J]. Acta Metallurgica,1973,227(1):1017-1028.
    [200]H. Mughrabi. On the role of grain gradients and long-range internal stress in the composite model of crystal plasticity [J]. Materials Science and Engineering A.2001, 317(1-2):171-180.
    [201]杨觉先.金属塑性变形物理基础[M].北京:冶金工业出版社,1988.
    [202]H. Mughrabi. On the current understanding of strain gradient plasticity [J]. Materials Science and Engineering A,2004,387-389(1-2):209-213.
    [203]R. Bengochea, B. Lopez, I. Gutierrez. Influence of the Prior austenite microstructure on the transformation products obtained for C-Mn-Nb steels after continuous cooling [J]. ISIJ International,1999,39(6):583-591.
    [204]吴晋彬,刘国权,王浩,等.SCM435钢热变形动态再结晶动力学模型参数的确定[J].北京科技大学学报,2010,32(10):1282-1286.
    [205]W. Xu, M. Ferry, J.M. Cairney, et al. Three-dimensional investigation of particle-stimulated nucleation in a nickel alloy [J]. Acta Materialia,2007,55(15):5157-5167.
    [206]宋晓艳,R. Markus,张久兴.含有两尺寸组粒子分布的多相材料再结晶的研究[J].金属学报,2004,40(10):1009-1017.
    [207]F.J. Humphreys. The nucleation of recrystallization at seond phase particles in deformed Aluminium [J]. Acta Metallurgica,1977,25(11):1323-1344.
    [208]邓小虎.金属热变形及焊缝凝固过程的元胞自动机模拟[D].大连:大连理工大学博士学位论文,2009.
    [209]H.J. McQueen, N.D. Ryan. Constitutive analysis in hot working [J]. Materials Science and Engineering A,2002,322(1-2):43-63.
    [210]曹金荣,刘正东,程世长,等.应变速率和变形温度对T122耐热钢流变应力和临界动态再结晶行为的影响[J].金属学报,2007,43(1):35-40.
    [211]E.I. Poliak, J.J. Jonas. A one-parameter approach to determining the critical conditions for the initiation of dynamic recrystallization [J]. Acta Materialia,1996,44(1):127-136.
    [212]E.I. Poliak, J.J Jonas. Initiation of dynamic recrystallization in constant strain rate hot deformation [J]. ISIJ International,2003,43(5):684-691.
    [213]黄光杰,钱宝华,汪凌云,等.AZ31镁合金初始动态再结晶的临界条件研究[J].稀有金属材料与工程,2007,36(12):2080-2083.
    [214]H. Mirzadeh, A. Najafizadeh. Prediction of the critical conditions for initiation of dynamic recrystallization [J]. Materials and Design,2010,31(3):1174-1179.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700