GaN基半导体材料与HEMT器件辐照效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
空间技术的不断发展,对电子器件的可靠性提出了更高的要求。AlGaN/GaNHEMT器件在高频、大功率、高温和高压应用方面具有超强的优势,结合GaN材料出色的抗辐照特性,该器件在卫星、太空探测、核反应堆等辐射环境中有很大的应用前景。虽然理论和已有的部分实验结果已经表明了GaN材料具有出色的抗辐照特性,但是实际情况下,由于异质外延生长的GaN材料总是存在高密度的缺陷,而且GaN HEMT器件采用了较为复杂的GaN异质结材料结构,这类异质结材料特性对表面和界面非常敏感,所有这些情况都会使得GaN基材料和HEMT器件抗辐照特性受到很大的影响和挑战。
     本文在此背景下,主要是从实验和理论两个方面,对GaN基半导体材料和AlGaN/GaN HEMT器件的辐照效应进行了系统的研究。通过深入分析辐照效应的退化规律,揭示了物理损伤机制,并且建立相应的数学模型,为开展器件的抗辐射加固奠定理论基础。主要研究工作和研究结果如下:
     1、首先,开展了AlGaN/GaN HEMT器件抗60Co γ射线辐照总剂量效应能力的实验研究,重点研究了加电条件下在线辐照模拟器件工作状态。结果表明,AlGaN/GaN HEMT器件抗γ射线辐照特性主要取决于器件的表面态对γ射线辐照的敏感程度。
     2、对HEMT器件的关键结构AlGaN/GaN异质结,从电学特性、晶体质量和光学特性三方面对质子辐照前后的材料进行了详细表征,为HEMT器件质子辐照效应研究提供依据。结果说明了质子辐照后异质结2DEG载流子浓度和迁移率下降,材料应力和掺杂均无变化,材料螺位错和刃位错不变。随着质子辐照注量的增加,黄带光强逐渐增强。质子辐照主要在材料中引入了Ga空位或者Ga空位相关的络合物缺陷,造成了材料光学性能的退化。
     3、开展了AlGaN/GaN HEMT器件的高能质子辐照效应实验研究。采用不同能量和注量的质子辐照,对器件的直流、交流特性进行详细地测试和分析。结果发现,只有高注量的质子辐照才能引起器件特性参数的退化。由于低能量质子辐照的非电离能量损失比较大,其导致器件退化更为严重。结合器件仿真软件和计算模型,讨论了AlGaN/GaN HEMT器件的质子辐照退化机制。简单的空位引入Silvaco陷阱模型中,发现只有作为受主的Ga空位对器件性能退化起作用。特性参数随质子注量的退化趋势与实验结果相一致,印证了模型的正确性。利用电荷控制模型来分析受主缺陷对2DEG面密度的影响。结果表明GaN层引入受主缺陷起主导作用,并且面密度的去除率与AlGaN势垒层非掺杂厚度、导带断续和AlGaN势垒层掺杂浓度三个参数无关。GaN层中质子辐照引入作为受主的Ga空位或者与Ga空位相关的络合物缺陷是造成AlGaN/GaN HEMT器件电学性能退化的主要原因。
     4、针对HEMT器件的关键结构AlGaN/GaN异质结,从电学特性、晶体质量和光学特性三方面对中子辐照前后的材料进行详细表征,为HEMT器件中子辐照效应研究提供依据。
     5、开展了AlGaN/GaN HEMT器件中子辐照效应的实验研究,并与同注量质子辐照进行比较。1×1015cm-2注量的中子辐照后,AlGaN/GaN HEMT器件漏极饱和电流退化明显,而阈值电压正向漂移很小,说明与载流子去除效应相比较,2DEG迁移率退化起主导作用。由于器件性能退化与NIEL成正比,同注量质子和中子辐照相比,前者导致器件电学参数退化严重。
     6、从表面形貌、晶体质量和发光特性三个方面,对质子和中子辐照前后的HVPE GaN材料进行详细表征。粒子辐照后黄带略微增加,而蓝带随显著降低。与同注量的质子辐照相比较,HVPE GaN材料体现出更好的抗中子辐照能力。
Rapid developments of the broadband communication infrastructure haveunderscored the need for high efficiency devices that can operate reliably at highfrequencies and handle high power. Electronic devices based on the III-nitride materialssystem, like high electron mobility transistors (HEMTs), they have emerged aspromising candidates for high power applications at microwave frequencies. Moreover,GaN-based materials and devices are more radiation tolerant than GaAs and Si-basedbecause of higher displacement threshold energy. To assess the device behavior in spaceenvironment, it becomes extremely important to understand the effects of radiation andthe mechanisms underlying device degradation after exposure to radiation.
     In the dissertation, the radiation effects on GaN-based materials and AlGaN/GaNHEMTs are systematically studied, both experimentally and theoretically. The principalfocus of this work is on the characterization of the radiation response and degradationmechanisms, and the establishment of physical and mathematical models. The mainresults of the study are as follows:
     1. The total dose effects of60Co gamma radiation on static and high-frequencycharacteristics of AlGaN/GaN HEMTs are investigated experimentally in detail. Inorder to simulate the actual working status of devices in space, the devices appliedvoltages were tested on line. The results show that, the anti-irradiation property ofAlGaN/GaN HEMTs depends on the sensitivity of surface states to gamma ray.
     2. The effects of proton irradiation on the AlGaN/GaN heterostructures are studiedin detail, which provides a basis for the study of HEMTs. The materials before and afterproton irradiation are characterized exactly in terms of the crystal quality, electrical andoptical properties. It is observed that the concentration and mobility of2DEG decreaseafter irradiation. The Raman spectra and XRD indicate that the strain, carrierconcentration and dislocations are not affected by the proton. PL tests show that theintensity of yellow band increases with the proton fluence. Therefore, Ga vacancies orGa vacancies-related complex defects introduced by the proton radiation might causethe degradation of optical property of the AlGaN/GaN heterostructures.
     3. The effects of high energy proton on AlGaN/GaN HEMTs are researchedexperimentally. The DC and RF characteristics of devices were measured after theproton irradiation with the different energy and dose. It is found that only high dose ofthe proton can lead to the degradation of the parameters. Compared with the energy of 10MeV, the degradations of devices induced by3MeV proton irradiation are much moreserious, which is because the non ionizing energy loss caused by the proton with lowerenergy is much larger. Through device simulation soft and mathematical model, thedegradation mechanism of proton radiation effect is discussed in detail. Adding thesimple vacancies into Silvaco trapping model, we discover that being an acceptor-likedefect, Ga vacancies play an important part in worsening the device performances, andsimulation results match well with the trends of experimental data. The influences of theacceptor-like defects on2DEG are analyzed by introducing the charge control model. Alcomposition of the AlGaN layer, conduction band discontinuous and the dopingconcentration of AlGaN layer do not contribute to the2DEG concentration degradation.It is concluded that the Ga vacancies or Ga vacancies-related complex defectsintroduced in GaN layer maybe the primary reason for the degradation of AlGaN/GaNHEMTs performance.
     4. The neutron irradiation effects on the AlGaN/GaN heterostructures are studied indetail. The materials before and after neutron irradiation are characterized in terms ofthe crystal quality, electrical and optical properties.
     5. The neutron radiation effects on AlGaN/GaN HEMTs are studied. It is observedthat drain saturation current and transconductance decrease dramatically, and thresholdvoltage shifts slightly to the forward direction after neutron irradiation. The mobilitydegradation in the channel is mainly responsible for the decrease of deviceperformances. With the same radiation dose, the parameter degradation induced by theneutron is weaker than that by the proton.
     6. The HVPE GaN before and after proton and neutron irradiation arecharacterized exactly in terms of the resurface topography, crystal quality and opticalproperties. PL tests show that YL/BE increases slightly after proton irradiation, whileBL/BE decreases obviously. In comparison with the proton irradiation, HVPE GaNshows more tolerant of the neutron irradiation.
引文
[1.1] Vurgaftman I., Meyer J. R. and Ram-Mohan L. R., Band parameters for III-Vcompound semiconductors and their alloys, Journal of Applied Physics,2001,89(11),5815.
    [1.2] Levinshtein M. E., Rumyantsev S. L., Shur M. S., Properties of AdvancedSemiconductor Materials: GaN, AlN, InN, BN, and SiGe. New York: JohnWiley and Sons,2001.
    [1.3] Morko H., Handbook of Nitride Semiconductors and Devices, Vol.1:Materials Properties, Physics and Growth. Germany: Wiley-VCH,2008.
    [1.4] Mukai T., Nagahama S., Iwasa N., et al., Nitride light-emitting diodes, Journalof Physics: Condensed Matter,2001,13,7089.
    [1.5] Piprek J., Nitride Semiconductor Devices: Principles and Simulation. Germany:Wiley-VCH,2007,279.
    [1.6] Jani O., Ferguson L., Honsberg C., et al., Design and characterization of GaN/InGaN solar cells, Applied Physics Letters,2007,91,132117.
    [1.7] Ambacher O., Smart J., Shealy J. R., et al., Two-dimensional electron gasesinduced by spontaneous and piezoelectric polarization changes in N-and Ga-face AlGaN/GaN heterostructures, Journal of Applied Physics,1999,85,3222.
    [1.8] Khan M. A., Kuznia J. N., Olson D.T., et al., Microwave performance of a0.25μm gate AlGaN/GaN heterostructure field effect transistor, Applied Physicsletters,1994,65,1121.
    [1.9] Wu Y. F., Keller B.P., Keller S, et al., Measured microwave power performanceof AlGaN/GaN MODFET, IEEE Electron Device Letters,1996,17(9),455.
    [1.10] Kumar V., Lu W., Schwindt R., et al., AlGaN/GaN HEMTs on SiC with fTofover120GHz, IEEE Electron Device Letters,2002,23(8),455.
    [1.11] Wu Y. F., Saxler A., Moore M., et al.,30-W/mm GaN HEMTs by fieldplateoptimization, IEEE Electron Device Letters,2004,25(3),117.
    [1.12] Wu Y. F., Moore M., Saxler A., et al.,40W/mm double fieldplated GaNHEMTs,64thDevice Research Conference,2006,151.
    [1.13] Higashiwakil M., Mimura T., Matsui T., et al., AlGaN/GaN heterostructurefield effect transistors on4H-SiC substrates with current gain cutoff frequencyof190GHz, Applied Physics Express,2008,1,021103.
    [1.14]王同权,沈永平,王尚武等,空间辐射环境中的辐射效应,国防科技大学学报,1999,21(4),36.
    [1.15] Claeys C. and Simoen E.[著],刘忠立[译].先进半导体材料及器件的辐射效应.第一版.北京:国防工业出版社.2008.20.
    [1.16] Nedelcescu A. L., Carlone C. and Houdayer A., et al., Radiation hardness ofgallium nitride, IEEE Transaction on Nuclear Science,2002,49(6),2733.
    [1.17] Corbett J. W. and Bourgoin J. C., Defect creation in semiconductors, pointdefects in solids. New York: Plenum Press,1975.
    [1.18] Look D. C., Reynolds D. C., Hemsky J. W., et al., Defect donor and acceptor inGaN, Physical Review Letters,1997,79,2273.
    [1.19] Wang C. W., Soong B. S., Chen J. Y., et al., Effects of gamma-ray irradiation onthe microstructural and luminescent properties of radio-frequencymagnetron-sputtered GaN thin films, Journal of Applied Physics,2000,88(11),6355.
    [1.20] Umana-Membreno G. A., Dell J. M., Hessler T. P., et al.,60Co gamma-irradiation-induced defects in n-GaN, Applied Physics Letters,2002,80(23),4354.
    [1.21] Khanna S. M., Webb J., Tang H., et al.,2MeV proton radiation damage studiesof gallium nitride films through low temperature photoluminescencespectroscopy measurements, IEEE Transaction on Nuclear Science,2000,47(6),2322.
    [1.22] Castaldini A., Cavallini A. and Polenta L., Deep levels and irradiation effects inn-GaN, Journal of Physics: Condensed Matter,2000,12,10161.
    [1.23] Castaldini A., Cavallini A. and Polenta L., Dislocation-related deep statesinduced by irradiation in HVPE n-GaN, Materials Research SocietyProceedings,2003,743, L11.32.
    [1.24] Castaldini A., Cavallini A. and Polenta L., Radiation-induced effects in GaN byphotoconductivity analysis, Physica Status Solidi (a),2005,202(15),2912.
    [1.25] Zhou Q. Y., Manasreh M. O., Pophristic M., et al., Observation of nitrogenvacancy in proton-irradiated AlxGa1-xN., Applied Physics Letters,2001,79(18),2901.
    [1.26] Polyakov A. Y., Smirnov N.B., Govorkov A.V., et al., Proton implantationeffects on electrical and luminescent properties of p-GaN, Journal of AppliedPhysics,2003,94(5),3069.
    [1.27] Chang J. P., Lin T. Y., Hong H.F., et al., Effects of proton irradiations onGaN-based materials, Physica Status Solidi (c),2004,1(10),2466.
    [1.28] Myers S. M. and Seager C. H., Interaction of defects and H in proton-irradiatedGaN(Mg, H), Journal of Applied Physics,2005,97,093517.
    [1.29] Fleming R. M. and Myers S. M., Measurement of temperature-dependentdefect diffusion in proton-irradiated GaN(Mg, H), Journal of Applied Physics,2006,100,043513.
    [1.30] Pinos A., Marcinkevi ius S., Usman M., et al., Time-resolved luminescencestudies of proton-implanted GaN, Applied Physics Letters,2009,95,112108.
    [1.31] Kuriyama K., Tokumasu T., Takahashi J., et al., Lattice distortions and thetransmuted-Ge related luminescence in neutron-transmutation-doped GaN,Applied Physics Letters,2002,80(18),3328.
    [1.32] Wang R. X., Xu S. J., Li S., et al., Raman scattering and X-ray diffraction studyof neutron irradiated GaN epilayers, Optoelectronic and MicroelectronicMaterials and Devices Conference,2004,141.
    [1.33] Wang R. X., Xu S. J., Fung S., et al., Micro-raman and photoluminescencestudies of neutron-irradiated gallium nitride epilayers, Applied Physics Letters,2005,87,031906.
    [1.34] Li S., Zhang J. D., Beling C.D., et al., Large lattice relaxation deep levels inneutron-irradiated GaN, Journal of Applied Physics,2005,98,093517.
    [1.35] Kuriyama K., Ooi M. and Onoue A., Thermally stimulated current studies onneutron irradiation induced defects in GaN, Applied Physics Letters,2006,88,132109.
    [1.36] Ka ukauskas V., Kalendra V. and Vaitkus J.V., Carrier transport and capture inGaN single crystals and radiation detectors and effect of the neutron irradiation,Nuclear Instruments and Methods in Physics Research A,2006,568,421.
    [1.37] Polyakov A. Y., Smirnov N. B., Govorkov A. V., et al., Fermi level pinning inheavily neutron-irradiated GaN, Journal of Applied Physics,2006,100,093715.
    [1.38] Polyakov A.Y., Smirnov N.B., Govorkov A. V., et al., Neutron radiation effectsin epitaxially laterally overgrown GaN films, Journal of Electronic Materials,2007,36(10),1320.
    [1.39] Lorenz K., Marques J. G., Franco N., et al., Defect studies on fast and thermalneutron irradiated GaN, Nuclear Instruments and Methods in Physics ResearchB,2008,266,2780.
    [1.40] Zhang M. L., Wang X. L., Xiao H. L., et al., Influence of neutron irradiation onthe deep levels in GaN, Solid-State and Integrated Circuit Technology,10thIEEE International Conference,2010,1533.
    [1.41] Boyko V. M., Verevkin S. S., Kolin N. G., et al., The effect of neutronirradiation and annealing temperature on the electrical properties and latticeconstant of epitaxial gallium nitride layers, Semiconductors,2011,45(1),134.
    [1.42] Luo B., Johnson J. W., Ren F., et al., Influence of60Co γ-ray on dc performanceof AlGaN/GaN high electron mobility transistors, Applied Physics Letters,2002,80(4),604.
    [1.43] Vitusevich S. A., Klein N., Belyaev A. E., et al., Effects of γ-irradiation onAlGaN/GaN-based HEMTs, Physica Status Solidi (a),2003,195(1),101.
    [1.44] Aktas O., Kuliev A., Kumar V., et al.,60Co gamma radiation effects on DC, RF,and pulsed I-V characteristics of AlGaN/GaN HEMTs, Solid-State Electronics,2004,48,471.
    [1.45] Umana-Membreno G. A., Dell J. M., Parish G., et al., Effect of60Cogamma-irradiation on two-dimensional electron gas transport and devicecharacteristics of AlGaN/GaN HEMTs, Physica Status Solidi (c),2005,2(7),2581.
    [1.46] Kurakin A. M., Vitusevich S. A., Danylyuk S.V., et al., Mechanism of mobilityincrease of the two-dimensional electron gas in AlGaN/GaN heterostructuresunder small dose gamma irradiation, Journal of Applied Physics,2008,103,083707.
    [1.47] Jha S., Jelenkovic E. V., Pejovic M. M., et al., Stability of submicronAlGaN/GaN HEMT devices irradiated by gamma rays, MicroelectronicEngineering,2009,86,37.
    [1.48] Gu W. P., Chen C., Duan H. T., et al.,60Co γ–rays irradiation effects in DCperformance of AlGaN/GaN high electron mobility transistors, Journal ofSemiconductors,2009,30(4),044002.
    [1.49] Schwarz C., Yadav A., Shatkhin M., et al., Gamma irradiation impact onelectronic carrier transport in AlGaN/GaN high electron mobility transistors,Applied Physics Letters,2013,102,062102.
    [1.50] Luo B., Johnson J. W., Ren F., et al., dc and rf performance of proton-irradiatedAlGaN/GaN high electron mobility transistors, Applied Physics Letters,2001,79(14),2196.
    [1.51] Luo B., Johnson J. W., Ren F., et al., High-energy proton irradiation effects onAlGaN/GaN high-electron mobility transistors, Journal of Electronic Materials,2002,31(5),437.
    [1.52] Gaudreau F., Fournier P., Carlone C, et al., Transport properties of proton-irradiated gallium nitride-based two-dimensional electron-gas system, IEEETransactions on Nuclear Science,2002,49(6),2702.
    [1.53] Hu X. W., Karmarkar A. P., Jun B., et al., Proton-irradiation effects on AlGaN/AlN/GaN high electron mobility transistors, IEEE Transactions on NuclearScience,2003,50(6),1791.
    [1.54] White B. D., Bataiev M., Goss S. H., et al., Electrical, spectral, and chemicalproperties of1.8MeV proton irradiated AlGaN/GaN HEMT structures as afunction of proton fluence, IEEE Transactions on Nuclear Science,2003,50(6),1934.
    [1.55] Luo B., Kim J., Ren F., et al., Electrical characteristics of proton-irradiatedSc2O3passivated AlGaN/GaN high electron mobility transistors, AppliedPhysics Letters,2003,82(9),1428.
    [1.56] Hu X. W., Choi B. K., Barnaby H. J., et al., The energy dependence of proton-induced degradation in AlGaN/GaN high electron mobility transistors, IEEETransactions on Nuclear Science,2004,51(2),293.
    [1.57] Karmarkar A. P., Jun B., Fleetwood D.M., et al., Proton irradiation effects onGaN-based high electron mobility transistors with Si-doped AlxGa1-xN andthick GaN cap layers, IEEE Transactions on Nuclear Science,2004,51(6),3801.
    [1.58] Sonia G., Brunner F., Denker A., et al., Proton and heavy ion irradiation effectson AlGaN/GaN HFET devices, IEEE Transactions on Nuclear Science,2006,53(6),3661.
    [1.59] Sonia G., Richter E., Lossy R., et al., High and lov energy proton irradiationeffects on AlGaN/GaN HFETs, Physica Status Solidi (c),2006,3(6),2338.
    [1.60] Kim H. Y., Kim J., Yun S. P., et al., AlGaN/GaN high electron mobilitytransistors irradiated with17MeV protons, Journal of the ElectrochemicalSociety,2008,155(7), H513.
    [1.61] Kim H. Y., Ahn J., Kim J., et al., Characterization of AlGaN/GaN HEMTirradiated at5keV and25MeV proton energies, Journal of Ceramic ProcessingResearch,2008,9(2),155.
    [1.62] Kim H. Y., Lo C. F., Liu L., et al., Proton-irradiated InAlN/GaN high electronmobility transistors at5,10, and15MeV energies, Applied Physics Letters,2012,100,012107.
    [1.63] Polyakov A. Y., Smimov N. B., Govorkov A. V., et al., Neutron irradiationeffects on electrical properties and deep-level spectra in undopedn-AlGaN/GaN heterostructures, Journal of Applied Physics,2005,98,033529.
    [1.64] Polyakov A.Y., Smirnov N.B., Govorkov A.V., et al., Neutron irradiation effectsin AlGaN/GaN heterojunctions, Physica B,2006,376-377,523.
    [1.65] McClory J. W., Petrosky J. C., Temperature dependent electrical characteristicsof neutron irradiated AlGaN/GaN HFETs, IEEE Transactions on NuclearScience,2007,54(6),1969.
    [1.66] Petrosky J. C., McClory J. W., Gray T. E., et al., Trap assisted tunnelinginduced currents in neutron irradiated AlGaN/GaN HFETs, IEEE Transactionson Nuclear Science,2009,56(5),2905.
    [1.67] Gu W. P., Hao Y., Yang L. A., et al., The effect of neutron irradiation on theAlGaN/GaN high electron mobility transistors, Physica Status Solidi C,2010,7(7-8),1991.
    [2.1] Allums K. K. Proton radiation and thermal stability of gallium nitride andgallium nitride devices. A dissertation presented to the graduate school of theUniversity of Florida in partial fulfillment of the requirements for the degree ofdoctor of philosophy,2006,21.
    [2.2]祁章年,载人航天的辐射防护和监测,北京:国防工业出版社,2003,1-20.
    [2.3] Kuriyama K., Tokumasu T., Takahashi J., et al., Lattice distortions and thetransmuted-Ge related luminescence in neutron-transmutation-doped GaN,Applied Physics Letters,2002,80(18),3328.
    [2.4] Park S. H., Kang T. W. and Kim T. W., p-type conversion of Si-doped n-typeGaN epilayers due to neutron transmutation doping and annealing, Journal ofmaterials science,2004,39,6353.
    [2.5] Claeys C., Simoen E.著,刘忠立译,先进半导体材料及器件的辐射效应,第一版,北京:国防工业出版社,2003,13-47.
    [2.6] Zupac D., Galloway K. F., Schrimpf R. D., et al. Radiation-induced mobilitydegradation in p-channel double-diffused metal-oxide-semiconductor powertransistors at300and77K, Journal of Applied Physics,1993,73,2910.
    [2.7]丁义刚,空间辐射环境单粒子效应研究,航天器环境工程,2007,24(5),283.
    [2.8] Dale C. and Marshall P., Displacement damage in Si imagers for spaceapplications. Proc SPIE Charged-Coupled Devices and Solid State OpticalSensors Ⅱ,1991,1447,70-86.
    [2.9]赵力,杨晓华,辐射效应对半导体器件的影响及加固技术,电子与封装,2010,10(8),31.
    [2.10] Schmidt D. M., Fleetwood D. M., Schrimpf R. D., et al., Comparison ofionizing radiation induced gain degradation in lateral, substrate, and verticalPNP BJTs, IEEE Transactions on Nuclear Science,1995,42(6),1541.
    [2.11] Pershenkov V. S., Maslov V. B., Cherepko S. V., et al., The effect of emitterjunction bias on the low dose-rate radiation response of bipolar devices, IEEETransactions on Nuclear Science,1997,44(6),1840.
    [2.12]李致远,半导体器件辐射效应及抗辐射加固,电子技术,2006,19,138.
    [2.13]陈伟华,杜磊,庄奕琪等,MOS结构电离辐射效应模型研究,物理学报,2009,58(6),4090.
    [2.14]郭红霞,张义门,陈雨声等,MOS器件辐照引入的界面态陷阱性质,固体电子学研究与进展,2003,23(2),170.
    [2.15] Ponce F. A., Bour D. P. and Gotz W., Spatial distribution of the luminescence inGaN thin films, Applied Physics Letters,1996,68,57.
    [2.16] Dassonneville S., Amokrane A., Farvacque J. L., et al., Luminescence ofepitaxial GaN laterally overgrown on (0001) sapphire substrate: Spectroscopiccharacterization and dislocation contrasts, Journal of Applied Physics,2001,89,3736.
    [2.17] Yamamoto N., Itoh H., Grillo V., et al., Cathodoluminescence characterizationof dislocations in gallium nitride using a transmission electron microscope,Journal of Applied Physics,2003,94,4315.
    [2.18] Arslan I. and Browning N. D., Intrinsic electronic structure of threadingdislocations in GaN, Physical Review B,2002,65,075310.
    [2.19] Nostrand J. E., Solomon J., Saxler A., et al., Dissociation of Al2O3(0001)substrates and the roles of silicon and oxygen in n-type GaN thin solid filmsgrown by gas-source molecular beam epitaxy, Journal of Applied Physics,2000,87,8766.
    [2.20] Pearton S. J., Zolper J. C., Shul R. J., et al., GaN: processing, defects, anddevices, Journal of Applied Physics,1999,86,1.
    [2.21] Wright A. F., Substitutional and interstitial carbon in wurtzite GaN, Journal ofApplied Physics,2002,92,2575.
    [2.22] Reshchikov M. A. and Morko H., Luminescence properties of defects in GaN,Journal of Applied Physics,2005,97,061301.
    [2.23] Van de Walle C. G. and Neugebauer J., First-principles calculations for defectsand impurities: Applications to III-nitrides, Journal of Applied Physics,2004,95,3851.
    [2.24] Limpijumnong S. and Van de Walle C. G., Diffusivity of native defects in GaN,Physical Review B,2004,69,035207.
    [2.25] Neugebauer J. and Van de Walle C. G., Gallium vacancies and the yellowluminescence in GaN, Applied Physics Letters,1996,69,503.
    [2.26] Gorczyca I., Svane A. and Christensen N. E., Mg-O and Mg-VNdefectcomplexes in cubic GaN, Physical Review B,2000,61,7494.
    [2.27] Kaufmann U., Kunzer M., Maier M., et al., Nature of the2.8eVphotoluminescence band in Mg doped GaN, Applied Physics Letters,1998,72,1326.
    [2.28] Lee S. G. and Chang K. J., Atomic model for blue luminescences in Mg-dopedGaN, Semiconductor Science and Technology,1999,14,138.
    [2.29] Van de Walle C. G. Interaction of hydrogen with native defects in GaN,Physical Review B,1997,56, R10020.
    [2.30]杨德仁,半导体材料测试与分析,第一版,北京:科学出版社,2010,248.
    [2.31]许振嘉,半导体的检测与分析,第二版,北京:科学出版社,2007,28.
    [2.32]郝跃,张金风,张进成,氮化物宽禁带半导体材料与电子器件,第一版,北京:科学出版社,2013,
    [2.33] Ewen Smith and Geoffrey Dent. Modern raman spectroscopy–A practicalapproach, John Wiley&Sons, Ltd.,2005,4.
    [2.34] Frandon J., Demangeot F. and Renucci A. III-nitride semiconductors: opticalproperties I–Introduction, New York: Taylor&Franics Books, INC.,2007,Chapter8.
    [2.35]冯倩,郝跃,刘玉龙,GaN薄膜拉曼散射光谱的研究,光散射学报,2003,15(3),175.
    [2.36] Lin H. C., Feng Z. C., Chen M. S., et al., Raman scattering study on anisotropicproperty of wurtzite GaN, Journal of Applied Physics,2009,105,036102.
    [2.37] Song D. Y., Phonons and optical properties of III–nitride semiconductors, adoctoral dissertation of Texas Tech University,2007,68.
    [2.38] Thomas E. Beechem III, Metrology of GaN electronics using micro-ramanspectroscopy, a doctoral dissertation of Georgia Institute of Technology,2008,28.
    [2.39] Kozawa T., Kachi T., Kano H., et al., Raman scattering from LO phonon-Plasmon coupled modes in gallium nitride, Journal of Applied Physics,1994,75(2),1098.
    [2.40]童玉珍,张国义,Liu M. S., et al.,GaN薄膜的微区Raman散射光谱,半导体学报,2000,21(6),554.
    [2.41] Wang R. X., Xu S. J., Fung S., et al., Micro-Raman and photoluminescencestudies of netron-irradiated gallium nitride epilayers, Applied Physics Letters,2009,87,031906.
    [2.42] Delagebeaudeuf D. and Linh N. T., Metal-(n)AlGaAs-GaAs two-dimensionalelectron gas FET, IEEE Transactions on Electron Devices,1982, ED-29(6),955.
    [2.43] Aziz M. A. and Abd A. E., Theoretical study of the charge control inAlGaN/GaN HEMTs, The23rdnational radio science conference,2006, D6.
    [2.44] Gonschorek M., Carlin J. F., Feltin E., et al., Two-dimensional electron gasdensity in Al1-xInxN/GaN heterostructures (0.03≤x≤0.23), Journal of AppliedPhysics,2008,103(9),093714.
    [2.45] Rashmi, Kranti A., Haldar S., et al., An accurate charge control model forspontaneous and piezoelectric polarization dependent two-dimensional electrongas sheet charge density of lattice-mismatched AlGaN/GaN HEMTs,Solid-State Electronics,2002,46,621.
    [2.46] Krantz R. J. and Bloss W. L., The role of unintentional acceptor concentrationon the threshold voltage of modulation-doped field-effect transistors, IEEETransactions on Electron Devices,1989,36(2),451.
    [3.1] Koley G., Kim H., Eastman L. F., et al., Electrical bias stress-relateddegradation of AlGaN/GaN HFETs, Electron Letters,2003,39(16),1217.
    [3.2]王冲,张进成,郝跃等,AlGaN/GaN HEMT高场应力退化及紫外光辐照的研究,半导体学报,2006,27(8),1436.
    [3.3]马香柏,张进成,郝跃等,应力对GaN HEMT器件电流崩塌的影响,微电子学,2007,37(1),5.
    [3.4] Joh J. and Del Alamo J. A., Mechnaisms for electrical degradation of GaNhigh-electron mobility transistors, Electron Devices Meeting, IEDMinternational,2006,148.
    [3.5]谷文评,郝跃,张进成等,高场应力及栅应力下AlGaN/GaN HEMT器件退化研究,物理学报,2009,58(1),511.
    [3.6]陈炽,郝跃,冯辉等,X波段单级氮化镓固态放大器,西安电子科技大学学报(自然科学版),2009,36(6),1039.
    [3.7] Yue Y. Z., Hao Y., Zhang J. C., et al., Mechanism study of the surfacepassivation effect on current collapse characteristics of AlGaN/GaN HEMTs,Journal of Xidian University,2008,35(1),125.
    [3.8] Karmarkar A. P., Proton irradiation effects on gallium nitride-based devices,Dissertation submitted to the faculty of the graduate school of VanderbiltUniversity in partial fulfillment of the requirements for the degree of doctor ofphilosophy,2005,33.
    [3.9] Umana-Membreno G. A., Dell J. M., Nener B. D., et al.,60Co gammairradiation effects on n-GaN schottky diodes, IEEE transactions on electrondevices,2003,50(12),2326.
    [3.10] Umana-Membreno G. A., Dell J. M., Parish G., et al., Effect of60Co gammairradiation on two-dimensional electron gas transport and device characteristicsof AlGaN/GaN HEMTs, Physica Status Solidi (c),2005,2(7),2581.
    [3.11]薛舫时,GaN异质结的二维表面态,半导体学报,2005,26(10),1939.
    [3.12] Vertiatchikh A. V., Eastman L. F., Schaff W. J., et al., Effect of surfacepassivation of AlGaN/GaN heterostructure field effect transistor, ElectronLetters,2002,38(8),388.
    [3.13] Okino T., Ochiai M., Ohno Y., et al., Drain current DL TS of AlGaN/GaNMIS-HEMTs, IEEE electron device letters,2004,25(8),523.
    [3.14] Hasegawa H, Inagaki T., Ootomo S, et al. Mechanism of collapse and gateleakage currents in AlGaN/GaN heterostructure field effect transistors, Journalof vacuum science&technology,2003,21(4),1844.
    [3.15] Meneghesso G., Verzellesi G., Pierobon R., et al., Surface-related drain currentdispersion effects in AlGaN/GaN HEMTs, IEEE electron devices,2004,51(10),1554.
    [3.16] Aktas O., Kuliev A., Kumar V., et al.,60Co gamma radiation effects on DC, RF,and pulsed I-V characteristics of AlGaN/GaN HEMTs, Solid-State Electronics,2004,48,471.
    [3.17] Gu W. P., Chen C., Duan H. T.,60Co γ-ray irradiation effect in DC performanceof AlGaN/GaN high electron mobility transistors, Journal of semiconductors,2009,30(4),044002.
    [4.1] Sze S. M., Semiconcuctor devices: physics and technology (2ndEdition), JohnWiley&Sons, Inc,2002.
    [4.2] Xie S. Y., Yin J. Y., Zhang S., et al., Trap behaviors in AlGaN-GaN hetero-structures by C-V characterization, Solid-State Electronics,2009,53,1183.
    [4.3] Miller E. J., Dang X. Z., Wieder H. H., et al., Trap characterization bygate-drain conductance and capacitance dispersion studies of an AlGaN/GaNheterostructure field-effect transistor, Journal of Applied Physics,2000,87(11),8070.
    [4.4] Sathish N., Dhamodaran S., Pathak A. P., et al., HRXRD, AFM and opticalstudy of damage created by swift heavy ion irradiation in GaN epitaxial layers,Nuclear Instruments and Methods in Physics Research B,2007,256,281.
    [4.5] Xu Z. H., Zhang J. C., Zhang Z. F., et al., The effects of vicinal sapphiresubstrates on the properties of AlGaN/GaN heterostructures, Chinese Physics B,2009,18,5457.
    [4.6] Chandolu A., Song D. Y., Holtz M. E., et al. X-ray diffraction andphotoluminescence studies of InN grown by plasma-assisted molecular beamepitaxy with low free-carrier concentration, Journal of Electronic materials,2009,38(4),557.
    [4.7] Neugebauer J., Van de Walle C. G., Gallium vacancies and the yellowluminescence in GaN, Applied Physics Letters,1996,69(4),503.
    [4.8] Schubert E. F., Goepfert I. D. and Redwing J. M., Evidence of compensatingcenters as origin of yellow luminescence in GaN, Applied Physics Letters,1997,71(22),3224.
    [4.9] Roy T., Zhang E. X., Puzyrev Y. S., et al., Process dependence of proton-induced degradation in GaN HEMTs, IEEE Transactions on Nuclear Science,2010,57(6),3060.
    [4.10] Petrosky J. C., McClory J. W., Gray T. E., et al., Trap assisted tunnelinginduced currents in neutron irradiated AlGaN/GaN HFETs, IEEE Transactionon Nuclear Science,2009,56(5),2905.
    [4.11] Saithaiya D. M. and Karmalkar S., Thermionic trap-assisted tunneling modeland its application to leakage current in nitrided oxides and AlGaN/GaN highelectron mobility transistors, Journal of Applied Physics,2006,99,093701.
    [4.12] Hu X. W., Choi B. K., Barnaby H. J., et al., The energy dependence of proton-induced degradation in AlGaN/GaN high electron mobility transistors, IEEETransactions on Nuclear Science,2004,51(2),293.
    [4.13] Chernyak L., Osinsky A., Temkin H., et al., Electron beam induced currentmeasurements of minority carrier diffusion length in gallium nitride, AppliedPhysics Letters,1996,69(17),2531.
    [4.14] Luo B., Johnson J. W., Ren F., et al., dc and rf performance of proton-irradiatedAlGaN/GaN high electron mobility transistors, Applied Physics Letters,2001,79(14),2196.
    [4.15] Ziegler J. F., Biersack J.P. and Ziegler M.D., SRIM, the stopping and range ofions in matter, SRIM company,2008.
    [4.16]王旭东,程远,孟惠民等,氧化锌质子辐照效应的SRIM模拟研究,武汉科技大学学报,2010,33(2),151.
    [4.17] Xiao H. Y., Gao F., Zu X. T, et al., Threshold displacement energy in GaN: Abinitio molecular dynamics study, Journal of Applied Physics,2009,105(12),123527.
    [4.18]罗文芸,王朝壮,贺新福等,中能质子在Si和GaAs中导致的非电离能损研究,高能物理与核物理,2006,30(11),1088.
    [4.19] Messenger S. R., Walters R. J., Burke E. A., et al., NIEL and damagecorrelatrions for high-energy protons in gallium arsenide devices, IEEETransactions on Nuclear Science,2001,48(6),2121.
    [4.20]唐欣欣,罗文芸,王朝壮等,低能质子在Si和GaAs中导致的非电离能损研究,物理学报,2008,57(2),1266.
    [4.21] Jun I., Xapsos M. A., Messenger S. R., et al., Proton nonionizing energy loss(NIEL) for device applications, IEEE Transactions on Nuclear Science,2003,50(6),1924.
    [4.22] Messenger S. R., Burke E. A., Summers G. P., et al., Nonionizing energy loss(NIEL) for heavy ions, IEEE Transactions on Nuclear Science,1999,46(6),1595.
    [4.23] Muret P., Philippe A., Monroy E., et al., Properties of a hole trap in n-typehexagonal GaN, Journal of Applied Physics,2001,91(5),2998.
    [4.24] Look D. D., Defect-related donors, acceptors, and traps in GaN, Physical StatusSolidi (b),2001,228(1),29310.
    [4.25] Polyakov A. Y., Usikov A. S., Theys B., et al., Effects of proton implantation onelectrical and recombination properties of n-GaN, Solid-State Electronics,2000,44(11),1971.
    [4.26] Korotkov R. Y., Reshchikov M. A., Wessels B. W., Acceptors in undoped GaNstudied by transient photoluminescence, Physica B,2003,325,1.
    [4.27] Reshchikov M. A. and Morkoc H., Luminescence properties of defects in GaN,Journal of Applied Physics,2005,97(6),061301.
    [4.28] Polyakov A. Y., Smirnov N. B., Govorkov A. V., et al., Deep traps responsiblefor hysteresis in capacitance-voltage characteristics of AlGaN/GaNheterostructure transistors, Applied Physics Letters,2007,91(23),232116.
    [4.29] Hu X. W., Karmarkar A. P., Jun B., et al., Proton-irradiation effects on AlGaN/AlN/GaN high electron mobility transistors, IEEE Transactions on NuclearScience,2003,50(6),1791.
    [4.30] White B. D., Bataiev M., Goss S. H., et al., Electrical, spectral, and chemicalproperties of1.8MeV proton irradiated AlGaN/GaN HEMT structures as afunction of proton fluence, IEEE Transactions on Nuclear Science,2003,50(6),1934.
    [4.31] Jun B., Radiation effects on III-V heterostructure devices, a thesis submitted toOregon State University in partial fulfillment of the requirements for the degreeof doctor of philosophy,2002.
    [4.32] Krantz R. J., Bloss W. L. and O′Loughlin M. J., High energy neutron irradiationeffects in GaAs modulation-doped field effect transistors (MODEFTs):threshold voltage, IEEE Transactions on Nuclear Science,1988,35(6),1439.
    [5.1] Gu W. P., Zhang J. C., Wang C., et al., Influence of60Co ray irradiation onAlGaN/GaN high electron mobility transistors, Acta Physica Sinica,2009,58(2),1161.
    [5.2] Lü L., Zhang J. C., Xue J. S., et al., Neutron irradiation effects on AlGaN/GaNhigh electron mobility transistors, Chinese Physics B,2012,21(3),037104.
    [5.3] Park S. H., Kang T. W. and Kim T. W., Effect of annealing on neutron-transmutation-doped GaN epilayers grown on sapphire substrates, Journal ofMaterials Science,2004,39,3217.
    [5.4] Lorenz K., Marques J. G., Franco N., et al., Defect studies on fast and thermalneutron irradiated GaN, Nuclear Instruments and Mathods in Physics ResearchB,2008,266,2780.
    [5.5] Polyakov A.Y., Smirnov N.B., Govorkov A.V., et al., Neutron irradiation effectsin AlGaN/GaN heterojunctions, Physica B,2006,376-377,523.
    [5.6] Polyakov A. Y., Smirnov N. B., Govorkov A. V., et al., Neutron radiationeffects in epitaxially laterally overgrown GaN films, Journal of ElectronicMaterials,2007,36(10),1320.
    [5.7] Zhang M. L., Wang X. L., Xiao H. L., et al., Influence of neutron irradiation onthe deep levels in GaN, Solid-State and Integrated Circuit Technology,10thIEEE International Conference,2010,1533.
    [5.8] Papastamatiou M., Arpatzanis N., Papaioannou G. J., et al., Neutron radiationeffects in high electron mobility transistors, IEEE Transactions on ElectronDevices,1997,44(3),364.
    [5.9] Papaioannou G. J., Papastamatiou M. J. and Christou A., He ion radiationeffects in high electron mobility transistors, Journal of Applied Physics,1995,78(5),3066.
    [5.10] Jun B., Subramanian S. and Peczalski A., Neutron irradiation effects in highelectron mobility transistors, IEEE Transactions on Nuclear Science,2001,48(6),2250.
    [5.11] Summers G. P., Burke E. A., Dale C. J., et al., Correlation of particle induceddisplacement damage in silicon, IEEE Transactions on Nuclear Science,1987,34,1134.
    [5.12] Shultis J. K. and Faw R.E., Fundamentals of nuclear science and engineering,2nded, CRC Press,2008.
    [5.13] Sickafus K. E., Kotomin E. A. and Uberuaga B. P., Radiation effects in solids,Proceedings of the NATO advanced study institute on radiation effects in solids,Published by springer, P. O. Box17,3300AA Dordrecht, The Netherlands,2004.
    [6.1] Koukitu A. and Kumagai Y., Hydride Vapor Phase Epitaxy of GaN., EhrentrautE., Meissner M.(Eds.), Chapter2in Technology of Gallium Nitride CrystalGrowth, Springer-Verlag, Heidelberg,2010,31.
    [6.2] AFM
    [6.3] Giehler M., Ramsteiner M., Brandt O., et al., Optical phonons of hexagonal andcubic GaN studied by infrared transmission and raman spectroscopy, AppliedPhysics Letters,1995,67(6),733.
    [6.4] Sathish N., Dhamodaran S., Pathak A. P., et al., HRXRD, AFM and opticalstudy of damage created by swift heavy ion irradiation in GaN epitaxial layers,Nuclear Instruments and Methods in Physics Research B,2007,256,281.
    [6.5] Chang J. P., Lin T. Y., Hong H. F., et al., Effects of proton irradiation onGaN-based materials, Physica Status Solidi (c),2004,1(10),2466.
    [6.6] Reshchikov M. A., Shahedipour F., Kororkov R. Y., et al., Photoluminescenceband near2.9eV in undoped GaN epitaxial layers, Journal of Applied Physics,2000,87,3351.
    [6.7] Reshchikov M. A. and Morko H., Luminescence properties of defects in GaN,Journal of Applied Physics,2005,97,061301.
    [6.8] Yang H. C., Lin T. Y. and Chen Y. F., Nature of the2.8-eV photoluminescenceband in Si-doped GaN, Physical Review B,2000,62(19),12593.
    [6.9] Wang R. X., Xu S. J., Fung S., et al., Micro-Raman and photoluminescencestudies of neutron-irradiated gallium nitride epilayers, Applied Physics Letters,2005,87,031906.
    [6.10] Wang R. X., Xu S. J., Li S., et al., Raman scattering and X-ray diffraction studyof neutron irradiated GaN epilayers, IEEE Proceeding of2004Conference onOptoelectronic and Microelectronic Materials and Devices,2005,141.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700