中药青蒿中NF-κB特异性抑制剂的筛选及其逆转肿瘤细胞群集耐药的作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
结肠癌是发病率和死亡率较高的恶性肿瘤,结肠癌的耐药现象是影响其化疗疗效和预后的主要原因之一。为克服肿瘤耐药,多年来人们对肿瘤的耐药机制进行了大量的研究。已证实多种肿瘤组织均有NF-κB的高表达,而多种抗癌药物均可激活NF-κB,NF-κB高表达的肿瘤细胞表现为对化疗、射线等介导凋亡的抵抗作用。我们的前期研究发现肿瘤细胞存在着群集耐药现象,结肠癌细胞三维立体培养时NF-κB活性明显高于普通单层培养,NF-κB活性与药物敏感性呈显著负相关,抑制NF-κB活性,可显著增加药物的敏感性,说明NF-κB信号转导通路是介导肿瘤群集耐药的重要途径。近年有作者甚至认为,NF-κB活化可能代表一个比多药耐药基因更为重要的耐药机制。合理设计与NF-κB活化抑制剂联合的化疗方案,将有助于降低肿瘤细胞的抗凋亡阈值,成为逆转肿瘤耐药和化疗增敏新的策略和有效方法。
     目前,针对抑制NF-κB活性的策略,直接将突变型IκBα基因转移到肿瘤患者体内还存在着许多技术难题尚未克服;反义寡核苷酸治疗有可能导致机体一些重要基因功能的丧失;正常情况下,由于蛋白酶体和钙调节蛋白酶等是细胞周期和细胞功能的重要调节剂,所以其抑制剂的临床应用还存在很大问题;而圈套寡核苷酸无论从技术和经济上目前也很难在临床广泛应用。因此,如何选择高效、安全的NF-κB抑制剂,仍是目前临床医学中有待解决的问题。进一步发掘靶点特异、高效、低毒的药物,寻找天然NF-κB活性抑制剂,将为拮抗NF-κB功能开辟更加广阔的前景。
     中医中药是我国独有的优势,从中药中提取具有化疗增敏和逆转耐药作用的中药单体,可大大提高肿瘤的治疗效果,具有广阔的应用前景和巨大的经济和社会效益。目前已有许多中药或中药方剂用于肿瘤的治疗,也发现很多中药具有逆转耐药和化疗增敏的作用。有研究发现,青蒿、雷公藤、银黄、黄芪等中药具有抑制NF-κB活化的作用,青蒿素、大黄素、黄芩甙等中药有效成分也有拮抗NF-κB活化的作用。因此,如果能从中药中分离制备与NF-κB及其亚单位作用的有效单体,将为寻找有效的NF-κB抑制剂提供一条新的途径。
     由于中药组成成分复杂,如能采用有效手段,确定与NF-κB作用的物质基础,分离制备出抑制NF-κB活化的有效单体,将对NF-κB抑制剂的开发具有重要意义。光学生物传感器技术是利用光学原理,在生物传感器的样品池表面包被固定受体,当受体与其配结合体时,以共振角度进入光线衰竭区的激光就会发生共振角度的改变,这一变化通过计算机处理后就可以检测到传感器表面受体与其配体分子之间的相互作用及亲和力。通过特异性的洗脱及回收,即可得到纯度极高的配体分子。
     本实验在既往研究工作的基础上,以青蒿为研究对象,利用生物传感器技术,制备出青蒿中与NF-κB特异性结合的活性物质,继而对该物质的理化性质及抑制NF-κB活化的能力进行测定;在体外采用肿瘤细胞三维立体培养模型,观察其抑制NF-κB活性及其对凋亡相关蛋白、细胞凋亡和对药物敏感性的影响;同时进一步观察其对动物肿瘤模型化疗增敏和逆转耐药的效果,以期为肿瘤的化疗增敏和逆转耐药提供新的策略,为其他NF-κB活化相关疾病如感染、炎症、移植等的治疗提供新的思路。
     方法
     1.应用生物传感器特异性洗脱回收、有机溶剂萃取、硅胶柱色谱、薄层层析等方法对青蒿中NF-κB的特异性抑制剂进行筛选分离提取;
     2.检测所得物质的理化性质,进行红外光谱、高效液相、核磁共振波谱、质谱等检测,对所得物质进行结构鉴定;
     3.体外采用结肠癌HT-29细胞三维立体培养模型,观察所得物质对结肠癌细胞球NF-κB活性(EMSA方法)及化疗药物敏感性的影响;
     4.应用流式细胞技术检测所得物质对结肠癌细胞球细胞周期、细胞凋亡及凋亡相关蛋白Bcl-2、FAS、FAS-L的影响;
     5.体内采用结肠癌HT-29细胞裸鼠皮下移植瘤模型,测量裸鼠移植瘤的肿瘤体积及称取肿瘤重量,计算瘤体积和瘤重抑制率,观察所得物质与化疗药物联合应用后对肿瘤生长影响;
     6.应用EMSA、免疫组织化学的方法检测不同处理组肿瘤组织中NF-κB活性及凋亡相关蛋白的变化情况。
     结果
     1.成功分离提取制备得到青蒿中能与NF-κB特异性结合的有效活性物质,并测定其理化性质为淡黄色粉针状,略溶于水,溶于乙醇,易溶于氯仿、乙酸乙酯,熔点在202-203℃。
     2.红外光谱检测结果,提取得到的化合物IRvKBrmax cm-1在: 3334.7、1701.1、1566.1、1290.3附近有明显振幅波峰。
     核磁共振波谱结果: 1H-NMR(CDCl3)δppm:3.959(3H,s, OCH3),6.207(1H,s,OH),6.276(1H,d,J=9.2,H-3),6.852(1H,s,H-8),6.923(1H,s,H-5),7.608(1H,d,J=10,H-4)。13C-NMR(CDCl3)δppm:161.383 (C-2),113.433(C-3),143.236(C-4),107.542(C-5),149.733(C-6) , 150.301(C-7) , 103.213(C-8) , 144.029(C-9) , 111.509(C-10) ,56.434(-OCH3)。
     分析红外光谱、核磁共振波谱及质谱等检测结果,初步得出所得物质的结构并将其暂时命名为AH-I。
     3. AH-I应用后,结肠癌HT-29细胞球NF-κB的活性受到抑制,AH-I与5-FU联合应用对细胞球NF-κB活性的抑制作用更强。
     4.单独AH-I应用后,与对照组比较,结肠癌HT-29细胞球细胞周期的变化不明显,大部分细胞位于G1期;而A H-I与5-FU联合应用后,结肠癌HT-29细胞球细胞周期明显受到影响,G1期细胞明显减少,细胞向S期转化,且AH-I应用剂量越大效应越明显。
     5. AH-I与5-FU联合应用后,结肠癌HT-29细胞球细胞凋亡率与单独化疗组比较明显增加,且随着AH-I应用剂量的增加,细胞球细胞凋亡率增加越明显,存在剂量依赖效应。
     6. AH-I与5-FU联合应用后,结肠癌HT-29细胞球抗凋亡蛋白Bcl-2的表达与单独化疗组比较有所减少,而促凋亡蛋白FAS、FAS-L的表达较单独化疗组明显增多,且都具有剂量依赖效应。
     7.结肠癌HT-29细胞球应用AH-I后,对化疗药物5-FU的敏感性增强,且随着AH-I应用剂量的增加,结肠癌细胞球对化疗药物的敏感性增加越明显,具有剂量依赖效应。
     8.体内裸鼠移植瘤模型,AH-I与5-FU联合应用后肿瘤的瘤体积与单独化疗组比较有所减小,肿瘤的瘤重与单独化疗组比较也有所减轻,瘤体积抑制率、瘤重抑制率与单独5-FU组比较均明显增加,肿瘤生长受到抑制。
     9.体内裸鼠移植瘤模型应用AH-I后,肿瘤组织NF-κB活性受到抑制,且AH-I与5-FU联合应用组肿瘤组织的NF-κB活性的抑制较单独化疗组更明显,且同样具有剂量依赖效应。
     10. AH-I与5-FU联合应用后,裸鼠移植瘤肿瘤组织中抗凋亡蛋白Bcl-2表达减少,促凋亡蛋白FAS、FAS-L的表达增加,且与AH-I的应用剂量有关,AH-I应用剂量越大,抗凋亡蛋白Bcl-2表达减少及促凋亡蛋白FAS、FAS-L的表达增加更明显,都具有剂量依赖效应。
     结论
     1.成功分离得到青蒿中NF-κB的特异性抑制剂,分析其结构后暂时命名为AH-I。
     2. AH-I对结肠癌HT-29细胞球的NF-κB活性有抑制,可增加结肠癌细胞球对化疗药物5-FU的敏感性。
     3. AH-I与5-FU联合应用后,对结肠癌细胞球细胞周期、凋亡相关蛋白的表达产生影响,促进细胞凋亡的发生。
     4. AH-I与5-FU联合应用后,在体结肠癌裸鼠移植瘤的肿瘤生长减慢,增强5-FU化疗的疗效。
     5. AH-I与5-FU联合应用于结肠癌裸鼠移植瘤,可抑制肿瘤组织NF-κB活性,降低抗凋亡蛋白Bcl-2的表达,增强促凋亡蛋白FAS、FAS-L的表达。
Background and Objective
     Anticancer drug resistance is the underlying cause of treatment failure in a significant number of patients with cancer. The transcription factor NF-kB is reportedly activated by anti-cancer chemotherapeutic compounds in many cancer cell lines and NF-kB activation is one mechanism by which tumors become resistant to apoptosis. In addition to this constitutive activity, the accumulating evidences has been clearly demonstrated that many anti-cancer agents can activate NF-κB in cancer cells. Either constitutive or treatment-induced activity, NF-κB mainly both acts as an inhibitor of apoptosis. Indeed, inhibition of NF-κB by genetic or chemical inhibitors can induces the apoptosis of various tumor cells and/ or restores the apoptotic response after treatment with ionizing radiations or chemotherapeutic agents, thus reversing NF-κB -linked radiotherapy or chemotherapy resistance in many models. Therefore, a precise knowledge of the signalling pathways controlling NF-κB as well as of the NF-κB target genes is essential in order to define precisely the field of application of anti- NF-κB drugs for the treatment of human cancers.
     Activation of NF-κB in cancer cells has been shown to attenuate apoptosis induced by chemotherapy or radiotherapy. The results of our previous studies suggest that NF-κB is an important molecular target for enhancing chemosensitivity. Consequently, the development of novel agents blocking the NF-κB activity has become a major goal for numerous laboratories and companies.Preclinical studies are being conducted regarding the inhibition of NF-κB activation in several laboratories.
     Tumor spheroids represent a excellent model to study drug resistance and in particular the so-called multicellular-mediated resistance(MCR) to anticancer agents.Classically,this type of resistance has been demonstrated in EMT6 tumors in mice in which resistance was inherently induced, whereas it was completely lost when the cancer cells were isolated and grown in monolayers; multicellular resistance, however, could be fully recapitulated when cells were cultured as multicellular spheroids.
     Chinese medicine is our unique advantage, there are many traditional Chinese drugs or treatments being treated to tumor.It has been found that many traditional Chinese drugs can augmented sensitivity to chemotherapeutic drugs and decrease cancer cells resistance to chemotherapy. Many of studies found that abrotani herba, triptolide, astragalus and other traditional Chinese drugs can inhibit the activation of NF-κB, artemisinin, rhein, baicalin, and other active ingredients of traditional Chinese drugs also can inhibit NF-κB activation. Therefore, it will provide a new way to find effective inhibitor of NF-κB if we could extract the inhibitor of NF-κB from the traditional Chinese drugs. Because of the complex composition of traditional Chinese drug, it is great significance to chose a effective method to obtain the inhibitor of NF-κB extracting from traditional Chinese drugs. So in this study,we used of biosensor technology, extracted the inhibitor of NF-κB from abrotani herba and identificated its structure .Secondly, studed the effection of the inhibitor on NF-κB activity , sensitivity to 5-FU,apoptosis and expression of apoptostic proteins in HT-29 spheroids.Finally,we studied effetion of the inhibitor in chemotherapy in xenograft experiment.
     Methods
     1. The specific inhibitor of NF-κB from abrotani herba was extracted by biosensor technology, organic solvent extraction, silica gel column chromatography, thin layer chromatography and other methods;
     2. The physico-chemical property of the specific inhibitor was tested .Then infrared Spectrometer(IR), high-pressure liquid chromatograph(HPLC), nuclear magnetic resonance spectroscopy(NMR), mass spectrometry(MS) were tested, and the structure was identificated;
     3. In vitro,effection of the inhibitor on NF-κB activity and the impact of chemotherapy sensitivity were studied in three-dimensiona colon cancer HT-29 cells;
     4. The cell cycle distribution,apoptosis and expression of apoptostic protein Bcl-2, FAS, and FAS-L on three-dimensiona HT-29 cells were detected by administration the NF-κB inhibitor extracting from abrotani herba with flow cytometry;
     5. In vivo, useing of HT-29 cells transplantation tumor subcutaneously in nude mice model, the effect of the inhibitor combination with chemotherapy in tumor growth was studied;
     6. With EMSA and immunohistochemical method, activity of NF-κB and expression of apoptostic protein Bcl-2, FAS, and FAS-L on tumors in xenograft experiments combination inhibitor with 5-FU were detected.
     Results
     1. The specific inhibitor of NF-κB from abrotani herba was successfully extracted ,and the physico-chemical property of the specific inhibitor was that slightly soluble in water, soluble in ethanol, soluble in chloroform, soluble in ethyl acetate, in the melting point 202-203℃.
     2. IR, NMR and MS of the inhibitor of NF-κB extracting from abrotani herba were tested, the structure of the inhibitor was identified,and it named AH-I temporary.Results followed: IRvKBrmax cm-1: 3334.7,1701.1,1566.1,1290.3. 1H-NMR(CDCl3)δppm:3.959(3H,s,OCH3),6.207(1H,s,OH),6.276(1H,d,J=9.2,H-3),6.852(1H,s,H-8),6.923(1H,s,H-5),7.608(1H,d,J=10,H-4). 13C-NMR(CDCl3)δppm:161.383(C-2),113.433(C-3),143.236(C-4),107.542(C-5),149.733(C-6),150.301(C-7),103.213(C-8),144.029(C-9),111.509(C-10),56.434(-OCH3).
     3. Administration AH-I, NF-κB activity in three-dimensiona HT-29 cells was inhibited, and combination AH-I with 5 - FU, the activity of NF-κB inhibition was stronger than 5– FU alone.
     4.Compared with the control, cells majority in the G1 phase and cell cycle was not changed significantly in three-dimensiona HT-29 cells treated with AH-I alone. While AH-I and 5 - FU combination, cell cycle obviously were changed in three-dimensiona HT-29 cells, the number of cells in G1 phase was decreased significantly ,and the number of cells in S phase was increased, both with the manner of dose-independent.
     5. AH-I and 5 - FU combination, apoptosis in three-dimensiona HT-29 cells was significantly increased compared with chemotherapy alone, and as the AH-I dose increasing, rates of apoptosis in three-dimensiona HT-29 cells were more obvious increased , with a dose-dependent effect.
     6. Combination AH-I plus 5 - FU, expression of anti-apoptosis protein Bcl-2 was decreased compared with chemotherapy alone group. But expression of pro-apoptotic protein FAS and FAS-L were increased significantly than chemotherapy alone group and both in a dose-dependent manner.
     7. Administration of AH-I on three-dimensiona HT-29 cells, the sensitivity to 5 - FU was enhanced, and with the AH-I dose increasing, the sensitivity to 5 - FU of three-dimensiona HT-29 cells was more obvious , and also in a dose-dependent manner
     8. In nude mice, AH-I and 5 - FU combination, volumes of tumors were decreased than 5-FU alone,weights of tumours were in the same changes with volumes ,growth of tumour was inhibited.
     9. In nude mice , NF-κB activity in tumour was inhibited in AH-I alone group.Combination AH-I and 5 - FU , NF-κB activity in tumour was inhibited more obviously than chemotherapy alone, also with a dose-dependent effect.
     10. In nude mice , combination AH-I and 5 - FU ,expression of the anti-apoptotic protein Bcl-2 in tumour was decreased ,but expression of apoptotic protein FAS and FAS-L in tumour were increased , and all of them were in dose-dependent effect.
     Conclusion
     1. The specific inhibitor of NF-κB from abrotani herba was successfully extracted ,then the inhibitor was identified and was named of AH-I temporary.
     2. NF-κB ativity was inhibited and sensitivity to 5 - Fu was enhanced in HT-29 spheroids by AH-I.
     3. AH-I combination with 5–FU , cell cycle distribution was effected and expression of apoptostic proteins Bcl-2, FAS and FAS-L were effected aslo, apoptosis was induced in HT-29 spheroids in vitro.
     4. AH-I combination with 5–FU , growth of tumours was inhibited and effect of chemotherapy was enhanced in xenograft experiment.
     5. AH-I combination with 5–FU , cell cycle distribution was effected and expression of apoptostic proteins Bcl-2, FAS and FAS-L were effected aslo, apoptosis was induced in xenograft experiment in vivo.
引文
1. Walker J,Martin C,Callaghan R.Inhibition of P-glycoprotein function by XR9576 in a solid tumour model can restore anticancer drug efficacyl.Eur J Cancer,2004,40(4):594-605.
    2. Karin M, Lin A. NF-κB at the crossroads of life and death. Nat Immunol, 2002, 3: 2219 227.
    3. Jones DR ,Broad RM, Madrid LV , et al . Inhibition of NF-κB sensitizes non-small cell lung cancer cells to chemotherapy-induced apoptosis. Ann Thorac Surg ,2000 ,70 :930-937.
    4. Miyamoto S, Verma IM. Rel/N F-kappa B/I kappa B story. Adv Cancer Res, 1995, 66 (2) : 255- 292.
    5. Fong WF,Wang C,Zhu GY, et al.Reversal of multidrug resistance in cancer cells byRhizoma Alismatis extract. Phytomedicine, 2007 ,14(2-3): 160-165.
    6. Marcsek ZL, Kocsis Z, Szende B. Effect of formaldehyde and resveratrol on the viability of Vero,HepG2 and MCF-7 cells. Cell Biology Int,2007, 31:1214-1219.
    7. Xu RS , Fidler JM, Musser JH. Bioactive compounds from Tripterygium wilfordii in studies in natural products chemistry edited by atta urrahman . Studies in Natural Products Chemistry, 2005, 3(12):773-801 .
    8. Sylvester J , Liacini A , Li WQ , et al. Tripterygium wilfordii Hook Fextract suppresses proinflammatory cytokine-induced expression of matrix metalloproteinase genes in articular chondrocytes by inhibiting activating protein-1 and nuclear factor-kappa B activities. Mol Pharmacol ,2001, 59 ( 5 ) :196 -205.
    9. Lee KY, Park JS , Jee YK, et al. Triptolide sensitizes lung cancer cells to TNF-related apoptosis inducing ligand ( TRAIL)-induced apoptosis by inhibition of NF-kappa B activation〔In Process Citation〕. Exp Mol Med ( Korea) ,2002,34(6):462-468.
    10. Aldieri E , Atragene D , Bergandi L , et al. Artemisinin inhibits inducible nitric oxide synthase and nuclear factor NF - kB activation. FEBS Lett ,2003 ,552 (2-3) : 141 -144.
    11. Johann LR ,Albrecht R.. Safety evaluations of drugs containing artemisinin derivatives for t he t reatment of malaria . Clin Infect Dis ,2003 ,36 (12) :1627 - 1628.
    12. Chen Y, Yang L , Lee TJ . Oroxylin A inhibition of lipopolysaccharide-induced iNOS and COX-2 gene expression via suppression of nuclear factor-kappa B activation. Biochem Pharmacol, 2000 ,59(11):1445 -1457.
    13. Ribeiro IR ,Olliaro P. Safety of artemisinin and it s derivatives. A review of published and unpublished clinical trials . Med Trop ,1998 ,58 (3 Suppl) :50 -53.
    14. Efferth T ,Sauerbrey A ,Olbrich A ,et al . Molecular modes of action of artesunate in tumor cell lines . Mol Pharmacol ,2003 ,64 (2) :382 - 394.
    15. Efferth T,Davey M,Olbrich A,et al.Activity of drugs from traditional Chinese medicine toward sensitive and MDR1-or MRP1-overexpressing multidrug-resistant human CCRF-CEM leukemia cells.Blood Cekks Mol Dis,2002,28(2):160-168.
    16. Sadava D,Phillips T,Lin C,et al.Transferrin overcomes drug resistance to artemisinin in human small-cell lung carcinoma cells.Cancer Lett,2002,179(2):151-156.
    17. Han S,Sidell N.RU486-induced growth inhibition of human endometrial cells involves the nuclear factor-kappa B signaling pathway.J Clin Endocri nolMetab,2003,88(2):713-719.
    18. Mukogawa T , Koyama F, Tach ibanaM , et al. A den-ovirus-mediated gene t ransduct ion of t runcated Ikap-paBalpha enhances radio-sensit ivity in human co lon cancer cells. Cancer Sci, 2003, 94 (8) : 745- 750.
    19. Amil S,Ben-Neriah Y.NF-KB activation in cancer:a challenge for uhiquitination and proteasome-based therapeutic approach.Semin Cancer Biol,2003,l3(1):15-28.
    20. Androllo M,Favier A,Guiraud P.Adriamycin activates NF-kappa B in human lung carcinoma cells by IkappaB alpha degradation.Arch Biochem Biophys, 2003, 413(1):75-78.
    21. Uetsuka H,Haisa M,Kimura M,et al.Inhibition of inducible NF-kappa B activity reduces chemoresistance to 5-fluorouracil in human stomach cancer cell line.Exp Cell Res,2003,289(1):27-35.
    22. Shishodia S ,Aggarwal BB. Nuclear factor-kB: a friend or a foe in cancer?. Biochem Pharmacol, 2004,68 : 1071–1080.
    23. Hochwald SN, Lind DS, Malaty J, et al. Antineoplastic therapy in colorectal cancer through proteasome inhibition. Am Surg,2003;69(1):15-23.
    24. Courtey L,Scaife J,Jason C,et al.Nuclear factor–κB inhibition induce adhesion-dependent colon cancer apoptosis.Can Res,2001,63:6870.
    25. Sumitomo M, Tachibana M, Ozu C , et al . Induction of apoptosis of cytokine-roducing bladder cancer cells by adenovirus - mediated IkappaBalpha overexpression . Hum Gene Ther , 1999 , 10(1) :37-47.
    26. Gilmore TD, Herscovitch M. Inhibitors of NF-kappaB signaling: 785 and counting. Oncogene, 2006,25(51):6887-6899.
    27. Ghosh S , May MJ , Kopp EB. NF-kappa B and Rel proteins : evolutionarily conserved mediators of immune responses. Annu Rev Immunol ,1998 , 16 :225-260 .
    28. Shah SA., Potter MW, Callery MP. Ubiquitin proteasome inhibition and cancer therapy. Surgery ,2002,131(6):595–600.
    29. Adams J , Palombella VJ , Sausville EA , et al . Proteasome inhibitors : a novel class of potent and effective antitumor agents . Cancer Res ,1999 , 59 (11) :2615-2622.
    30. Morishita R, Tomita N, Kaneda Y, et al. Molecular therapy to inhibit NFkappaB activation by transcription factor decoy oligonucleotides.Curr Opin Pharmacol,2004 ,4(2):139-46.
    31. Epinat JC, Gilmore TD. Diverse agents act at multiple levels to inhibit the Rel/NF-kappaB signal transduction pathway.Oncogene, 1999,18(49):6896-6909.
    32. Moore J C,Lai H,Li J R,et al.Oral administration of dihydroartemisinin and ferrous sulfate retarded implanted fibrosarcoma growth in the rat.Cancer Lett, 1995, 98(1):83-87.
    33. Singh N P,Lai H.Artemisinin induces apoptosis in human cancer cells.Anticancer Res,2004,24(4):2277-2280.
    34. Efferth T,Briehl MM,Tome ME.Role of antioxidant genes for the activity of artesunate against tumor cells.Int J Oncol,2003,23(4):1231-1235.
    1. Kunz-Schughart L A,Kreutz M,Kunechel R.Multicellular spheroids:a three-dimensional in vitro culture system to study tumor biology.Int J Exp Path,1998,79(1):1-23.
    2. Frankel A,Buckman R,Kerbel R S.Abrogation of taxol-induced G2-M arrest and apoptosis in human ovarian cancer cells grown as multicellular tumor spheroids.Cancer Res,1997,57(12):2388-2393.
    3. Damiano J S,Dalton W S.Integrin-mediated drug resistance in multiple myeloma.Leuk Lymphoma,2000,38(1-2):71-81.
    4. Damiano J S, Hazlehurst L A, Dalton W S. Cell adhesion-mediated drug resistance(CAM-DR) protects the K562 chronic myelogenous leukemia cell line from apoptosis induced by BCR/ABL inhibition,cytotoxic drugs,and gamma-irradiation.Leukemia,2001,15(8):1232-1239.
    5. Kobayashi H,Man S,Graham C H,et al.Acquired multicelluar-mediated resistance to alkylating agents in cancer.Proc Natl Acad Sci USA,1993,90(8):3294-3298.
    6. Desoize B,Jardillier J C.Multicellular resistance:a paradigm for clinical resistance?Crit Rev Oncol Hematol,2000,36(2-3):193-207.
    7. Wang CY, Mayo Jr MW, Baldwin AS. TNF- and cancer therapy-induced apoptosis: potentiation by inhibition of NFkappaB.Science, 1996,274:784–787.
    8. Cusack JC, Liu R, Houston M, et al, Enhanced chemosensitivity to CPT-II with proteasome inhibitor PS-341: implications for systemic nuclear factor-kappaB inhibition. Cancer Res, 2001,61:3535–3540.
    9. Cusack JC, Liu R, Baldwin AS. Inducible chemoresistance to 7-ethyl-10-[4-(1-piperidino)-1-piperidino]- carbonyloxycamptothe cin (CPT-II) in colorectal cancer cells and a xenograft model is overcome by inhibition of nuclear factor-kappaB activation. Cancer Res, 2000,60:2323–2330.
    10. Das KC, White CW. Activation of NF-kappaB by antineoplastic agents. Role of protein kinase C.J. Biol. Chem, 1997, 272:14914–14920.
    11. Sharon Amit, Yinon Ben-Neriah. NF-κB activation in cancer: a challenge for ubiquitination-and proteasome-based therapeutic approach. BiochemPharmac -ol,2002,64:883-888.
    12. Jones DR , Broad RM, Madrid LV , et al . Inhibiton of NF-κB sensitizes non-samll cell lung cancer cells to chemotherapy-induced apoptosis.Ann Thorac Surg , 2000 , 70(3) :930 - 937.
    13. Patel NM, Nozaki S , Shortle NH , et al . Paclitaxel sensitivity of breast cancer cells with constitutively active NF-κB is enhanced by IκB super-repressor and parthenolide . Oncogene ,2000 , 19(36) : 4159 - 4169.
    14. Ikuhiko N, Henry L, Narendra P S,et al. Anticancer properties of artemisinin derivatives and their targeted delivery by transferrin conjugation. Inter J Pharma, 2008, 354(1-2):28-33.
    15. Henry L, Narendra PS. Oral artemisinin prevents and delays the development of 7,12-dimethylbenz[a]anthracene (DMBA)-induced breast cancer in the rat.Cancer Lett, 2006, 231(1):43-48.
    16. Efferth T, Davey M, Olbrich A,et al. Activity of drugs from traditional Chinese medicine toward sensitive and MDR1- or MRP1-overexpressing multidrug-resistant human CCRF-CEM leukemia cells.Blood Cells Mol Dis,2002,28(2):160-168.
    17. Chibazakura T.Cylin proteolysis and CDK inhibitors:two redundant pathways to maintain genome stability in mammalian cells. Cell Cycle,2004,3(10):1243-245.
    18. Kerr J F,Winterford CM, Harmon B V. Apoptosis. Its significance in cancer and cancer therapy. Cancer, 1994, 73(8) : 2013-2026.
    19. Zong WX, Edelstein LC,Chen C, et al .The prosurvival bcl-2 homolog Bfl-1/ A1 is a direct transcriptional target of NF-kappaB that blocks TNFalpha-induced apoptosis . Genes Dev ,1999, 13(4) : 382.
    20. Koda M,Kanczuga KL,Reszec J,et al. Expression of the apoptotic markers in normal breast epithelium, benign mammary dysplasia and in breast cancer. Folia Morphol (Warsz). 2004 ,63(3): 337-341.
    21. Guzinska UK,Famulski W,Stasiak BA,et al.Correlation between colorectal cancer Bcl-2 expression and tumour clinicopathological variables.Rocz Akad Med Bialymst, 2002,47: 246-253.
    22. Tjalma WA, Weyler JJ, Bogers JJ,et al. The importance of biological factors (bcl-2, bax, p53, PCNA, MI, HPV and angiogenesis) in invasive cervical cancer. Eur J Obstet Gynecol Reprod Biol, 2001, 97(2): 223-230.
    23. Takahashi N, Yanagihara M , Ogawa Y, et al . Down-regulation of Bcl-2-interacting protein BAG-1 confers resistance to anti-cancer drugs. Biochem Biophys Res Commun, 2003,301 (3) : 798-803.
    24. Yao H, Song E, Chen J , et al. Expression of FAP-1 by human colon adenocarcinoma: implication for resistance against Fas-mediated apoptosis in cancer. Br J Cancer, 2004, 91 (9) :1718-1725.
    25. Itoh N, Yonehara S, IshiiA, et al. The polypep tide encoded by the cDNA of human cell surface antigen Fas can mediate apoptosis. Cell, 1991, 66 (4) : 233-243.
    26. Shishodia S ,Aggarwal BB. Nuclear factor-kB: a friend or a foe in cancer?. Biochem Pharmacol, 2004,68 :1071–1080.
    27. Pacifico F,Leonardi A.NF-kappaB in solid tumors. Biochem Pharmacol, 2006,72(9): 1142-1152.
    1. Jones LA, Chilton J A, Hajek R A, et al. Between and Within:International Perspective on Cancer and Health Disparities.Journal of Clinical Oncology,2006,24(14):2204-2208.
    2. Freireich EJ. Treatment of malignancies,past and present .Hosp Pract(Off Ed),1993,28(3):109-113.
    3. Hoff P M, Pazdur R,Lassere Y, et al. Phase II study of capecitabine in patients with fluorouracil-resistant metastatic colorectal carcinoma.J Clin Oncol, 2004,22(11):2078-2083.
    4. Lakshman M, Subramaniam V, Rubenthiran U, et al. CD44 promotes resistance to apoptosis in human colon cancer cells. Exp Mol Pathol,2004,77(1):18-25.
    5. Holdenrieder S, Stieber P.Apoptotic markers in cancer.Clin Biochem,2004, 37(7):605-617.
    6. Tetsuo M,Takashi T.Defects of the apoptotic pathway as therapeutic target against cancer. Drug Resist Updat,2005,8(6):339-343.
    7. Wang XH, Jia DZ, Liang YJ, et al. Lgf-YL-9 induces apoptosis in human epidermoid carcinoma KB cells and multidrug resistant KBv200 cells via reactive oxygen species-independent mitochondrial pathway. Cancer Lett, 2007,249( 2) :256-270.
    8. Karin M, Cao Y, Greten FR, et al. NF-kappaB in cancer: from innocent bystander to major culprit. Nat Rev Cancer, 2002, 2 (4) : 301-- 310 .
    9. Baldwin A S. Control of oncogenesis and cancer therapy resistance by the transcrip tion factorNF-kappaB. J Clin Invest, 2001, 107 (3) : 241 - 246.
    10. Lin A,Karin M.NF-κB in cancer:a marked target.Semin Cancer Biol,2003,13:107-114.
    11. Amit S,Ben.Neriah Y.NF-κB activation in cancer:a challenge for ubiqutination-and proteasome-based therapeutic approach. Semin Cancer Bio1,2003,13:15-28.
    12. Weldon CB , Burow ME , Rolfe KW, et al . NF-kappa B-mediated chemoresistance in breast cancer cells . Surgery , 2001 ,130 (2) :143-150.
    13. Barkett M , Gilmore TD. Control of apoptosis by transcription factors . Oncogene ,1999 ,18 (49) :6909-6924.
    14. Wang CY, Mayo MW, Baldwin ASJr. TNFαand cancer therapy-induced apoptosis : potentiation by inhibition of NF-κB. Science ,1996 , 274 :784– 787.
    15. Tergaonkar V , Pando M, Vafa O, et al . p53 stabilization is decreased upon NFkappaB activation : a role for NFkappaB in acquisition of resistance to chemotherapy. Cancer Cell , 2002 ,1 (5) : 493- 503.
    16. Lin ZP , Boller YC , Amer SM, et al . Prevention of Brefeldin A-induced resistance to teniposide by the proteasome inhibitor MG- 132 : involvement of NF-κB activation in drug resistance . Cancer Res , 1998 , 58(14) :3059 - 3065.
    17. An Z ,Wang X , Kubota T , et al . A clinical nude mouse metastatic model for highlymalignant human pancreatic cancer . Anticancer Res ,1996 ,16 (2) :627-631.
    18. Kunz-Schughart LA,Kreutz M,Kunechel R.Multicellular spheroids:a three-dimensional in vitro culture system to study tumor biology.Int J Exp Path,1998,79(1):1-23.
    1. Hu YK,Yan HF,Chen ZZ. Pharmacodynamic studies of the new anticancer Chinese traditional drug-Fengling mixture. Chinese J Clin Pharma. 2006 ,15 (3) :167-169.
    2. Tian YF,Guo XK,Xiang YJ,et al.Effect of Yingyanghuo and Anchun compound on immunologic function of mice with hypoimmunity.Chinese J Clin Rehabilit.2006,10 (15) :148 - 150.
    3.左增艳,柳钟勋,李健蕊.康归胶囊对小鼠的免疫调节及抗肿瘤作用.中药药理与临床. 2004 ,20 (5) :27 - 28.
    4. Deichman G,Dyakova N , Kashkina L ,et al . The fingerprint s of the host innate immunity on t he cells of primary virus-induced tumor. Immunology Letters. 2001 ,75 (3) : :209 - 214.
    5.黄敬群,罗哓星,王四旺,等.桂皮醛抗肿瘤活性及对S180荷瘤小鼠免疫功能的影响.中国临床康复. 2006 ,10 (11) :107 - 110.
    6. Liu XH. Inhibition of epigallacatech in gallate on activation of telomerase of hypothyroid cancer . Acta Acad Med Xuzhou, 2002, 20 (2) : 87-92.
    7. Zhang LP , Jiang JK, Tam JW, et al. Effects of matrine on proliferation and differentiation in K-562 cells. Leuk Res , 2001 , 25(9) :793-800.
    8. Sun L , Wang X. Effects of allicin on both telomerase activity and apoptosis in gastric cancer SGC-7901 cells. World J Gastroenterol ,2003 ,9 (9) :1930-1934.
    9. Mandam, KumarR. Bcl-2 modulates telomerase activity. J Biol Chem, 1997, 272 (22) : 14183– 14187.
    10. Maxwell SA, Capp D, Acosta SA. Telomerase activity inimmortal izedendo the lialcells undergoing p53 mediated apoptosis. Biochem Biophys Res Commun, 1997, 241 (3) : 642 -645.
    11.杨大国,邓欣,李知玉,等.正肝方药物血清诱导人肝癌细胞分化的体外实验研究.中国中西医结合杂志,2004 ,24(2):140-142.
    12. YutakaM , Nobuko K, Sh igeo N , et al. Bufalin induces apoptosis and influences the exp ression of apoptosis-related genes in human leukemia cells. Leukemia Res, 1995, 19(8) : 549-557.
    13. Yoon Y,Kim YO,Jeon WK,et al.Tanshinone IIA isolated from Salvia miltiorrhizaBUNGE induced apoptosis in HL60 human premyelocytic leukemia cell line.J Ethnophamacology,1999,68(1-3):121-127.
    14. Sung HJ,Choi SM,Yoon Y,et al.Tanshinone IIA,an ingredient of Salvia miltiorrhiza BUNGE,induces apoptosis in human leukemia cell leins through the activiation of caspase-3.Experimental &Molecular medicine,1999,31(4):174-178.
    15. Cai Z, Liu M, Wuchter C , et al . Apoptotic response to homoharringtonine in human wt p53 leukemia cells is independent of reactive oxygen species generation and implicates Bax translocation , mitochondrial cytochrome C release and caspase activation . Leukemia , 2001 , 15(4) :567 - 574.
    16. Swamy SM , Huat BT. Intracellular glutathione depletion and reactive oxygen species generation are important in alpha-hederin-induced apoptosis of P388 cells. Mol Cell Biochem , 2003 , 245 (122) :127-139.
    17. Oh SH , Lee BH. A ginseng saponin metabolite2induced apoptosis in HepG2 cells involves a mitochondria2mediated pathway and its downstream caspase-8 activation and Bid cleavage. Toxicol Appl Pharmacol ,2004 ,194 (3) :221-229.
    18.司维柯,高利宏,刘斌,等.苦参碱诱导人肝癌细胞分化凋亡时对G1细胞周期调节因子的调控.癌症,2001 ,20(8) :848-851.
    19. Kuo PL, Lin CC. Tetrandrine-induced cell cycle arrest and apoptosis in Hep G2 cells. Life Sci, 2003, 73 (2) : 243-252.
    20. Shieh DE,Chen YY,Yen MH,et al.Emodin-induced apoptosis through p53-dependent pathway in human hepatoma cells. Life Sci,2004,74(18) : 2279-2290.
    21. Kuo PL,Chiang LC,Lin CC.Resveratrol-induced apoptosis is mediated by p53-dependent pathway in Hep G2 cells. Life Sci,2002,72(1):23-34.
    22. Lee SM,Li ML,Tse YC,et al. Paeoniae radix,a Chinese herbal extract,inhibit hepatoma cells growth by inducing apoptosis in a p53independent pathway. Life Sci,2002,71(19):2267-2277.
    23. Fei XF , Wang BX , Li TJ , et al. Evodiamine , a constituent of Evodiae Fructus , induces anti-proliferating effects in tumor cells. Cancer Sci , 2003 ,94 (1) :92-98.
    24. Anesini C , Ferraro G, Lopez P , et al. Different intracellular signals coupled to the antiproliferative action of aqueous crude extract from Larrea divaricata Cav. and nor-dihydroguaiaretic acid on a lymphoma cell line. Phytomedicine ,2001 ,8 (1) : 127.
    25. Singh F , Gao D , Lebwohl MG, et al. Shikonin modulates cell pro-liferation by inhibiting epidermal growth factor receptor signaling in human epidermoid carcinoma cells. Cancer Lett ,2003 ,200 (2) :115-211.
    26. Blaskovich MA , Sun J , Cantor A , et al. Discovery of JSI-124 (cucurbitacin I) ,a selective Janus kinase/ signal transducer and activator of transcription 3 signaling pathway inhibitor with potent anti-tumor activity against human and murine cancer cells in mice. Cancer Res ,2003 ,63 (6) :1270-1279.
    27. Walker J, Martin C, Callaghan R. Inhibition of P-glycoprotein function by XR9576 in a solid tumour model can restore anticancer drug efficacy .Eur J Cancer ,2004,40(4) :594–605 .
    28. Thomas H, Coley HM. Overcoming multidrug resistance in cancer: an update on the clinical strategy of inlubiting p - glycop rotein. Cancer Control, 2003, 10 (2) : 159-161.
    29. Shtil AA. Signal Transduction Pathways and Trans - crip tionalMechanisms As Targets for Prevention of Emergence ofMultidrug Resistance in Human Cancer Cells. CurrDrug Targets 2001, 2 (1) : 57-77.
    30. Chin KV ,Ueda K,Pastan I ,et al.Modulation of activity of the promoter of the human MDR1 gene by Ras and p53.Science ,1992 ,255 :459-4621
    31. Fu LW,Zhang YM,Liang YJ,et al.The multidrug resistance of tumour cells was reversed by tetrandrine in vitro and in xenografts derived from human breast adenocarcinoma MCF-7/adr cells . Eur J Cancer,2002,38(3):418-426.
    32. Kim SW,Kwon HY,Chi DW,et al.Reversal of P-glycoprotein-mediated muhidrug resistance by ginsenoside Rg ( 3 ). Biochem Pharmacol,2003,65(1):75-82.
    33. Zhang S,Yang X,Morris ME. Morris flavonoids are inhibitors of breast cancer resistance protein (ABCG2)- mediated transport .Mol Pharmacol, 2004, 65(5):1208-1216.
    34. Kim SH ,Yeo GS ,Lim YS ,et al. Suppression of multidrug resistance via inhibition of heat shock factor by quereetin in MDR cells. Exp Mol Med ,1998 ,30 (2) :87-92.
    35. CHEN XS,BAO MH,MEI X D.Reversing Multidrug Resistance of Epidermoid Carcinoma Drug-resistant Cell Line KB-MRP1 by Tetrandrine. Chinese J Cancer.2007, 26( 8) : 846- 850.
    36. Sindhwani P ,Hampton JA ,Baig MM ,et al . Curcumin prevent s in-travesical tumorimplantation of t he MBT-2 tumor cell line in C3H mice . The Journal Of Urology. 2001 ,166 (4) :1498 - 1501.
    37. Adams Brian K, Ferstl Eva M ,Davis Matt hew C ,et al . Synt hesis and biological evaluation of novel curcumin analogs as anti-cancer and anti-angiogenesis agents . Bioorganic & Medicinal Chemistry. 2004 ,12 (14) :3871 - 3883.
    38. Shaw PC, ChanWL, Yeuang HW, et al. Min ireview: trichosanthinap rotein with multiple pharmacological p roperties. Life Sci,1994, 55 (4) : 253.
    39. Lin J,Dong HF,Oppenheim JJ,et al.Effects of astragali radix on the growth of different cancer cell lines. World J Gastroenterol , 2003,9 (4) :670-673.
    40.武珊珊,高文远,段宏泉,等.重楼化学成分和药理作用研究进展.中草药, 2004,35(3):344-347.
    41. Suzuki K, Yahara S,Hashimoto F,et al.Inhibiton of epigallocatechin-3-gallate on topoiso-merous enzyme I and II. Biol Pharm Bull,2001,24(9):1088-1090.
    42.李运曼,祝浩杰,刘国卿.紫草素对DNA拓扑异构酶Ⅰ活性的抑制作用和诱导人白血病K562细胞的凋亡.中国天然药物,2003, 1 (3) : 165 - 168.
    43.汤涛,蒙凌华,陈陵际,等.鸦胆子油乳具有多药耐药逆转和拓扑异构酶Ⅱ抑制作用.中国药理学通报,2001,17(5):534 -539.
    44. Gonzalez de Mejia E,Ramirez-Mares MV,Nair MG. Topoisomerase I and II Enzyme Inhibitory Aqueous Extract of Ardisia compressa and Ardisin Protect against Benomyl Oxidation of Hepatocytes .J Agric Food Chem,2002,50(26):7714-7719.
    45. Chang JY,Chang CY,Kuo CC,et al. Salvinal, a novel microtubule inhibitor isolated from salvia miltiorrhizae Bunge ( Danshen ), with antimitotic activity in multidrug-sensitive and -resistant human tumor cells.Mol Pharmacol,2004,65(1):77-84.
    46. Kobayakawa J,Sato-Nishimori F,Moriyasu M,et al. G2-M arrest and antimitotic activity mediated by casticin, a flavonoid isolated from Viticis Fructus (Vitex rotundifolia Linne fil). Cancer Lett,2004,208(1):59-64.
    47. Schneider Y,Chabert P,Stutzmann J,et al. Resveratrol analog (Z)-3,5,4' -trimethoxystilbene: a new potent antimitotic agentinteracting with microtubules. Int J Cancer.2003,107(2):189-196.
    48. Liang YC,Lin-Shiau SY,Chen CF,et al.Inhibition of Cyclin-dependent kinases 2 and 4 activities as well as induction of Cdk inhibitors p21 and p27 during growth arrest ofhuman breast carcinoma cells by (-)-epigallocatechin-3-gallate. J Cell Biochem,1999, 75(1):1- 12.
    49.哈敏文,董明,王兰,等.大蒜素协同抗癌药对肿瘤细胞杀伤作用的研究.中国肿瘤临床,2004,31(4):193-196.
    50. Lee YN , Lee YM, Chung HY, et al . Involvement of glucocorticoidreceptor in the induction of diferentiation by ginsenoside in F9 teratocarcinomacells. J Steroid Biochem Mol Biol 1998 , 67 (2) : 105-111.
    51. Zeng XL,Tu ZG. In vitro induction of differentiation by ginsenoside Rh2 in SMMC-7721 hepatocarcinoma cell line.Pharmacol Toxicol,2003,93(6):275-283.
    52. Chen YY,Chang HM.. Antiproliferative and differentiating effects of polysaccharide fraction from fu-ling ( Poria cocos) on human leukemic U937 and HL-60 cells .Food Chem Toxicol,2004,42(5):759-769
    53. Liao HF,Chou CJ,Wu SH,et al. Isolation and characterization of an active compound from black soybean [Glycine max ( L.) Merr.] and its effect on proliferation and differentiation of human leukemic U937 cells .Anticancer Drugs,2001,12(10):841-846.
    1. Parker SL, Tong T, Bolden S, et al. Cancer statistics, 1996. CA Cancer J Clin, 1996,46:5–27.
    2. Jessup JM, McGinnis LS, Winchester DP, et al. Clinical highlights from the National Cancer Data Base: 1996. CA Cancer J Clin, 1996,46:185–192.
    3. Rayet B, Gelinas C. Aberrant Rel/ NFκB genes and activity in human cancer. Oncogene ,1999,18:6938–6947.
    4. Pikarsky E, Ben-Neriah Y. NF-kappaB inhibition: a doubleedged sword in cancer? Eur J Cancer,2006,42:779–784.
    5. Kim HJ, Hawke N, Baldwin AS. NF-kappaB and IKK as therapeutic targets in cancer. Cell Death Differ,2006,13:738–747.
    6. Karin M, Cao Y, Greten FR, Li ZW. NF-kappaB in cancer: from innocent bystander to major culprit. Nat Rev Cancer, 2002,2:301–310.
    7. Loercher A, Lee TL, Ricker JL, et al. Nuclear factor-kappaB is an important modulator of the altered gene expression profile and malignant phenotype in squamous cell carcinoma. Cancer Res, 2004,64:6511–6523.
    8. Robe PA, Bentires-Alj M, Bonif M, et al. In vitro and in vivo activity of the nuclear factor-kappaB inhibitor sulfasalazine in human glioblastomas. Clin Cancer Res, 2004,10:5595–5603.
    9. Sovak MA, Bellas RE, Kim DW, et al. Aberrant nuclear factor-kappaB/Rel expression and the pathogenesis of breast cancer. J Clin Invest, 1997,100:2952–2960.
    10. Greten FR, Eckmann L, Greten TF, et al. IKKbeta links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell, 2004,118:285–296.
    11. Pikarsky E, Porat RM, Stein I, et al. NF-kappaB functions as a tumour promoter in inflammation-associated cancer. Nature,2004,;431:461–466.
    12. Frelin C, Imbert V, Griessinger E, Peyron AC, Rochet N, Philip P, et al. Targeting NF-kappaB activation via pharmacologic inhibition of IKK2-induced apoptosis of human acute myeloid leukemia cells. Blood, 2005,105:804–811.
    13. Wang CY, Cusack Jr JC, Liu R, Baldwin Jr AS. Control of inducible chemoresistance:enhanced anti-tumor therapy through increased apoptosis by inhibition of NF-kappaB.Nat Med, 1999,5:412–417.
    14. Wang CY, Mayo MW, Baldwin Jr AS. TNF- and cancer therapy-induced apoptosis: potentiation by inhibition of NF-kappaB. Science, 1996,274:784–787.
    15. Bentires AM, Barbu V, Fillet M, et al. NF-kappaB transcription factor induces drug resistance through MDR1 expression in cancer cells.Oncogene ,2003,22:90–97.
    16. Graham CH, Kobayashi H, Stankiewicz KS, et al. Rapid acquisition of multicellular drug resistance after a single exposure of mammary tumor cells to antitumor alkylating agents. J Natl Cancer Inst, 1994,86:975–982.
    17. Croix SB, Man S, Kerbel RS. Reversal of intrinsic and acquired forms of drug resistance by hyaluronidase treatment of solid tumors. Cancer Lett, 1998,131:35–44.
    18. Dignam JD, Lebovitz RM, Roeder RG.Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei.Nucleic Acids Res ,1983, 11:1475-1489.
    19. Evan G I, Vousden KH. Proliferation, cell cycle and apoptosisin cancer. Nature ,2001,411:4342–4348.
    20. Karin M, Lin A. NF-κB at the crossroads of life and death. Nature Immunol,2002, 3:221–227.
    21. Cusack Jr JC, Liu R, Houston M,et al. Enhanced chemosensitivity to CPT-II with proteasome inhibitor PS-341: implications for systemic nuclear factor-kappaB inhibition. Cancer Res, 2001,61:3535–3540.
    22. Cusack Jr JC, Liu R, Baldwin Jr AS.Inducible chemoresistance to 7-ethyl-10-[4-(1-piperidino)-1-piperidino]- carbonyloxycamptothe cin (CPT-II) in colorectal cancer cells and a xenograft model is overcome by inhibition of nuclear factor-kappaB activation.Cancer Res, 2000,60 :2323–2330.
    23. Das KC, White CW. Activation of NF-kappaB by antineoplastic agents. Role of protein kinase C.J. Biol. Chem, 1997,272 :14914–14920.
    24. Baldwin Jr AS. Series introduction: the transcription factor NF-kappaB and human disease. J Clin Invest,2001,107: 3–6.
    25. Nakanishi C, Toi M . Nuclear factor-kappaB inhibitors as sensitizers to anticancer drugs. Nat Rev Cancer, 2005,5: 297– 309.
    26. Kawamura I, Morishita R, Tsujimoto S, et al.Intravenous injection of oligodeoxynucleotides to the NF-kappaB binding site inhibits hepatic metastasis of M5076 reticulosarcoma in mice.Gene Ther, 2001,8:905–912.
    27. Ueda M, Kokura S, Imamoto E, et al.Blocking of NFkappaB activation enhances the tumor necrosis factor alphainduced apoptosis of a human gastric cancer cell line. Cancer Lett, 2003,193:177–182.
    28. Kokura S, Yoshida N, Ueda M, et al.Hyperthermia enhances tumor necrosis factor alpha-induced apoptosis of a human gastric cancer cell line.Cancer Lett, 2003,201: 89–96.
    29. Wang CY, Mayo MW, Korneluk RG, et al. NF-kappaB antiapoptosis: induction of TRAF1 and TRAF2 and c-IAP1 and c-IAP2 to suppress caspase-8 activation.Science, 1998,281:1680–1683.
    30. Chena GG, Leea JF, Wang SH.,et al.Apoptosis induced by activation of peroxisome-proliferator activated receptor-gamma is associated with Bcl-2 and NF-kB in human colon cancer . Life Sciences ,2002,70 :2631–2646.
    31. Feuillard J, Schuhmacher M, Kohanna S, et al. Inducible loss of NF-kappaB activity is associated with apoptosis and Bcl-2 down-regulation in Epstein–Barr virus-transformed B lymphocytes. Blood, 2000,95:2068–2075.
    32. Dixon EP, Stephenson DT, Clemens JA, et al. Bcl-Xshort is elevated following severe global ischemia in rat brains. Brain Res, 1997,776:222–229.
    33. Friesen C, Herr I, Krammer PH,et al. Involvement of the CD95 (APO-1/FAS) receptor/ligand system in druginduced apoptosis in leukemia cells.Nat. Med,1996, 2 :574–577.
    34. Aurore K, Isabelle R , Patrick V,et al.Deregulated NF-kB activity in haematological malignancies. Biochem pharma,2006,72:1069-1080.
    35. Huang TT, Wuerzberger-Davis SM, Seufzer BJ, et al. NF-kappa B activation by campothecin. J Biol Chem, 2000,275:9509.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700