Toll样受体4信号通路在心肌微血管内皮细胞缺氧复氧损伤中作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
实验背景及目的:
     心肌缺血再灌注损伤(myocardium ischemia/reperfusion injury, MIRI)是冠心病心肌梗死溶栓和介入治疗的重要病理生理过程。失控的炎症反应是MIRI损伤的重要特征。心肌微血管内皮细胞(Cardiac microvascular endothelial cells, CMEC)是心脏微循环的重要组成部分,也是MIRI过程中最先波及且最先受损的部位,因此在MIRI损伤机制中发挥着重要作用。
     Toll样受体4(TLR-4)为体内模式识别受体Toll样受体家族的主要成员,由于能够识别多种内源性和外源性配体,不仅可介导感染性炎症反应,在非感染性炎症反应中也发挥着重要作用。近年来TLR-4在MIRI中的作用也受到越来越多的关注。最新的研究表明:TLR-4基因缺陷小鼠(C3H /HeJ小鼠)与野生型小鼠(C3H/HeN小鼠)相比MIRI后的心肌梗死面积明显减少。进一步研究也证实,给予TLR-4特异性抑制剂eritoran阻断TLR-4信号通路能够对小鼠MIRI起到保护作用。因此,我们推测TLR-4信号通路可能参与了MIRI的炎症反应。
     但是,目前的研究主要集中于TLR-4信号通路在心脏组织水平以及心肌细胞I/R损伤中的作用,而在CMEC I/R损伤中的作用尚无报道。因此,本研究试图通过以下方法:1、体外分离培养CMEC;2、建立缺氧/复氧(H/R)模型,模拟I/R损伤;3、观察H/R损伤中TLR-4信号通路的变化;4、观察应用TLR-4中和性抗体阻断TLR-4信号通路是否对CMEC I/R损伤具有保护作用,探讨TLR-4信号通路在CMEC MIRI损伤中的作用。
     实验方法
     第一部分:CMEC的分离、培养及缺氧复氧模型的建立
     无菌条件下取出大鼠心脏,利用化学消化法成功分离CMEC。用含15%胎牛血清(FCS)的DMEM培养液维持培养。取2-3代的CMEC缺氧6h后,分别复氧2 h、12 h及24 h,采用四甲基偶氮唑蓝(MTT)比色法检测内皮细胞的增殖能力;Hochest染色检测细胞凋亡;硝酸还原法测定细胞培养液中一氧化氮(NO)分泌量;细胞划痕实验检测细胞迁移能力。
     第二部分:TLR-4信号通路在CMEC缺氧复氧损伤中的变化
     取体外培养2-3代的CMEC缺氧6 h后,分别复氧2 h、12 h及24 h。收集细胞培养液,并裂解细胞,获得CMEC蛋白。用Western blot方法检测细胞TLR-4及NF-κB蛋白表达水平。用ELISA试剂盒检测培养液中炎性因子IL-6、TNF-α分泌水平。
     第三部分:抑制TLR-4信号通路对CMEC缺氧复氧损伤的保护作用
     取体外培养2-3代的CMEC,给予TLR-4中和性抗体MTS510(10ug/ml) 37℃孵育2h后给予H/R处理。缺氧6 h后复氧2h,再次用四甲基偶氮唑蓝(MTT)比色法检测内皮细胞的增殖能力;用Hochest染色检测细胞凋亡;硝酸还原法测定细胞培养液中NO分泌量;利用细胞划痕实验检测细胞迁移能力。
     实验结果
     1.体外成功分离、培养大鼠CMEC。
     2.与正常对照组相比,经过H/R损伤后,各组CMEC的增殖均明显受到抑制(P<0.05),细胞凋亡率增加(P<0.05);CMEC的NO分泌能力及迁移能力均显著下降(P<0.05)。
     3.与正常对照组相比,TLR-4蛋白水平在复氧后2 h及12 h明显升高(P<0.05),24 h基本恢复正常;NF-κB蛋白水平在复氧2 h、24 h显著高于对照组(P<0.05);而CMEC在复氧2 h、12 h及24 h后分泌的IL-6和TNF-α水平均高于对照组(P<0.05)。
     4.通过特异性中和性抗体阻断TLR-4信号通路,CMEC在缺氧6h复氧2h后,与单纯H/R处理组相比,增殖能力显著增加(P<0.05),细胞凋亡率下降(P<0.05);细胞迁移能力提高(P<0.05);NO分泌能力以及eNOS表达水平显著增加(P<0.05)。
     结论
     1. H/R损伤可以导致CMEC增殖能力下降,凋亡增加,并导致细胞迁移能力、NO分泌下降等功能障碍。
     2.在H/R早期,TLR-4/NF-κB信号通路激活,导致下游炎性因子IL-6、TNF-α分泌的增加,从而参与CMEC的炎症反应。
     3.通过特异性中和抗体抑制TLR-4/NF-κB信号通路,可以减少H/R诱导的CMEC凋亡及功能障碍,对CMEC的H/R损伤具有保护作用。
Background
     Myocardium ischemia/reperfusion injury remains the major cause of cardiac dysfunction in human cardiovascular pathophysiology since it occurs in a wide variety of ischemic cardiovascular disorders such as myocardial ischemia and stroke. Microcirculation dysfunction is an important etiological component of MIRI. Accumulating evidence suggests that I/R injury can induce ECs malfunction which is the most important reason of microcirculation dysfunction. Moreover, in the very early stages of reperfusion, ECs apoptosis is firstly observed, which precede myocyte cell apoptosis. Some soluble inflammation mediators from damaged ECs are shown to induce myocyte apoptosis. However, the mechanism of ECs dysfunction induced by MIRI is still not well investigated.
     Toll-like receptor (TLR) family consists of highly conserved pattern recognition receptors. Among the 10 TLRs identified in human, TLR-4 is the most extensively investigated since its recognition of lipopolysaccharide (LPS). However, evidences show that the ligands of TLR-4 are not only LPS, but also some specific endogenous molecules, such as fibronectin, fibrin, extracellular matrix fragments, heat-shock proteins 60 (HSP-60), HSP-70 and so on. TLR-4, initially found in monocytes, has been shown to be expressed in many tissues, including cardiomyocytes and ECs. Recently, the myocardial MIRI has been viewed as an innate immune response which is mediated in part through TLR-4 signal pathway. The TLR-4 deficient mice had reduced myocardial MIRI injury. Moreover, inhibition of TLR-4 signal with eritoran also attenuated cardiac dysfunction induced by MIRI injury. Previous clinical studies indicate that TLR-4 activation plays an important role in pathology process of atherosclerosis and heart failure.
     Although several studies have shown that TLR-4 takes part in MIRI of heart, most current studies focused on the relationship between TLR-4 and global heart dysfunction or cadiomyocyte apoptosis. The effect of TLR-4 on CMEC in MIRI is not clear so far. We hypothesized that TLR-4 signaling modulates CMEC dysfunction post MIRI.
     Methods
     Part I: CMEC were isolated from adult male Sprague-Dawley rat hearts. Cultured CMEC, after being replaced with hypoxic buffer, were exposed to hypoxia in anaerobic system at 37℃for 6h. For reoxygenation, CMEC, after hypoxia treatment, were removed from the anaerobic chamber and then maintained in a regular incubator for 2h, 12h and 24h respectively. The proliferation of CMEC was assessed by MTT assay, the apoptosis of CMEC was detected by Hocheset staining, the migration of CMEC was detected by cell scratch wound healing assay and the level of nitric oxide (NO) was detected by an NO assay kit according to the manufacturer’s protocol.
     Part II: After CMEC were treated with hypoxia for 6h followed by reoxygenation 2h, 12h, 24h respectively, the expressions of TLR-4, Nuclear Factor-kappa B (NF-κB) were analyzed by Western blotting. And the levels of interleukin-6 (IL-6), Tumor necrosis factor-α(TNF-α) were detected by ELISA kits.
     Part III: CMEC were divided into four groups: (1) control group, (2) H/R group, (3) TLR-4 blocking group, (4) TLR-4 blocking and H/R group. The TLR-4 signal of CMEC was blocked by administration with the neutralizing antibody MST510 (10ug/ml). The H/R treatment was performed as hypoxia 6h followed with reoxygenation 2h. Like the methods used in Part I, the proliferations of CMEC in all groups were assessed by MTT assay, the apoptosis of CMEC was detected by Hocheset staining, the migrations of CMEC were detected by cell scratch wound healing assay, the levels of NO, IL-6, TNF-αwere detected by kits.
     Results
     1. CMEC were isolated and cultured in vitro successfully.
     2. Proliferation and migration of CMEC were impaired after H/R injury (P<0.05 vs. control). Moreover, H/R injury increased the apoptosis of CMEC (P<0.05 vs. control), and decreased the level of NO secretion (P <0.05 vs. control).
     3. Compared with control, H/R injury increased TLR-4 expression after 2 h or 12 h reoxygenation (P<0.05 vs. control). The level of NF-κB increased after 2 h and 24 h reoxygenation (P<0.05 vs. control). H/R injury also enhanced IL-6 and TNF-αsecretion as compared with control group (P<0.05 vs. control).
     4. Blocking TLR-4 signal pathway by administration of the neutralizing antibody MTS510 prior to H/R treatment attenuated the proliferation and migration of CMEC after H/R injury (P<0.05 vs. H/R). Moreover, TLR-4 inhibition decreased the apoptosis of CMEC after H/R injury (P<0.05 vs. H/R), and increased the NO level (P<0.05 vs. H/R).
     Conclusions
     1. H/R injury can increase the apoptosis of CMEC, and impair the proliferation. Moreover, H/R also induces CMEC dysfunction of migration and secretion of NO.
     2. In the early state of H/R injury, TLR-4/NF-κB signal pathway in CMEC is activated and the activation of TLR-4/NF-κB pathway enhances the secretions of IL-6 and TNF–α, which may participate in the injury and dysfunction of CMEC caused by H/R.
     3. Blocking TLR-4 signal decreases the apoptosis of CMEC and attenuates dysfunction caused by H/R, suggesting a possible mechanism by which H/R injury lead to CMEC dysfunction.
引文
1. Verrier E. The microvascular cell and ischemia-reperfusion injury. J Cardiovasc Pharmacol 27 Suppl 1 1996(S26-30.
    2. Crimi E, Ignarro LJ, Napoli C. Microcirculation and oxidative stress. Free Radic Res 41 2007(12).1364-1375.
    3. Bateman RM, Sharpe MD, Ellis CG. Bench-to-bedside review: microvascular dysfunction in sepsis--hemodynamics, oxygen transport, and nitric oxide. Crit Care 7 2003(5).359-373.
    4. Rask-Madsen C, King GL. Mechanisms of Disease: endothelial dysfunction in insulin resistance and diabetes. Nat Clin Pract Endocrinol Metab 3 2007(1).46-56.
    5. Suematsu M, Suzuki H, Delano FA, Schmid-Schonbein GW. The inflammatory aspect of the microcirculation in hypertension: oxidative stress, leukocytes/endothelial interaction, apoptosis. Microcirculation 9 2002(4).259-276.
    6. DeLano FA, Balete R, Schmid-Schonbein GW. Control of oxidative stress in microcirculation of spontaneously hypertensive rats. Am J Physiol Heart Circ Physiol 288 2005(2).H805-812.
    7. Carden DL, Granger DN. Pathophysiology of ischaemia-reperfusion injury. J Pathol 190 2000(3).255-266.
    8. Seal JB, Gewertz BL. Vascular dysfunction in ischemia-reperfusion injury. Ann Vasc Surg 19 2005(4).572-584.
    9. Lee YH, Wei FC, Lee J, Su MS, Chang YC. Effect of postischemic reperfusion on microcirculation and lipid metabolism of skeletal muscle.Microsurgery 16 1995(8).522-527.
    10. Meredith IT, Currie KE, Anderson TJ, Roddy MA, Ganz P, Creager MA. Postischemic vasodilation in human forearm is dependent on endothelium- derived nitric oxide. Am J Physiol 270 1996(4 Pt 2).H1435-1440.
    11. Hein TW, Zhang C, Wang W, Chang CI, Thengchaisri N, Kuo L. Ischemia-reperfusion selectively impairs nitric oxide-mediated dilation in coronary arterioles: counteracting role of arginase. FASEB J 17 2003(15). 2328-2330.
    12. DeFily DV. Control of microvascular resistance in physiological conditions and reperfusion. J Mol Cell Cardiol 30 1998(12).2547-2554.
    13. Stewart DJ, Pohl U, Bassenge E. Free radicals inhibit endothelium- dependent dilation in the coronary resistance bed. Am J Physiol 255 1988(4 Pt 2).H765-769.
    14. Tiefenbacher CP, Chilian WM, Mitchell M, DeFily DV. Restoration of endothelium-dependent vasodilation after reperfusion injury by tetrahydrobiopterin. Circulation 94 1996(6).1423-1429.
    15. Banda MA, Lefer DJ, Granger DN. Postischemic endothelium-dependent vascular reactivity is preserved in adhesion molecule-deficient mice. Am J Physiol 273 1997(6 Pt 2).H2721-2725.
    16. Harris NR. Opposing effects of L-NAME on capillary filtration rate in the presence or absence of neutrophils. Am J Physiol 273 1997(6 Pt 1).G1320-1325.
    17. Schutte H, Mayer K, Burger H, et al. Endogenous nitric oxide synthesis and vascular leakage in ischemic-reperfused rabbit lungs. Am J Respir Crit Care Med 164 2001(3).412-418.
    18. Reffelmann T, Hale SL, Dow JS, Kloner RA. No-reflow phenomenonpersists long-term after ischemia/reperfusion in the rat and predicts infarct expansion. Circulation 108 2003(23).2911-2917.
    19. Kurose I, Argenbright LW, Wolf R, Lianxi L, Granger DN. Ischemia/ reperfusion-induced microvascular dysfunction: role of oxidants and lipid mediators. Am J Physiol 272 1997(6 Pt 2).H2976-2982.
    20. Zimmerman GA, McIntyre TM, Prescott SM, Stafforini DM. The platelet- activating factor signaling system and its regulators in syndromes of inflammation and thrombosis. Crit Care Med 30 2002(5 Suppl).S294-301.
    21. Tritto I, Ambrosio G. Spotlight on microcirculation: an update. Cardiovasc Res 42 1999(3).600-606.
    22. Moncada S, Higgs EA. The discovery of nitric oxide and its role in vascular biology. Br J Pharmacol 147 Suppl 1 2006(S193-201.
    23. Huang PL. Lessons learned from nitric oxide synthase knockout animals. Semin Perinatol 24 2000(1).87-90.
    24. Fisher AB, Chien S, Barakat AI, Nerem RM. Endothelial cellular response to altered shear stress. Am J Physiol Lung Cell Mol Physiol 281 2001(3). L529-533.
    25. Ali MH, Schumacker PT. Endothelial responses to mechanical stress: where is the mechanosensor? Crit Care Med 30 2002(5 Suppl).S198-206.
    26. Resnick N, Yahav H, Schubert S, Wolfovitz E, Shay A. Signalling pathways in vascular endothelium activated by shear stress: relevance to atherosclerosis. Curr Opin Lipidol 11 2000(2).167-177.
    27. Fisher AB, Al-Mehdi AB, Manevich Y. Shear stress and endothelial cell activation. Crit Care Med 30 2002(5 Suppl).S192-197.
    28. Chatterjee S, Levitan I, Wei Z, Fisher AB. KATP channels are an important component of the shear-sensing mechanism in the pulmonarymicrovasculature. Microcirculation 13 2006(8).633-644.
    29. Zhou C, Wu S. T-type calcium channels in pulmonary vascular endothelium. Microcirculation 13 2006(8).645-656.
    30. Granger HJ, Goodman AH, Cook BH. Metabolic models of microcirculatory regulation. Fed Proc 34 1975(11).2025-2030.
    31. Vallet B. Endothelial cell dysfunction and abnormal tissue perfusion. Crit Care Med 30 2002(5 Suppl).S229-234.
    32. Daut J, Maier-Rudolph W, von Beckerath N, Mehrke G, Gunther K, Goedel-Meinen L. Hypoxic dilation of coronary arteries is mediated by ATP-sensitive potassium channels. Science 247 1990(4948).1341-1344.
    33. Napoli C, Ignarro LJ. Nitric oxide and atherosclerosis. Nitric Oxide 5 2001(2).88-97.
    34. Napoli C, de Nigris F, Williams-Ignarro S, Pignalosa O, Sica V, Ignarro LJ. Nitric oxide and atherosclerosis: an update. Nitric Oxide 15 2006(4).265-279.
    35. Napoli C, de Nigris F, Palinski W. Multiple role of reactive oxygen species in the arterial wall. J Cell Biochem 82 2001(4).674-682.
    36. Verma S, Maitland A, Weisel RD, et al. Novel cardioprotective effects of tetrahydrobiopterin after anoxia and reoxygenation: Identifying cellular targets for pharmacologic manipulation. J Thorac Cardiovasc Surg 123 2002(6).1074-1083.
    37. Cai H, Harrison DG. Endothelial dysfunction in cardiovascular diseases: the role of oxidant stress. Circ Res 87 2000(10).840-844.
    38. Collins DM, McCullough WT, Ellsworth ML. Conducted vascular responses: communication across the capillary bed. Microvasc Res 56 1998(1). 43-53.
    39. Turchetti V, Boschi L, Donati G, Trabalzini L, Forconi S. Impact of hemorheological and endothelial factors on microcirculation. Adv Exp Med Biol 578 2006(107-112.
    40. Anwaruddin S, Askari AT, Topol EJ. Redefining risk in acute coronary syndromes using molecular medicine. J Am Coll Cardiol 49 2007(3).279-289.
    41. Howard-Alpe GM, Sear JW, Foex P. Methods of detecting atherosclerosis in non-cardiac surgical patients; the role of biochemical markers. Br J Anaesth 97 2006(6).758-769.
    42. Werner N, Kosiol S, Schiegl T, et al. Circulating endothelial progenitor cells and cardiovascular outcomes. N Engl J Med 353 2005(10).999-1007.
    43. Baldus S, Heeschen C, Meinertz T, et al. Myeloperoxidase serum levels predict risk in patients with acute coronary syndromes. Circulation 108 2003(12).1440-1445.
    44. Brennan ML, Penn MS, Van Lente F, et al. Prognostic value of myeloperoxidase in patients with chest pain. N Engl J Med 349 2003(17).1595-1604.
    45. Quillen JE, Sellke FW, Brooks LA, Harrison DG. Ischemia-reperfusion impairs endothelium-dependent relaxation of coronary microvessels but does not affect large arteries. Circulation 82 1990(2).586-594.
    46. Vanhoutte PM. The endothelium--modulator of vascular smooth-muscle tone. N Engl J Med 319 1988(8).512-513.
    47. Luscher TF, Tanner FC. Endothelial regulation of vascular tone and growth. Am J Hypertens 6 1993(7 Pt 2).283S-293S.
    48. Proceedings of the First Meeting on Cardiovascular Biology: Endothelial Cell in Health and Hypertension. June 30-July 1, 2006. Prague, CzechRepublic. Clin Hemorheol Microcirc 37 2007(1-2).1-210.
    49. Tonnesen MG. Neutrophil-endothelial cell interactions: mechanisms of neutrophil adherence to vascular endothelium. J Invest Dermatol 93 1989(2 Suppl).53S-58S.
    50. Carlos TM, Harlan JM. Leukocyte-endothelial adhesion molecules. Blood 84 1994(7).2068-2101.
    51. Davies MG, Hagen PO. The vascular endothelium. A new horizon. Ann Surg 218 1993(5).593-609.
    52. Springer TA. Adhesion receptors of the immune system. Nature 346 1990 (6283). 425-434.
    53. Shen I, Verrier ED. Expression of E-selectin on coronary endothelium after myocardial ischemia and reperfusion. J Card Surg 9 1994(3 Suppl).437-441.
    54. Romanenko VG, Davies PF, Levitan I. Dual effect of fluid shear stress on volume-regulated anion current in bovine aortic endothelial cells. Am J Physiol Cell Physiol 282 2002(4).C708-718.
    55. Ward BJ, McCarthy A. Endothelial cell "swelling" in ischaemia and reperfusion. J Mol Cell Cardiol 27 1995(6).1293-1300.
    56. Al-Mehdi AB, Zhao G, Fisher AB. ATP-independent membrane depolarization with ischemia in the oxygen-ventilated isolated rat lung. Am J Respir Cell Mol Biol 18 1998(5).653-661.
    57. Bychkov R, Pieper K, Ried C, et al. Hydrogen peroxide, potassium currents, and membrane potential in human endothelial cells. Circulation 99 1999(13).1719-1725.
    58. Clark ET, Gewertz BL. Limiting oxygen delivery attenuates intestinal reperfusion injury. J Surg Res 53 1992(5).485-489.
    59. Ward BJ, Scoote M. Antioxidants attenuate postischemic endothelial cellswelling and luminal membrane blebbing in cardiac capillaries. Microvasc Res 53 1997(2).179-186.
    60. Maxwell L, Gavin J. Anti-oxidant therapy improves microvascular ultrastructure and perfusion in postischemic myocardium. Microvasc Res 43 1992(3).255-266.
    61. Cantara S, Donnini S, Giachetti A, Thorpe PE, Ziche M. Exogenous BH4/Bcl-2 peptide reverts coronary endothelial cell apoptosis induced by oxidative stress. J Vasc Res 41 2004(2).202-207.
    62. Amberger A, Weiss H, Haller T, et al. A subpopulation of mitochondria prevents cytosolic calcium overload in endothelial cells after cold ischemia/reperfusion. Transplantation 71 2001(12).1821-1827.
    63. Gerritsen ME. Functional heterogeneity of vascular endothelial cells. Biochem Pharmacol 36 1987(17).2701-2711.
    64. King GL, Buzney SM, Kahn CR, et al. Differential responsiveness to insulin of endothelial and support cells from micro- and macrovessels. J Clin Invest 71 1983(4).974-979.
    65. Shah AM. Paracrine modulation of heart cell function by endothelial cells. Cardiovasc Res 31 1996(6).847-867.
    66. Harrison DG. Cellular and molecular mechanisms of endothelial cell dysfunction. J Clin Invest 100 1997(9).2153-2157.
    67. Nishida M, Carley WW, Gerritsen ME, Ellingsen O, Kelly RA, Smith TW. Isolation and characterization of human and rat cardiac microvascular endothelial cells. Am J Physiol 264 1993(2 Pt 2).H639-652.
    68. Bayraktutan U, Draper N, Lang D, Shah AM. Expression of functional neutrophil-type NADPH oxidase in cultured rat coronary microvascular endothelial cells. Cardiovasc Res 38 1998(1).256-262.
    69. Bouloumie A, Bauersachs J, Linz W, et al. Endothelial dysfunction coincides with an enhanced nitric oxide synthase expression and superoxide anion production. Hypertension 30 1997(4).934-941.
    70. Ando H, Kubin T, Schaper W, Schaper J. Cardiac microvascular endothelial cells express alpha-smooth muscle actin and show low NOS III activity. Am J Physiol 276 1999(5 Pt 2).H1755-1768.
    71. Lang D, Bell JP, Bayraktutan U, Small GR, Shah AM, Lewis MJ. Phenotypic changes in rat and guinea pig coronary microvascular endothelium after culture: loss of nitric oxide synthase activity. Cardiovasc Res 42 1999(3).794-804.
    72. Johnson EK, Schelling ME, Quitadamo IJ, Andrew S, Johnson EC. Cultivation and characterization of coronary microvascular endothelial cells: a novel porcine model using micropigs. Microvasc Res 64 2002(2).278-288.
    73. Li JM, Mullen AM, Shah AM. Phenotypic properties and characteristics of superoxide production by mouse coronary microvascular endothelial cells. J Mol Cell Cardiol 33 2001(6).1119-1131.
    74. Litwin M, Clark K, Noack L, et al. Novel cytokine-independent induction of endothelial adhesion molecules regulated by platelet/endothelial cell adhesion molecule (CD31). J Cell Biol 139 1997(1).219-228.
    75. Breviario F, Caveda L, Corada M, et al. Functional properties of human vascular endothelial cadherin (7B4/cadherin-5), an endothelium-specific cadherin. Arterioscler Thromb Vasc Biol 15 1995(8).1229-1239.
    76. Akira S. Toll-like receptor signaling. J Biol Chem 278 2003(40).38105- 38108.
    77. Takeishi Y, Kubota I. Role of Toll-like receptor mediated signaling pathway in ischemic heart. Front Biosci 14 2009(2553-2558.
    78. Erickson B, Sperber K, Frishman WH. Toll-like receptors: new therapeutic targets for the treatment of atherosclerosis, acute coronary syndromes, and myocardial failure. Cardiol Rev 16 2008(6).273-279.
    79. Chong AJ, Shimamoto A, Hampton CR, et al. Toll-like receptor 4 mediates ischemia/reperfusion injury of the heart. J Thorac Cardiovasc Surg 128 2004(2).170-179.
    80. Lu YC, Yeh WC, Ohashi PS. LPS/TLR4 signal transduction pathway. Cytokine 42 2008(2).145-151.
    81. Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell 124 2006(4).783-801.
    82. Medzhitov R, Janeway C, Jr. Innate immunity. N Engl J Med 343 2000(5). 338-344.
    83. Medzhitov R. Toll-like receptors and innate immunity. Nat Rev Immunol 1 2001(2).135-145.
    84. Watters TM, Kenny EF, O'Neill LA. Structure, function and regulation of the Toll/IL-1 receptor adaptor proteins. Immunol Cell Biol 85 2007(6). 411-419.
    85. Aderem A, Ulevitch RJ. Toll-like receptors in the induction of the innate immune response. Nature 406 2000(6797).782-787.
    86. Cook DN, Pisetsky DS, Schwartz DA. Toll-like receptors in the pathogenesis of human disease. Nat Immunol 5 2004(10).975-979.
    87. Yamamoto M, Sato S, Hemmi H, et al. Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway. Science 301 2003(5633).640-643.
    88. Frantz S, Ertl G, Bauersachs J. Toll-like receptor signaling in the ischemic heart. Front Biosci 13 2008(5772-5779.
    89. Hoshino K, Takeuchi O, Kawai T, et al. Cutting edge: Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product. J Immunol 162 1999(7).3749-3752.
    90. Poltorak A, He X, Smirnova I, et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282 1998(5396).2085-2088.
    91. Wright SD, Tobias PS, Ulevitch RJ, Ramos RA. Lipopolysaccharide (LPS) binding protein opsonizes LPS-bearing particles for recognition by a novel receptor on macrophages. J Exp Med 170 1989(4).1231-1241.
    92. Wright SD, Ramos RA, Tobias PS, Ulevitch RJ, Mathison JC. CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein. Science 249 1990(4975).1431-1433.
    93. Shimazu R, Akashi S, Ogata H, et al. MD-2, a molecule that confers lipopolysaccharide responsiveness on Toll-like receptor 4. J Exp Med 189 1999(11).1777-1782.
    94. O'Neill LA, Bowie AG. The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling. Nat Rev Immunol 7 2007(5).353-364.
    95. Magnusson MK, Mosher DF. Fibronectin: structure, assembly, and cardiovascular implications. Arterioscler Thromb Vasc Biol 18 1998(9). 1363-1370.
    96. Tan MH, Sun Z, Opitz SL, Schmidt TE, Peters JH, George EL. Deletion of the alternatively spliced fibronectin EIIIA domain in mice reduces atherosclerosis. Blood 104 2004(1).11-18.
    97. Schoneveld AH, Hoefer I, Sluijter JP, Laman JD, de Kleijn DP, Pasterkamp G. Atherosclerotic lesion development and Toll like receptor 2 and 4 responsiveness. Atherosclerosis 197 2008(1).95-104.
    98. Gondokaryono SP, Ushio H, Niyonsaba F, et al. The extra domain A of fibronectin stimulates murine mast cells via toll-like receptor 4. J Leukoc Biol 82 2007(3).657-665.
    99. Xu XH, Shah PK, Faure E, et al. Toll-like receptor-4 is expressed by macrophages in murine and human lipid-rich atherosclerotic plaques and upregulated by oxidized LDL. Circulation 104 2001(25).3103-3108.
    100.Shamshiev AT, Ampenberger F, Ernst B, Rohrer L, Marsland BJ, Kopf M. Dyslipidemia inhibits Toll-like receptor-induced activation of CD8alpha-negative dendritic cells and protective Th1 type immunity. J Exp Med 204 2007(2).441-452.
    101.Bluml S, Kirchberger S, Bochkov VN, et al. Oxidized phospholipids negatively regulate dendritic cell maturation induced by TLRs and CD40. J Immunol 175 2005(1).501-508.
    102.Kanwar RK, Kanwar JR, Wang D, Ormrod DJ, Krissansen GW. Temporal expression of heat shock proteins 60 and 70 at lesion-prone sites during atherogenesis in ApoE-deficient mice. Arterioscler Thromb Vasc Biol 21 2001(12).1991-1997.
    103.Kleindienst R, Xu Q, Willeit J, Waldenberger FR, Weimann S, Wick G. Immunology of atherosclerosis. Demonstration of heat shock protein 60 expression and T lymphocytes bearing alpha/beta or gamma/delta receptor in human atherosclerotic lesions. Am J Pathol 142 1993(6).1927-1937.
    104.Berberian PA, Myers W, Tytell M, Challa V, Bond MG. Immunohistochemical localization of heat shock protein-70 in normal-appearing and atherosclerotic specimens of human arteries. Am J Pathol 136 1990(1).71-80.
    105.Ohashi K, Burkart V, Flohe S, Kolb H. Cutting edge: heat shock protein 60is a putative endogenous ligand of the toll-like receptor-4 complex. J Immunol 164 2000(2).558-561.
    106.Vabulas RM, Ahmad-Nejad P, Ghose S, Kirschning CJ, Issels RD, Wagner H. HSP70 as endogenous stimulus of the Toll/interleukin-1 receptor signal pathway. J Biol Chem 277 2002(17).15107-15112.
    107.Brown JM, Grosso MA, Terada LS, et al. Endotoxin pretreatment increases endogenous myocardial catalase activity and decreases ischemia- reperfusion injury of isolated rat hearts. Proc Natl Acad Sci U S A 86 1989(7). 2516-2520.
    108.Ha T, Hua F, Liu X, et al. Lipopolysaccharide-induced myocardial protection against ischaemia/reperfusion injury is mediated through a PI3K/Akt-dependent mechanism. Cardiovasc Res 78 2008(3).546-553.
    109.Meng X, Ao L, Brown JM, et al. LPS induces late cardiac functional protection against ischemia independent of cardiac and circulating TNF-alpha. Am J Physiol 273 1997(4 Pt 2).H1894-1902.
    110.Song W, Furman BL, Parratt JR. Delayed protection against ischaemia-induced ventricular arrhythmias and infarct size limitation by the prior administration of Escherichia coli endotoxin. Br J Pharmacol 118 1996(8).2157-2163.
    111.Oyama J, Blais C, Jr., Liu X, et al. Reduced myocardial ischemia-reperfusion injury in toll-like receptor 4-deficient mice. Circulation 109 2004(6).784-789.
    112.Shimamoto A, Chong AJ, Yada M, et al. Inhibition of Toll-like receptor 4 with eritoran attenuates myocardial ischemia-reperfusion injury. Circulation 114 2006(1 Suppl).I270-274.
    113.Yin T, Ma X, Zhao L, Cheng K, Wang H. Angiotensin II promotes NOproduction, inhibits apoptosis and enhances adhesion potential of bone marrow-derived endothelial progenitor cells. Cell Res 18 2008(7).792-799.
    114.de Graaf R, Kloppenburg G, Kitslaar PJ, Bruggeman CA, Stassen F. Human heat shock protein 60 stimulates vascular smooth muscle cell proliferation through Toll-like receptors 2 and 4. Microbes Infect 8 2006(7).1859-1865.
    115.Vink A, Schoneveld AH, van der Meer JJ, et al. In vivo evidence for a role of toll-like receptor 4 in the development of intimal lesions. Circulation 106 2002(15).1985-1990.
    116.Frantz S, Ertl G, Bauersachs J. Mechanisms of disease: Toll-like receptors in cardiovascular disease. Nat Clin Pract Cardiovasc Med 4 2007(8).444-454.
    117.Gao HK, Yin Z, Zhang RQ, Zhang J, Gao F, Wang HC. GSK-3beta inhibitor modulates TLR2/NF-kappaB signaling following myocardial ischemia- reperfusion. Inflamm Res 2009(
    118.Bartfeld S, Engels C, Bauer B, et al. Temporal resolution of two-tracked NF-kappaB activation by Legionella pneumophila. Cell Microbiol 11 2009(11).1638-1651.
    119.Khan AA, Martin S, Saha B. SEB-induced signaling in macrophages leads to biphasic TNF-alpha. J Leukoc Biol 83 2008(6).1363-1369.
    120.Tse AK, Wan CK, Shen XL, et al. 1,25-dihydroxyvitamin D3 induces biphasic NF-kappaB responses during HL-60 leukemia cells differentiation through protein induction and PI3K/Akt-dependent phosphorylation/ degradation of IkappaB. Exp Cell Res 313 2007(8).1722-1734.
    121.Lee YS, Song YS, Giffard RG, Chan PH. Biphasic role of nuclear factor-kappa B on cell survival and COX-2 expression in SOD1 Tg astrocytes after oxygen glucose deprivation. J Cereb Blood Flow Metab 26 2006(8).1076-1088.
    122.Rodel F, Schaller U, Schultze-Mosgau S, et al. The induction of TGF-beta(1) and NF-kappaB parallels a biphasic time course of leukocyte/endothelial cell adhesion following low-dose X-irradiation. Strahlenther Onkol 180 2004(4).194-200.
    123.Caba E, Bahr BA. Biphasic NF-kappaB activation in the excitotoxic hippocampus. Acta Neuropathol 108 2004(3).173-182.
    124.Mortaz E, Redegeld FA, Nijkamp FP, Wong HR, Engels F. Acetylsalicylic acid-induced release of HSP70 from mast cells results in cell activation through TLR pathway. Exp Hematol 34 2006(1).8-18.
    125.Cha J, Wang Z, Ao L, et al. Cytokines link Toll-like receptor 4 signaling to cardiac dysfunction after global myocardial ischemia. Ann Thorac Surg 85 2008(5).1678-1685.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700