环糊精微反应器中的有机合成反应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微反应器模拟细胞空腔及酶的催化功能是当前化学研究中的一个前沿领域,环糊精作为一种重要的微反应器越来越受到人们的重视。它是由D-(+)葡萄糖以α-1,4糖苷键结合而形成的一类环状低聚糖(n=6,α;n=7,β;n=8,γ),形似中空的圆筒,腔内是醚键和碳氢键,具疏水性,腔外含有羟基,具亲水性。环糊精能与多种无机或有机分子在水溶液中发生包合作用,其手性微环境能够催化诱导不对称化学反应,同时利用其在水中的溶解性,充当相转移催化剂,提高反应的选择性。环糊精微反应器中发生的反应以水为介质,避免了有机溶剂和金属催化剂的使用,操作方便,反应条件温和,符合绿色化学的发展要求。本文选择了还原反应、氧化反应及其缩合反应为探针反应,研究了这些反应在环糊精微反应器中的反应规律,获得了以下几个方面的结果:
     1.系统考察了环糊精微反应器存在下,苯乙酮衍生物中取代基团对不对称还原反应的影响。研究中发现当苯乙酮上连有取代基团且在低温条件下进行不对称还原反应时,对映体选择性得到提高,产物醇的绝对构型与取代基团的位置有关,苯乙酮及其间位、对位衍生物还原产物绝对构型为S型,邻位衍生物所得产物为R型。苯乙酮衍生物的对映体选择性是取代基团的大小、氢键作用、空间位阻等协同作用的结果。根据取代基团的性质以及取代位置,提出了底物在β-环糊精微反应器内中的可能定位机理。
     2.在NaBH_4还原胺/酮/环糊精形成的三元包合物体系中,考察了胺的类型,β-环糊精、苯乙酮和环己胺的摩尔比以及反应温度对苯乙酮不对称还原反应的影响。实验结果表明,较之酮/环糊精形成的二元包合物体系,加入环己胺,产物醇的绝对构型发生了翻转(从S型变为R型),当β-环糊精、苯乙酮和环己胺的摩尔比为2:1:3,反应温度为-5℃,R(+)-1-苯乙醇对映体过量率达到20%;而没有环己胺,S(-)-1-苯乙醇对映体过量率仅为6%。
     3.查尔酮及其衍生物是一类重要的有机中间体,常规的合成方法产率一般不高,反应条件苛刻。在此我们研究了以水为反应溶剂,以环糊精相转移催化绿色无污染合成查尔酮的新方法,产率最高可达90%。该方法避免了使用强碱,反应体系易与产物分离,催化剂可以循环使用。
     4.研究了环糊精微反应器中的苯甲醇氧化制备苯甲醛的反应。实验结果表明,环糊精在此反应中充当了相转移催化剂的作用,通过一锅法高选择性地合成了苯甲醛,具有反应条件温和、无环境污染、操作简单、用水作为溶剂、环糊精可以循环使用等优点。在反应温度为25℃,反应时间为10 h,β-环糊精、苯甲醇、NBS的摩尔比为2:1:2时,苯甲醛的产率可达83.7%。
It's a new topic for chemists to research on modeling the function of cell's environment and enzymes via microreactors.As an important microreactor,cyclodextrin(CD) is attracting more and more attention. Cyclodextrins are a class of cyclic oligosaccharide molecules normally comprised of six(α),seven(β) or eight(γ)α-1,4 linked D(+)-glucopyranose unite,in which the interior surface of the cavity is hydrophobic and the external surface is hydrophilic.They are well known for their ability to form inclusion complexes with a wide variety of guest molecules ranging from organic molecules to inorganic compounds and ions in aqueous solution.Cyclodextrins can be used as chiral microreactors because of their ability of asymmetric induced chemical reactions.Cyclodextrins are also efficient inverse phase transfer catalysts(IPTC) for they are soluble in water and can form inclusion complexs with hydrophobic organic compounds.These processes occur in water,which is attractive as an environmentally benign solvent,which avoids the environmental pollution from organic solvents and metal catalysts.The reaction condition is mild and the operation is convenient and simple.In this thesis,we investigated the behavior of asymmetric reduction,oxidation, condensation in microreactor of cyclodextrins,the research results are as follows:
     1.Effects of substuent groups in the presence of microreactors of cyclodextrins on asymmetric reduction of acetophenone derivatives have been studied.The results indicated that substituent groups and low reaction temperature improved enantioselectivity for this asymmetric reaction.Absolute configuration of the resulting alcohols are depending upon the positions of substuent groups,preponderant absolute configuration of acetophenone and its meta- and para-derivatives was the S while the prevailing absolute configuration was the R in the case of the orth-derivatives.Effects of enantioselectivity of substituted acetophenones were due to the combination of bulkiness of substituent groups,hydrogen bonding,space steric hindrance and so on.In addition,preferential orientations of the substrate included inside the microreactor ofβ-cyclodextrin are suggested from above results.
     2.While the three-component inclusion complex is asymmetric reduced by the NaBH_4,the effect factors on asymmetric reduction of the acetophenone such as the kind of amides,molar ratio of theβ-Cyclodextrin/ketone/anime,temperature have been examine.Compared with binary system,the results indicated that cyclohexanamine enhanced chiral induction and inverted alcohol configuration.R(+)-1-phenylethanol was produced in 20%enantiometric excess for a molar ratioβ-CD:acetophenone:cyclohexanamine of 2:1:3,the reaction temperature is-5℃;the S(-) enantiomer in 6%enantiometric excess in the absence of cyclohexanamine.
     3.Chalcone and its derivatives are important organic intermediates. A new green method was studied for synthesis of Chalcones using microreactor of cyclodextrin as the inverse phase transfer catalysts and refluxed in water,the isolated yield was up to 90%.The method precludes the use of either strong base and product can be easily separated.The catalyst can be recycled with no pollution to the environment.
     4.Benzyl alcohol was oxidized to benzaldehyde under a mild condition in microreactor of cyclodextrins.The results showed that microreactor of cyclodextrins can be regarded as inverse efficient phase transfer catalysts for the oxidation of benzyl alcohol,this method is a direct one-pot synthesis under mild conditions,without pollution to the environment,the experimental steps are simple,cyclodextrins can be recovered and reused without loss of activity.Yield of benzaldehyde was up to 83.7%when the reaction temperature is 25℃,reaction time is 10 h, the molar ratio of theβ-cyclodextrin,benzyl Alcohol and NBS is 2:1:1.
引文
[1]Tung,C.H.,J.Q.Guan.Remarkable product selectivity in photosensitized oxidation of alkenes within Nafion membranes[J].J Am Chem Soc,1998,120(46):11874-11879
    [2]Tung,C.H.,J.Q.Guan.Regioselectivity in the photocycloaddition of 9-substituted anthracenes incorporated within nafion membranes[J].J Org Chem,1998,63(17):5857-5862
    [3]Tung,C.H.,J.Q.Guan.Modification of photochemical reactivity by Nafion.Photocyclizaiton and photochemical cis-trans isomerization of azobenzene[J].J Org Chem,1996,61(26):9417-9421
    [4]Li,H.R.,L.Z.Wu.,C.H.Tung.Reactions of singlet oxygen with olefins and sterically hindered amine in mixed surfactant vesicles[J].J Am Chem Soc,2000,122(11):2446-2451
    [5]Li,H.R.,L.Z.Wu.,C.H.Tung.Vesicle-controlled selectivity in photosensitized oxidation of olefins[J].Chem Commun,2000,12(10):1085-1086
    [6]Williams,H.S.Modern Development of the Chemical and Biological SciencesVolumelV[M],New York:Harper and Brothers,1904:124
    [7]Fischer,E.Einfluss der Configuration auf die Wirkung der Enzyme[J].Ber Dt Chem Ges,1894,27(1):2985-2993
    [8]Chen,H.T.,Z.W.Li.,P.Z.Li.Bin Chen[J].Ace Chem Res,2003,36(1):39-47
    [9]Bosnian,A.W.,H.M.Janssen.,E.W.Meijer.About Dendrimers:Structure,Physical Properties,and Applications[J].Chem Rev,1999,99(7):1665-1688
    [10]Groves,J.T.,R.Neumann.Membrane-spanning steroidal metalloporphrins as site-selective catalysts in synthetic vesicles[J].J Am Chem Soc,1987,109(16):5045-5047
    [11]Niemeyer,CM.Nanoparticles,Proteins,and Nucleic Acids:Biotechnology Meets Materials Science[J].Angew Chem Int Ed,2001,40(18):4128-4158
    [12]Breslow,R.,S.D.Dong.Biomimetic Reactions Catalyzed by Cyclodextrins and Their Derivatives[J].Chem Rev,1998,98(5):1997-2012
    [13]Kim,K.Mechanically interlocked molecules incorporating cucurbituril and their supramolecular assemblies[J].Chem Soc Rev,2002,31(2):96-107
    [14]Bceda,A.,S.Shinkai.Novel Cavity Design Using Calix[n]arene Skeletons:Toward Molecular Recognition and Metal Binding[J].Chem Rev,1997,97(5):1713-1734
    [15]Fujita,M.,K.Umemoto.,M.Yoshizawa et al.Molecular paneling via coordination[J].Chem Commun,2001,5(6):509-518
    [16]Heinz,T.,D.M.Rudkevich.,J.J.Rebek.Pairwise selection of guests in a cylindrical molecular capsule of nanometer dimensions[J].Nature,1998,394(13):764-766
    [17]Nuckolls,C,F.Hof.,T.Martin et al.Chiral Microenvironments in Self-Assembled Capsules[J].J Am Chem Soc,1999,121(44):10281-10285
    [18]Rondelez,Y.,M.N.Rager.,A.Duprat.Calix[6]arene-Based Cuprous'Tunnel Complexes":A Mimicfor the Substrate Access Channel to Metalloenzyme Active Sites[J].J Am Chem Soc,2002,124(7):1334-1340
    [19]Arndtsen,B.A,R.GBergman.,T.A.Mobley.Selective Intermolecular Carbon-Hydrogen Bond Activation by Synthetic Metal Complexes in Homogeneous Solution[J].Ace Chem Res,1995,28(3):154-162
    [20]Yoshizawa,M.,Y.Takeyama.,T.Okano.Cavity-Directed Synthesis within a Self-Assembled Coordination Cage:Highly Selective[2+2]Cross-Photodimerization of Olefins[J].J Am Chem Soc,2003,125(1):243-3247
    [21]Kusukawa,T.,T.Nakai.,T.Okano et al.Remarkable Acceleration of Diels-Alder Reactions in a Self-Assembled Coordination Cage[J].Chem left,2003,32(3):284-285
    [22]Steinfeld,G,V.Lozan.,B.Kersting.cis-Bromination of Encapsulated Alkenes[J].Angew Chem Int Ed,2003,42(20):2261-2263
    [23]Fiedler,D.,R.GBergman.,K.N.Raymond.Supramolecular Catalysis of a Unimolecular Transformation:Aza-Cope Rearrangement within a Self-Assembled Host[J].Angew Chem Int Ed,2004,43(2):6748-6751
    [24]Szejtli,J.Introduction and general overview of cyclodextrin chemistry[J].Chem Rev,1998,98(5):1743-1754
    [25]童林荟.环糊精化学-基础与应用[M].北京:科学出版社,2001:12-16
    [26]刘育,尤长城,张蘅益.超分子化学-合成受体的分子识别与组装[M].天津:南开大学出版社,2001:166-169
    [27]操锋,任勇,华维一,马坤芳,郭寅龙.利用人工模拟酶环糊精催化羧酸酯水解反应的研究进展[J].有机化学,2002,22(11):827-834
    [28]叶秀林,化工百科全书(第10卷)[M].北京:化学工业出版社,1996:860-861
    [29]Gong,Y.H.,H.K.Lee.Application of cyclam-capped β-cyclodextrinbonded silica particles as a chiral stationary phase in capillary electrochromatography for enantiomer separations[J].J Anal Chem,2002,57(12):1348-1354
    [30]黄乃聚,尤晨,章道道.环糊精在有机合成中的应用[J].有机化学,1987,7(6):482-488
    [31]Takahashi,K.Organic reactions mediated by cyclodextrins[J].Chem Rev,1998,98(5):2013-2034.
    [32]Breslow,R.,S.D.Dong.Biomimetic reactions catalyzed by cyclodextrins and Their derivatives[J].Chem Rev,1998,98(5):1997-2012
    [33]Biwer,A.,G.Antranikian.,E.Heinzle.Enzymatic production of cyclodextrins[J].Appl Microbiol Biotechnol,2002,59(6):609-617
    [34]Villiers,A.Sur la transformation de la f(?)cule en dextrine par le ferment butyrique [J].Compt Rend Fr Acad Sci,1891,112(8):435-438
    [35]Cramer,F.Einschlussverbindungen[M].Berlin:Springer-Verlag,1954:1-20
    [36]Breslow,R.,S.D.Dong.Biomimetic Reactions Catalyzed by Cyelodextrins and Their Derivatives[J].Chem Rev,1998,98(5):1997-2011
    [37]Lee,S.,A.A.Ueno.Cyclodextrins Bearing Two Imidazole Moieties as Hydrolysis Enzyme Model[J].Chem Lett,2000,29(3):258-259
    [38]Mcgarraghy,M.,R.Darcy.Effects of Cyclodextrins on Chymotrypsin Action[J].Inclu Phenom Mac Chem,2004,49(1-4):259-264
    [39]Breslow,R.,C.Schmuck.Goodness of Fit in Complexes between Substrates and Ribonuclease Mimics:Effects on Binding,Catalytic Rate Constants,and Regiochemistry[J].J Am Chem Soc,1996,118(28):6601-6604
    [40]Bredow,R.,A.W.Czarnik.,M.Lauer.Mimics of Transaminase Enzymes[J].J Am Chem Soc,1986,108(8):1969-1979
    [41]Tabushi,I.,Y.Kuroda.,A.Mochizuki.The first successful carbonic anhydrase model prepared through a new route to regiospecifically bifunctionalized cyclodextrin[J].J Am Chem Soc,1980,102(3):1152-1153
    [42]a) Armspach,D.,D.Matt.Metal-Capped-Cyclodextrins:Squaring the Circle[J].Inorg Chem,2001,40(14):3505-3509;
    b)Akkaya,E.U.,A.W.Czarnik.Synthesis and reactivity of cobalt(Ⅲ)complexes bearing primary-and secondary-side cyclodextrin binding sites[J].J Am Chem Soc,1988,110(25):8553-8554
    [43]赵明刚,郝爱友,王建英.有机合成中的催化性能[J].化学通报,2005,68(1):1-8.
    [44]赵何为,宋承炎.精细化工实验[M].上海:华东化工学院出版社,1992:137-139
    [45]郝壁萍,马运萍.β-环糊精存在下合成4.4'-二氯氧化偶氮苯的新方法[J].山大学学报,1996,19(3):312-314.
    [46]Sakurab,H.,N.Inomata.,Y.Tanaka.Asymmetric reduction of ketones with crystalline cyclodextrin complexes of amine-boranes[J].J Org Chem,1989,54(14):3482-3484
    [47]邓芳,兰支利,尹笃林,肖自胜.β-环糊精存在下二氧杂环丙烷对苯乙烯不对称环氧化[J].化学通报,2006,69(5):362-364
    [48]Surendra,K.,N.S.Krishnaveni.,M.A.Reddy.,K.R.Rao.Highly selective oxidative cleavage of β-cyclodextrin-epoxide/aziridine complexes with IBX in water[J].J Org Chem,2003,68(23):9119- 9121
    [49]肖自胜,兰支利,尹笃林,刘芳,李传华.环糊精手性微反应中苯乙烯的对称环氧化反应[J],催化学报,2007,28(5):469-473
    [50]Rossi,L.I.,R.H.Rossi.FeBr_3-cyclodextrin complexes as efficient and chemoselective catalysts for sulfoxidation reactions[J].Applied Catalysis A:General,2004,267(1-2):267-272
    [51]沈静茹,雷灼霖,丁志刚.用β-环糊精构筑新型催化剂[J].合成化学,1998,6(2):211-214
    [52]周红英,陈静,徐小红等.烯烃与一氧化碳的亲电加成反应β-CD为相转移催化[J].分子催化,1998,12(6):453-457.
    [53]梁本喜,王树信,村松由起子等.β-CD复合催化芳醛的加成反应[J].纪学世界,1995,7(10):363-365.
    [54]肖敏,王树信,胡芳等.环糊精与季盐协同增效羟基苯乙酸的相转移催化合成[J].化学试剂,1997,19(5):270-272
    [55]高文华,郭锡坤,余穗军.相转移催化合成邻苯二甲酸丁苄酯的研究[J].汕头大学学报,1998,13(1):13-16.
    [56]魏太保,张有明,王建林.β-环糊精催化下合成硫氰酸苄酯[J].西北师范大学学报,1999,35(1):47-49.
    [57]王永健,张政朴,何炳林.环糊精聚合物的高分子效应[J].化学进展,2001,22(10):278-282.
    [58]Krishnaveni,N.S.,K.Surendra.,Y.V.D Nageswar.Supramolecular Catalysis of Organic Reactions Involving Cyclodextrins[J].Synthesis,2003,13(79):1968-1970
    [59]Krishnaveni,N.S.,M.A.Redd.,Y.V.DNageswar et al.Highly Efficient Deprotection of Aromatic Acetals under Neutral Conditions Using β-Cyclodextrin in Water[J].J Org Chem,2003,68(5):2018-2019.
    [60]Bricout,H.,L.carbon,D.Bormann et al.Unexpected Effect of Cyclodextrins on Water-Soluble Rhodium Complexes[J].Catalysis Today,2001,66(2-4):355-361.
    [61]Torque,C.,H.Bricoat.,F.Hapiot et al.Substrate-selective aqueous organometallic catalysis.How size and chemical modification of cyclodextrin influence the substrate selectivity[J].Tetrahedron,2004,60(32):6487-6493.
    [62]Lidia,S.,L.Jian.,A.E.Kaifer.Cyclodextrin-Capped Palladium Nanoparticles as Catalysts for the Suzuki Reaction[J].Langmuir,2003,19(2):483-485.
    [63]袁德其,谢如刚.利用环糊精构筑酶模型研究的新进展[J].有机化学,1992,12(2):126-138
    [64]孙伟,陈敏东,夏春谷.手性Salen-Co(Ⅱ)配合物催化芳香酮不对称还原反应研究[J].分子催化,2002,16(2):144-146
    [65]Chen,H.L.,B.Zhao.,Z.B.Wang.Cyclodextrin in artificial enzyme model,rotaxane,and nano-material fabrication[J].Journal of Inclusion Phenomena and Macrocyclic Chemistry,2006,56(1):17-21
    [66]沈静茹,雷灼霖,孙小梅,林慧云,丁志刚.模拟酶微型反应器中糠醛催化氧化为糠酸[J].合成化学,2001,9(5):419-423
    [67]Durai,M.C.,S.Annalakshmi.,K.Pitchumani.,C.Srinivasan.Effect of cyclodextrin complexation in bromine addition to unsymmetrical olefins:evidence for participation of cyclodextrin hydroxyl groups[J].Org Biomol Chem,2005,3(6):1008-1012
    [68]Fornasier,R.,F.Reniero.,P.Scrimin et al.Asymmetric reductions by sodium borohydride of ketone-β-cyclodextrin complexes[J].J Org Chem,1985,50(17):3209-3211
    [69]Toda,F.,K.Kiyoshige.,M.Yagi.NaBH_4 reduction of ketones in the solid state [J].Angew Chem Int Ed Engl,1989,28(1):320-321
    [70]Chung,W.S.,N.J.Two.,J.Silver.Modification of face selectivity by inclusion in cyclodextrins[J].J Am Chem Soc,1990,112(3):1202-1205
    [71]Sakuraba,H.,K.Natori.,Y.Tanaka.Asymmetric oxidation of alkyl aryl sulfides in crystalline cyclodextrin complexes[J].J Org Chem,1991,56(13):4124-4129
    [72]Colonna,S.,A.Manfred.,R.Annunziata et al.Biomimetic asymmetric synthesis.Enantioselective Weitz-Scheffer epoxidation of vitamin K_3 and analogs in the presence of cyclodextrins[J].J Org Chem,1990,55(23):5862-5866
    [73]Guy,A.,J.Doussot.,R.Garreau.Selective ring-opening reaction of styrene oxide with lithium azide in the presence of cyclodextrins in aqueous media[J].Tetrahedron Asymmerty,1992,3(2):247-250
    [74]VanEtten,R.L,J.F.Sebastian.,G.A.Clowes.Acceleration of phenyl ester cleavage by cycloamyloses.A model for enzymic specificity[J].J Am Chem Soc,1967,89(13):3242-3253
    [75]Pickard,S.T.,H.E.Smith.Optically active amines.Application of the benzene chirality rule to ring-substituted phenylcarbinamines and carbinols[J].J Am Chem Soc,1990,112(15):5741-5747
    [76]Brown,H.C.,B.T.Cho.,W.S.Park.Chiral synthesis via organoboranes.15.Selective reductions.42.Asymmetric reduction of representative prochiral ketones withpotassium9-O-(1,2:5,6-di-O-isopropylidene-.alpha.-D-glucofuranosyl)-9-borat abicyclo[3.3.1]nonane[J].J Org Chem,1988,53(6):1231-1238
    [77]Hattori,K.,K.Takahashi.,Sakai.N.Enantioface Differentiating Reduction of Keto Acid in the Presence of 6-Deoxy-6-amino-β-cyclodextrin with NaBH_4 in Aqueous Media[J].Bull Chem Soc Jpn,1992,65(10):2690-2696
    [78]Connors,K.A,S.F.Lin.,A.B.Wrong.Potentiometric study of molecular complexes of weak acids and bases applied to complexes of Cyelodextrin with para-Substituted Benzoic Acids[J].J Pharm Sci,1982,71(2):217-222
    [79]Wang,Z.X.,Y.Shi.A pH Study on the Chiral Ketone Catalyzed Asymmetric Epoxidation of Hydroxyalkenes[J].J Org Chem,1998,63(9):3099-3104
    [80]Hattori,K.,K.Takahashi.,N.Sakai.Enantioface Differentiating Reduction of Keto Acid in the Presence of 6-Deoxy-6-amino-β-cyclodextrin with NaBH_4 in Aqueous Media[J].Bull Chem Soe Jpn,1992,54(14):2690-2696
    [81]Torque,C.,H.Bricout.,F.Hapiot.,E.Monflier.Substrate-selective aqueous organometallic catalysis.How size and chemical modification of eyclodextrin influence the substrate selectivity[J].Tetrahedron,2004,60(31):6487-6493
    [82]Takahashi,K.,K.Hattori.Asymmetric reactions with cyclodextrins[J].J Inclusion Phenom Mac Chem,1994,17(1):1-24
    [83]Raviehandqan,R.,S.Divakar.β-cyclodextrin and its derivatives mediate selectivity in reduction of(R)-(+)-pulegone with sodium dithionite[J].J Inclusion Phenom Mol Recog Chem,1994,18(4):369-375
    [84]Szente,L.,J.Szejtli.Effect of cyclodextrin eomplexation on the reduction of menthone and isomenthone[J].J Inclusion Phenom,1987,5(4):439-442
    [85]郭生金.环糊精催化诱导不对称合成新进展[J].化学试剂,1996,18(2):92-97
    [86]张永敏,徐伟亮,β-环糊精对酮的不对称诱导还原[J].杭州大学学报,1988,15(3):376-377
    [87]李良助,赵志刚,袁音芳等.应用芳基锂合成查尔酮[J].高等学校化学学报,1992,13(8):1071-1074
    [88]Pilar,F.,G.Hermenegildo.,L.Antonio.Assessment of the suitability of imidazolium ionic liquids as reaction medium for base catalysed reactions case of knoevenagel and claisen2schmidt reactions[J].Journal of Molecular Catalysis A:Chemical,2004,214:137-142
    [89]陆文兴,颜朝国,顾惠芬.查尔酮KF_2Al_2O_3催化合成[J].化学试剂,1995,17(4):253
    [90]柳艳修,宋华,王宝辉.甲苯直接氧化制苯甲醛研究进展[J].工业催化,2005,2(13):24-28
    [91]葛欣,张惠良,范军.铈钼氧化物对甲苯气相选择氧化制苯甲醛的催化性能[J].催化学报,1998,1(19):43-46
    [92]Krishnaveni,N.S.,K.Surendra.,K.R.Rao.A simple and highly selective biomimetic oxidation of alcohols and epoxides with N-bromosuccinimide in the presence of β-CD in water[J].Adv Synth Catal,2004,346(10):346-350

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700