铀矿测井中换算系数求取方法研究与实验
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自然γ能谱测井,通过研究地层中天然放射性核素产生的γ射线的能谱,实现地层中放射性核素的定性解释和放射性核素含量的定量解释,是一种比较先进的定性与定量解释方法。
     本文通过在传统能谱解析技术中引入总量型γ分层解释理论,形成新的能谱型γ分层解释方法。而换算系数和特征参数是能谱型γ分层解释方法的两个重要参数,本文针对换算系数的求取方法进行研究。
     参考总量γ测井换算系数和传统γ能谱测井换算系数的求取方法,本文尝试在标准饱和模型上利用特征峰区的计数率求取换算系数,并且通过对实测数据的处理,对该方法进行验证。
     本文先后采用HPGe探测器和LaBr3探测器,在标准饱和模型上开展γ能谱测井实验。实验中使用的HPGe探测器具有较好谱漂自校功能,可以对特征峰区进行准确地划分,且具有较好的能量分辨本领,可以选择的特征峰区较多,因此,HPGe探测器实测数据的解释效果较好,主要核素的含量解释误差都在5%以内。这一方面验证了在标准模型上利用特征峰区求取全谱刻度系数具有一定的可行性,另一方面,也证明了能谱型γ测井在核素定量解释方面的优越性。
     对于LaBr3探测器,由于是首次在能谱测井使用该类型仪器,因此实测数据存在谱线漂移等一些问题,本文通过对LaBr3探测器实测能谱特点的分析,筛选出可用的模型数据,及可用的特征峰区。实测数据的处理结果显示,主要核素的解释误差在10%以内,从而验证了LaBr3探测器应用于γ能谱的可行性。
     在数据处理过程中,我们使用了射线能量小于1MeV的特征峰区,并且将康普顿散射的贡献也计算在内,同样取得了良好的计算效果。
     总的来说,在模型实测法中,根据实测能谱的特点,选择合适的特征峰区求取换算系数是可行的,并且可以将核素解释含量的误差控制在较小的范围内。
Natural γ-ray spectrum logging is an advanced qualitative and quantitativeinterpretation method, which used to tell the nature of the rock and the content ofradioactive nuclide in the mineral, by studying of natural gamma ray spectrum.
     In this article, we are trying to form a new subdivision interpretation technology forenergy spectrum γ-ray logging, by introducing the subdivision interpretation methods ofγ-ray logging into the traditional energy spectrum analysis methods. The scale factors andthe characteristic parameter are two most important parameter in subdivisioninterpretation technology for energy spectrum γ-ray logging. In this article, we focus onthe method of finding scale factors.
     Referring to the calculating method of scale factor in the subdivision interpretationmethods of γ-ray logging and traditional natural γ-ray spectrum logging, we are trying tostudy the calculating method of the scale factor, and prove it by the analysis of actualmeasurement data.
     During our γ-ray spectrum logging test, HPGe detector and LaBr3detector wereused on standard model. The HPGe detector has a good performance of spectrumstabilization technology as well as perfect energy resolving power, so the characteristicpeaks could be divided accurately and much more characteristic peaks can be selected.As a result, We get a satisfactory result of actual measurement data, the relative errors ofexplain content for main element are under5percent. On one hand, it is feasible to getthe scale factors through standard model, on the other hand, the advantage of naturalγ-ray spectrum logging is proved also.
     Because it is the first time to use LaBr3detector in γ-ray spectrum logging, there aresome problems exist such as spectral shift. Through the analysis of feature of actualmeasurement data, we select some available data as well as the characteristic peaks. Theresults prove the feasibility of LaBr3detector in γ-ray spectrum logging, for the relativeerror of explain content for main element are under10percent.
     During the data analysis, the characteristic peaks were used for the radial energyunder1MeV, the contribution of compton effect were calculated also, a satisfactoryresult still arrived.
     Generally speaking, on standard model. the scale factor can be obtained bychoosing proper characteristic peaks according to the feature of actual measurement data,as well as the relative error of explain content can be very small.
引文
[1]郑碧华,陈劲民,熊正烨.γ能谱测量及其应用[J].中山大学学报(自然科学版).2005,44(S):158~160.
    [2]庞巨丰,迟云鹏,钟振伟.现代核测井技术与仪器[M].北京:石油工业出版社,1998.
    [3]卢存恒.铀矿物探γ场理论计算和应用[M].北京:原子能出版社,1991.
    [4]Klaus Lehmann. Environmental corrections to gamma-ray log data: Strategies forgeophysical logging with geological and technical drilling[J]. Journal of AppliedGeophysics,2010:70
    [5]孙占学,刘金辉.砂岩铀矿成矿过程与氧化还原分带:铀系不平衡证据[J].地球科学‐中国地质大学学报,2004:29
    [6]黄隆基.核测井原理[M].东营:石油工业出版社,2000.
    [7]程业勋,王南萍,侯胜利.核辐射场与放射性勘查[M].北京:地质出版社.2005.
    [8]D. Alexiev, L. Mo and M. L. Smith. Comparison of LaBr3:Ce, LaCl3:Ce,CZT andNaI(Tl) for Resolution of Nuclear Material Spectra[A]. Winston-Salem, USA:IEEE-9thinternational Conference on Inorganic Scintillators and their Applications, June4-8,2007
    [9]K. S. Shah, J. Glodo, M. Klugerman, W. W. Moses. LaBr3:Ce Scintillators forgamma-ray spectroscopy[J]. IEEE TRANSACTIONS ON NUCLEARSCIENCE,2003:50
    [10]Klaus Lehmann. Environmental corrections to gamma-ray log data: Strategies forgeophysical logging with geological and technical drilling[J]. Journal of AppliedGeophysics,2010:70
    [11]艾宪芸.碲锌镉探测器性能分析及其γ能谱解析方法研究[D].北京:清华大学博士论文,2005.
    [12]汤彬.钻孔γ场理论与核测井分层解释方法研究与应用[D].成都:成都理工大学博士学位论文,2008.
    [13]中华人民共和国核行业标准:EJ/T611—2005γ测井规范[S].国防科学技术工业委员会,2005.
    [14]中华人民共和国地质矿产行业标准:DZ/T0205—1999地面γ能谱测量技术规程[S].北京:中国标准出版社,2000.
    [15]M. Maucec, P.H.G.M. Hendriks, J. Limburg and R.J.de Meijer. Determination ofcorrection factors for borehole natural gamma-ray measurements by Monte Carlosimulations[J]. Nuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers, Detectors and Associated Equipment,2009:609
    [16]高宝龙.利用蒙特卡罗方法进行伽马能谱全谱重叠峰模拟分解初步研究[D].北京:中国地质大学硕士论文,2006
    [17]A. Lauber, O. Landstroem. A Ge(Li) bore hole probe for in situ gamma rayspectrometry[J]. Geophysical Prospecting.1972,20(4):800-813.
    [18]J. R. Giles, K. J. Dooley. High resolution gamma spectroscopy well logging system[J].Journal of Radioanalytical and Nuclear Chemistry.1998,233(1-2):125~130.
    [19]J. H. Scott. Computer analysis of gamma-ray logs. Geophysics[J].1963,28:457-465.
    [20]J.G.Conaway,P.G.Killeen. Quantitative uranium determinations from gamma-ray logsby application of digital time series analysis. eophysics[J].1978,43(6):1204-1221.
    [21]Q.Bristow, J.G.Conaway, P.G.Killeen. Application of inverse filtering to gamma-raylogs: A case study[J].Geophysics,1984,49(8),1369~1373.
    [22]J. G. Conaway. Direct determination of the gamma-ray logging system responsefunctions in field boreholes[J].Geoexploration,1980,18:187-199.
    [23]卢存恒.铀矿物探γ场理论计算和应用[M].北京:原子能出版社,1991.
    [24]汤彬.γ测井分层解释法[M].北京:原子能出版社,1993.
    [25]秦积庚,狄觉斋.总伽玛测井和伽玛能谱测井的反褶积分层解释法[J].测井技术,1983.7(4):9~16.
    [26]汤彬.钻孔γ场理论与核测井分层解释方法研究与应用[D].成都:成都理工大学博士学位论文,2008.
    [27]卢存恒,刘庆成,韩长青.空间γ场的弹性变化及应用[M].北京:原子能出版社.2006.
    [28]高彦峰.直接解调方法在自然伽马能谱测井中的应用研究[D].北京:中国石油大学硕士学位论文,2007.
    [29]李传伟,廖琪梅,李安宗等.自然伽马能谱解谱方法研究[J].核电子学与探测技术,2008,28(4):796-800.
    [30]庞巨丰.能谱数据分析[M].西安:陕西科学技术出版社,1990.
    [31]中华人民共和国核行业标准:EJ/T363—1998地面伽玛能谱测量规范[S].北京:中国标准出版社,1998.
    [32]中华人民共和国国家标准:GB/T16140-1995水中放射性核素的γ能谱分析方法
    [S].北京:中国标准出版社,1996.
    [33]中华人民共和国石油天然气行业标准: SY/T5252—2002岩样的自然伽马能谱分析方法[S].石油工业出版社,2002.
    [34]C. A. Papachristodoulou, P. A. Assimakopoulos, N. E. Patronis, et al. Use ofHPGeγ-ray spectrometry to assess the isotopic composition of uranium in soils[J].Journal of Environmental Radioactivity,2003,64(2-3):195–203.
    [35]O. V. Gorbatyuk, E. M. Kadisov, V. V. Miller, et al. Analysis of uranium and thoriumores using a gamma ray spectrometer with a Ge(Li) detector[J]. Atomic Energy,1973,35(5):1037-1040.
    [36]ORTEC.GEM High-Purity Germanium (HPGe) coaxial detectors(in PopTopCapsule)[EB/OL]. http://www.ortec-online.com/detectors/photon/b2_1.htm.
    [37]API Sub-Committee on Logging Calibration Facilities. Recommended practice forcalibration of gamma ray spectroscopy (potassium-uranium-thorium,K-U-Th)logging instruments and format for K-U-Th logs[Z].University of Houston(US):WellLogging Laboratory,2002.
    [38]李霞,褚君浩,李陇遐等.室温CdZnTe核辐射探测器研究进展[J].半导体技术,2008,33(11),941~946.
    [39]Alan Owens, Ernst-Jan Buis. Feasibility and design of a solid state gamma-raydetector[J]. Experimental astronomy,2006,21(1):57~66.
    [40]Hendriks P.H.G.M., Limburg J., de Meijer R.J.. Full-spectrum analysis of naturalγ-ray spectra[J]. Journal of environmental radioactivity,2001,53(3):365~380.
    [41]汤彬,刘玲,周书民,等.能谱型核测井的逐点剥谱反褶积解释方法[J].核技术,2006,29(12):909-912.
    [42]IAEA. Practical borehole logging procedures for mineral exploration,with emphasis onuranium[R]. IAEA,1986.
    [43]黄隆基,首祥云,王瑞平.自然γ能谱测井原理及应用[M].北京:石油工业出版社,1995.
    [44]卢希庭.原子核物理(第二版)[M].北京:原子能出版社,2001.
    [45]IAEA. Update of x-ray and gamma-ray decay data standards for detector calibrationand other applications volume1: Recommended decay data, high-energy gamma-raystandards and angular correlation coefficients.[R]. Austria, Vienna:2007:1287.
    [46]章哗,华荣洲,石柏慎.放射性方法勘查[M].北京:原子能出版社,1990.
    [47]A.V.奥本海姆,R.W.谢费著.数字信号处理[M].董士嘉等译.北京:科学出版社,1980.
    [48]汤彬,乐仁昌,周蓉生,等.一种新的伽玛能谱测井定量解释方法研究[J].地球物理学进展,2006,21(2):594-597.
    [49]佘冠军,尹旺明,汤彬.基于低能特征峰的自然伽玛能谱测井方法探讨及实践.核电子学与探测技术.2009,29(6):1435-1438.
    [50]于铭强,周镭庭等.放射性测量新技术(第一集)[M].北京:地质出版社,1983.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700