诱导子对霍山石斛悬浮培养原球茎生长和生物碱的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
霍山石斛是安徽省的名贵中草药,国家重点保护的名贵药用植物,为药用石斛珍品;富含石斛多糖和生物碱等多种生物活性成分,具有滋阴清热、益胃生津、抗衰老、提高机体免疫力等功效。由于霍山石斛生境狭窄、繁殖困难、产量低等原因,加之过度采挖利用和生态环境的恶化,野生种质资源严重匮乏。目前,生产上主要是通过快繁技术提供试管苗,但由于试管苗生物碱含量较低,已不能满足市场的需求;而悬浮培养技术可以实现在较短周期内生产生物碱,但细胞生长缓慢、生物碱产量低,始终是其工业化生产的制约因素。
     本试验通过60Co-γ射线以及添加诱导子SNP、PA、SA和直流磁场等因素对霍山石斛原球茎进行诱导调控,并对霍山石斛原球茎生长及生物碱积累规律进行研究,以期为大规模悬浮培养生产高含量生物碱提供技术参数,同时也为其合成机理的研究提供理论依据。
     主要研究结果如下:
     1. 60Co-γ辐射处理霍山石斛原球茎的适宜剂量为10Gy。10Gy处理的原球茎在44d的培养周期中生长曲线近似“S”型,原球茎在36d左右达到生长高峰,为26.54g/瓶,比对照最大生长量提高了22.47%;生物碱在40d左右达到最大值,为0.035g/(DW·flask),比对照提高了81.76%。此时培养液pH和原球茎电导率变化较小,培养液环境适合原球茎继续培养。60Co-γ辐射处理促进了原球茎POD、SOD、CAT和PAL酶活性,抑制PPO酶活性,从而促进石斛原球茎生长和生物碱合成。
     2.高浓度的SNP对原球茎生长产生明显抑制作用,但促进了原球茎生物碱的合成积累,适宜浓度为0.1mmol·L-1。0.1mmol·L-1浓度SNP处理后的原球茎,经44d的周期培养,在32d左右达到生长高峰,为14.51g/瓶,低于对照最大生长量;生物碱含量在36d左右达到最大值,为0.0395g/(DW·flask),比对照提高了101.53%。SNP的加入导致培养液酸化,原球茎相对电导率上升,可见,高剂量SNP对原球茎有一定损伤作用,但提高了POD和PAL酶活性,使生物碱含量大幅度提高。
     3. PA促进霍山石斛原球茎生长和生物碱的合成,适宜浓度为7.5g·L-1。原球茎鲜重为17.26g/瓶,比对照提高了39.31%。生物碱含量达到0.026g/(DW·flask),比对照提高了83.8%。PA处理促进了PAL酶活性,抑制POD酶活性,防止细胞衰老,从而促进细胞生长和生物碱的合成。
     4. SA的较适添加浓度为100μmol·L-1,原球茎鲜重为13.60g/瓶,比对照降低了17.18%;虽然原球茎生长量有所下降,但生物碱含量达到最高,0.022g/(DW·flask),为对照的1.62倍。SA的加入导致培养液酸化,原球茎相对电导率上升,使得培养液环境对原球茎继续培养有一定影响。POD和PAL酶活性得到显著提高,促进了生物碱的积累。
     5.磁场作用下,霍山石斛原球茎生长量显著提高,但对生物碱积累影响不大。磁场与SA协同作用下,鲜重量达到8.65g/瓶,比对照提高了41.57%;生物碱的最大产量为0.0135g/(DW·flask),仅为SA单独处理组的88.82%,表明磁场和SA共同作用并没有增加生物碱的积累。原球茎POD和PAL酶活性有所降低,磁场处理使原球茎次生代谢表达强度有所减弱。
     6.通过对霍山石斛原球茎进行石蜡切片染色观察,发现原球茎中生物碱主要分布在细胞质中。
It is one of the most famous and valuable Chinese herbal medicine in Anhui Province of China, and it is regarded and protected for its value by government. It has the advantage of diminishing inflammation, resisting senescence and improving immunity because of its content of amylose and alkaloid. But the wild resources of D. Huoshanense are reducing as the reason of the poor living conditions, low productivity, overexploitation and so on. At present, the main breeding method using in D. Huoshanense is vitro propagation technology, but that cannot satisfy with the needs of market because of the low content of alkaloid in plants. However, the liquid culture can produce alkaloid in a short period with slow development of cells except for low output, that is the very reason for restricting industrial produce.
     The experiments were used 60Co-γ、SNP、PA、SA and direct current magnetic field on D.huoshanense protocorm like-bodies(PLB) to research the living situation of PLB and the accumulating of alkaloids, so that we can provide technical parameters for establishing large-scale liquid culture and producing higher content alkaloids, and finally provide theoretical basis for the synthesis of alkaloids.
     The main results were following:
     1. The optimum irradiation dose for PLBs was 10Gy, the growth curve was similar as“S”type in the 44days subculture period. And the biomass reached peak at the 36th day, which was 26.54g/DW·flask, 22.47% higher than the CK; the alkaloids quantity reached peak at the 40th day, which was 0.035g/DW·flask, 81.76% higher than the CK. The pH of culture and the electrical conductivity changed slightly, the medium environment fit PLBs to be cultured continuously. 60Co-γirradiation could increase the activities of POD, SOD, CAT, PAL and decrease the activities of PPO to improve cell growth and the accumulation of alkaloid of PLBs.
     2. High concentration of SNP decreased the biomass of PLBs, but enhanced alkaloids production. The optimum concentration was 0.1mmol·L-1, the biomass reached peak at the 32th day in the 44 days subculture period, which was 14.51g/DW·flask, lower than the CK; the alkaloids production reached peak at the 36th day, which was 0.0395 g/DW·flask, 101.53% higher than the CK. By adding SNP could cause the medium acidification and increase the relative conductivity of PLBs. So, high concentration of SNP hurt PLBs but could increase the activities of POD、PAL to improve the accumulation of alkaloid of PLBs.
     3. PA could improve the biomass and alkaloid content of suspension-cultured D.huoshanense PLBs, 7.5g·L-1 was the optimum concentration, the fresh weight was 17.26g/flask, 39.31% higher than the CK; the alkaloid content was 0.026g/DW·flask, 83.8% higher than the CK. PA could increase the activities of PAL and decrease the activities of POD to improve cell growth and the accumulation of alkaloid of PLBs.
     4. The optimum concentration of SA for PLBs was 100μmol·L-1, the fresh weight was 13.60g/flask, 17.18% lower than the CK; the alkaloid content was 0.022g/DW·flask, 1.62-fold higher than the CK. By adding SA could cause the medium acidification, and increase the relative conductivity of PLBs, but increase the activities of POD、PAL to improve the accumulation of alkaloid of PLBs.
     5. With the direct current magnetic field on D.huoshanense PLBs, the biomass was obviously enhanced. Under the condition of magnetic field and SA on PLBs, the fresh weight was 8.65g/flask, 41.57% higher than the CK; the alkaloid content was 0.0135g/DW·flask, 11.18% lower than the CK. The results showed that Magnetic field associated with SA could not increase the accumulation of alkaloid, decrease the activities of POD and PAL and the secondary metabolites of PLBs.
     6. Through observing of PLBs by paraffin slice technique, we found that alkaloid of PLBs mainly distribute in the cytoplasm.
引文
[1]中华人民共和国卫生部药典委员会.中国药典(一部).北京:化学工业出版社, 2000: 70
    [2]马国祥,徐国均,徐珞珊,等.商品石斛的调查及鉴定(III) [J] .中草药, 1995, 6(7): 370
    [3]杨显志,邵华,周成,等.生物技术在药用石斛研究中的应用.中草药, 2002, 33(2): 173
    [4]吕素芳,郭广君,蔡永萍.霍山石斛生理生化性质的研究进展[J].中草药, 2006, 37(5): 790-793
    [5]丁亚平,吴庆生,于力文.铁皮石斛最佳采收期的理论探讨[J].中国中药杂志, 1998, 23(8): 458
    [6]金蓉鸾,孙继军,张远名. 11种石斛的总生物碱的测定.南京药学院报, 1981, 1: 9-10
    [7]丁亚平,杨道麒,吴庆生,等.安徽霍山三种石斛总生物碱的测定及其分布规律研究.安徽农业大学学报, 1994, 21(4): 503
    [8]蔡永萍,汪曙,林毅,等.霍山石斛F1代生长、有效成分和生理特性的研究.中国中药杂志, 2005, 30(14): 1064-1067
    [9]罗建平,查学强,姜绍通.药用霍山石斛原球茎的液体悬浮培养.中国中药杂志, 2003, 28(7): 611
    [10]汪曙,林毅,蔡永萍,等.霍山石斛杂交种与亲本生长生理指标及药效成分含量的比较.中国中药杂志, 2006, 31(17): 1401-1403
    [11]贾书华.光照对霍山石斛试管苗生长特性及有效成分积累的影响[D].安徽:安徽农业大学, 2007
    [12]吴永宏,德颐,王丽蓉.植物细胞的同步培养技术[J].植物生理学通讯, 1993, 29(2): 108-110
    [13]杜金华,郭勇.高产花色苷玫瑰茄细胞系的筛选[J].生物工程学报, 1997, 13 (4): 437 -439
    [14]甘烦远,郑光植.提高植物培养细胞中次级代谢产物的途径[J].植物生理学通讯, 1991, 8 (4): 14 -20
    [15]陈永勤,朱蔚华,吴蕴祺,等.组培条件对云南红豆杉愈伤组织生长和形成紫杉醇的影响[J].中国中药杂志, 2000, 25(5): 269 -272
    [16]查学强,罗建平,姜绍通.悬浮培养霍山石斛原球茎合成活性多糖的研究[J].食品科学, 2005, 26(4): 41
    [17]查学强,罗建平.霍山石斛原球茎液体培养的营养调节[J].合肥工业大学学报(自然科学版), 2004, 27(1): 53
    [18]刘咏,罗建平.霍山石斛原球茎液体培养条件的优化[J].食品科学, 2005 ,26(9): 84
    [19]黄鹂,查学强,罗建平.金属离子对悬浮培养霍山石斛类原球茎合成活性多糖的影响[J].安徽农业科学, 2006, 34(9): 1902
    [20]姜绍通,魏明,罗建平.磷对霍山石斛类原球茎悬浮培养细胞生长和多糖合成的影响[J].生物工程学报, 2006, 22(4): 613-617
    [21]魏明,姜绍通,罗建平.霍山石斛类原球茎二步法培养细胞生长和多糖合成的动力学研究[J].生物工程学报, 2007, 23(1): 79
    [22]马绍鋆.霍山石斛原球茎液体培养体系优化及生物碱积累规律的研究[D].安徽:安徽农业大学, 2008
    [23]吴建章,郁建平,赵东亮.迷迭香酸的研究进展[J].天然产物研究与开发, 2005, 17(3): 383-388
    [24]王红,叶和春,李国凤.诱导子的作用方式及其在植物组织培养中的应用[J].植物学通报, 1999, 16(1): 11-18
    [25]宁文,曹日强.真菌诱导物在植物次生代谢中的调节作用[J].植物生理学通讯, 1993, 29(5): 321-329
    [26]王和勇,罗恒,孙敏.诱导子在药用植物细胞培养中的应用叨[J].中草药, 2004, 35(8): l-5
    [27]肖春桥,高洪,池汝安.诱导子促进植物次生代谢产物生产的研究进展[J].天然产物研究与开发, 2004,16(5): 473-476,472
    [28] Numberger T, Nennstiel D, Jabs T. High effinity binding of a fungal oligopeptide elicitor to parsley plasmamembranes triggers multiple defense responses [J]. Cell, 1994, 78(3): 449-460
    [29] Song W Y. A receptor kimase-like protein encoded by the rice disease resistance gene[J]. Science, 1995, 270: 1804- 1806
    [30] Liu W Q, Guo Z J. Effects of signal transduction antagonists on phytoalexin and isoflavonoid accumulation in soybean cells [J]. J Plant Physiol MolBiol. 2003, 29(4): 301-308
    [31]周倩耘,周建民,刘峻,等.诱导子对人参毛状根中皂苷含量的影响[J].南京军医学院学报, 2003, 25(2): 76-78
    [32]施中东,未作君,元英进.南方红豆杉细胞培养合成紫杉醇诱导子浓度的优化[J].天然产物研究与开发, 1999, 12(4): 36-40
    [33]张向飞,张荣涛,王宁宁,等.真菌诱导子对长春花愈伤组织中吲哚生物碱积累的影响[J].中草药, 2004, 35(2): 20l-204
    [34]徐亮胜,薛晓锋,付春祥,等.茉莉酸甲酯与水杨酸对肉苁蓉悬浮细胞中苯乙醇甙合成的影响[J].生物工程学报, 2005, 2l(3): 402-406
    [35]徐茂军,董菊芳,张刚. NO对金丝桃悬浮细胞生长及金丝桃素生物合成的促进作用研究[J].生物工程学报, 2005, 21(1): 66-70
    [36]范寰,商桂敏,元英进.磁场对水杨酸诱导下红豆杉紫杉醇产量的影响[J].化学工程, 2006, 34(2): 56-59
    [37]吴玉荷,胡章立,张永夏.磁胁迫对烟草细胞生长和CoQ10含量的影响[J].植物生理学通讯, 2005, 41(4): 482-484
    [38]刘大森,强继业,马飞,等.核农学[M].北京:中国农业出版社, 2006: 30l-304
    [39]张美萍,王义,孙春玉,等.辐照西洋参培养物皂昔次生代谢调控的研究[J].核农学报, 2003, 17(3) : 207-211
    [40]侯丕勇,郭顺星.真菌对植物的诱导作用及其在天然药物研究上的应用[J].中草药, 2002, 33(9): 855-857
    [41]余叔文,汤章城.植物生理与分子生物学[C].北京:科学出版社, 1998, 366-389
    [42]兰文智,余龙江,吴元喜.水杨酸对真菌诱导子诱导红豆杉悬浮细胞膜脂过氧化和紫杉醇生物合成的影响[J].西北植物学报, 2002, 22(1): 78-83
    [43]黄柏青,刘曼西.真菌诱导物对丹参毛状根和转化细胞过氧化物酶活力的影响[J].湖北农学院学报, 2001, 21(3): 235-237
    [44] Kuhn D N, Chappell J, Boudet A, et a1. Induction of phenylalanine-1yase and 4-coumarate: CoA ligase mRNAs in cultured plant cells by UV 1ight or fungal elicitor [J]. Botany, 1984, 8l: 1102-1106
    [45] Mizukami H, Ogawa T, Ohashi H, et a1. Induction of rosmarinic acid biosynthesis in Lithospermum erythrorhizon cell suspension cultures by yeast extract[J]. Plant Cell Reports, 1992, 11: 480-483
    [46] Szabo E, Thelen A, Petersen M. Fungal elicitor preparalions and methyl jasmonate enhance rosmarinic acid accumulation in suspension cultures of Coleus blumei [J]. Plant Cell Reports, 1999, 18: 485-489
    [47] Morita H, Fujiwara M, Yoshida N, et a1. New picrotoxinin-type and dendrobine-type sesquiterpenoids from Dendrobium snowflake‘red star’[J]. Tetrahedron, 2000, 56: 5801-5805
    [48]于力文,蔡永萍,张鹤英,等.安徽霍山三种石斛营养成分分析及其分布规律[J].安徽农业科学, 1996, 24(4): 369-370
    [49]金青,马绍鋆,洪萨丽,等.霍山石斛原球茎的诱导及培养方式对原球茎增殖的影响[J].安徽农业大学学报, 2008, 35(2): 258-261
    [50]李亚芳,张晓华,孙国明.石斛中总生物碱和多糖的含量测定.中国药事, 2002, 16(7): 426-428
    [51]赵宗方,赵勇,吴桂法.果实花青素含量与PAL活性关系的研究[J].园艺学报, 1994, 21(2): 199-200
    [52]张宪政,陈凤玉,王荣富.植物生理学实验技术[M].沈阳:辽宁科学技术出版社, 1994: 99
    [53]赵彦坤,张文胜,王幼宁,等.高pH对植物生长发育的影响及其分子生物学研究进展[J].中国生态农业学报, 2008, 16(3): 783-787
    [54]于荣敏,宋永波,张辉,等.西洋参冠英组织培养及其人参皂苷Re和人参皂苷Rg1的产生[J].生物工程学报, 2003, 19 (3): 372-375
    [55] Ahn H J, Kim J H, Jo C, et al. Comparison of irradiated phytic acid and other antioxidants for antioxidant activity[J]. Food Chemistry, 2004, 88: 173-178
    [56]习岗,傅志东.外磁场对小麦萌发期过氧化物酶合成的影响及其激活效应[J].植物生理学报, 1993, 19(2): 155-161
    [57]刘璐璐,柴明良,徐晓薇,等.γ射线辐照对春兰根状茎生长及抗氧化酶活性的影响[J].核农学报, 2008, 22(1): 23-27
    [57] Jones D H. Phenylanine ammonia-lyase: regulation of its induction, and its role in plant development[J]. Phytochemistry, 1984, 23: 1349-1359
    [59] Szabo E, Thelen A, Petersen M, et al. Fungal elicitor preparations and methyl jasmonate enhance rosmarinic acid accumulation in suspension cultures of Coleus bluntei[J]. Plant Cell Reports, 1999, 18:484-489
    [60] Jirage D, Tootle T L, Reuber T L, et al. Arabidopsis thaliana PAD4 encodes lipase-like gene that is important for salicylic acid signaling[J]. Proceedings of the National Academy of Science USA, 1999, 96: 13 583-13 588
    [61] Gregory M, Bounkhay G, Theodoridis R, et al. Induction of geranylgeranyl diphosphate synthase activity and taxane accumulation in Taxus baccata cell cultures after elicitation by methyl jasmonate[J]. Plant science, 1999, 147: 1-8
    [62] Manisha G, Taguchi K, Gonda T, et al. Effects of methyl jasmonate and elicitor on the activation of phenylalanine ammonia-lyase and the accumulation of scopoletin and scopolin in tobacco cell cultures[J]. Plant science, 1998, 132: 13-19
    [63] Patrick M, Pinkham K. A model for enhanced pea seeding vigour following low pH and salicylic acid treatments[J]. Process Biochemistry, 2000, 35: 603-613
    [64] Shannon E, Inparajah R, Baum T. Methyl jasmonate increases reported alkamides and ketoalkeneynes in Echinacea pallida[J]. Phytochemistry, 2001, 57: 417-420
    [65] Stefania B, Scaramagli S, Marja K, et al. Secondary metabolism in root and callus cultures of Hyoscyamus muticus L: the relationship between morphological organization and response to methyl jasmonate[J]. Plant Science, 2002, 163: 563-569
    [66] Wang Y D, Wu J C. Induction studies of methyl jasmonate and salicylic acid on taxane production in suspension cultures of Taxus chinensis var[J]. Biochemical Engineering Journal, 2004, 19: 259-265
    [67] Wang J W, Wu J Y. Involvement of nitric oxide in elicitor-induced defense responses and secondary metabolism of Taxus chinensis cells[J]. Plant Science, 2004, 11: 298-306
    [68] Xu M J, Dong J F. Nitric oxide stimulates indole alkaloid production in Catharanthus roseus cell suspension cultures through a protein kinase-dependent signal pathway[J]. Enzyme and Microbial Technology, 2005, 37(1): 49-53
    [69]马力耕,徐小冬,崔素娟,等.肌醇磷脂信号途径参与胞外钙调素启动花粉萌发和花粉管伸长[J].植物生理学报, 1998, 24(2): 196-200
    [70]陈思学,焦新之.植物细胞的肌醇磷脂信号传递系统[J].植物生理学通讯, 1994, 30 (6): 405-413
    [71] Ewa L, Per L, AndréB, et al. Intracellular calcium oscillations in a T-cell Line after exposure to extremely-low-frequency magnetic fields with variable frequencies and flux denities[J]. Bioelectromagnetic, 1995, 16: 41-47
    [72]邵伟,熊泽,黎姝华,等.磁场对大肠杆菌生长影响的研究[J].微生物学通报, 2000, 27(2): 112-114
    [73] Delledonne M, Zeier J, Marocco A, et al. Signal interactions between nitric oxide and reactive oxygen intermediates in the plant hypersensitive disease resistance response[J]. Proc Natl Acad Sci USA, 2001, 98: 13 454 -13 459
    [74] Tu J, Shen W B, Xu L L. Regulation of nitric oxide on the aging process of wheat leaves[J]. Acta Bot Sin, 2003, 45 (9): 1 055-1 062
    [75] Ruan H H, Shen W B, Ye M B, et al. Protective effects of nitric oxide on salt stress-induced oxidative damages to wheat leaves[J]. Chin Sci Bull, 2002, 47: 677-681
    [76] Ruan H H, Shen W B, Xu L L. Nitric oxide modulates the activities of plasma membrane ATPase and PPase in wheat seedling roots and promotes the salt tolerance against salt stress[J]. Acta Bot Sin, 2004, 46(4): 415-422
    [77] Beligni M V, Fath A, Bethke P C, et al. Nitric oxide acts as an antioxidant and delays programmed cell death in barley aleurone layers[J]. Plant Physiol, 2002, 129: 1 642-1 650
    [78] Uchida A, Jagendorf A T, Hibino T, et al. Effects of hydrogen peroxide and nitric oxide on both salt and heat stress tolerance in rice[J]. Plant Sci, 2002, 163: 515-523
    [79] Beligni M V, Lamattina L. Nitric oxide stimulates seed germination and deetiolation, and inhibits hypocotyls elongation, three light-inducible responses in plants[J]. Planta, 2000, 210: 215-222
    [80] Delledonne M, Zeier J, Marocco A, et al. Signal interaction between nitric oxide and reactive oxygen intermediates in the plant hypersensitive disease resistance response[J]. Proc Natl Acad Sci USA, 2001, 98: 13454-13459
    [81] Hu X Y, Neill S J, Cai W M, et al. NO-mediated hypersensitive responses of rice suspension cultures induced by incompatible elicitor[J]. Chinese Science Bulletin, 2003, 48(4): 358-363
    [82] Xu M J, Dong J F, Zhu M Y. Involvement of NO in fungal elicitor-induced PAL activation and taxol biosynthesis in Taxus chinensis suspension cells[J]. Chinese Science Bulletin, 2004, 10: 1756-1762
    [83] Durner J, Wendehenne D, Klessig D F. Defense gene induction in tobacco by nitric oxide, cyclic CMP and cyclic ADP-ribose[J]. Proc NatlAcad Sci USA, 1998, 95: 10328-10333
    [84] Delledonne M, Xia Y, Dixon R A, et al. Nitric oxide functions as a secondary signal in plant disease resistance[J]. Nature, 1998, 394: 585-588
    [85] Kandan A, Commare R R, Nandakumar R, et al. Induction of phenylpropanoid metabolism by Pseudomonas fluorescens against tomato spotted wilt virus in tomato[J]. Folia Microbiol, 2002, 47(2): 121-129

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700