TLR/NF-κB信号通路与其负性调控因子SIGIRR和IBD的关系
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究目的:
     探讨TLR/NF-κB信号通路在IBD致病中的作用及其抑制因子SIGIRR对LPS/TLR致炎信号通路负性调控的作用机制。为IBD的治疗提供新的靶点和方向。
     研究方法:
     ⑴TLR4/NF-κB信号通路在溃疡性结肠炎患者肠黏膜中的变化及其相互之间关系的研究:采用SP免疫组化二步法检测了68例内镜活检的肠黏膜内TLR4和NF-κBP65的表达。68例包括:UC 53例(根据Tmelove-Richards分级分为:Ⅰ级9例,Ⅱ级15例,Ⅲ级19例)及正常对照者15例。
     ⑵SIGIRR对巨噬细胞LPS/TLR信号通路的影响:①以未转染SIGIRR基因的巨噬细胞株Raw264.7为SIGIRR低表达株,采用脂质体转染技术将pUNO-mSIGIRR转入Raw264.7细胞,构建SIGIRR高表达细胞株;②分以下6组:对照组1:Raw264.7;对照组2: Raw264.7 + pUNO(空质粒);对照组3: Raw264.7 cell + pUNO-mSIGIRR;实验组1:Raw264.7 cell +LPS;实验组2: Raw264.7 + pUNO (空质粒) + LPS;实验组3 : Raw264.7 cell + pUNO-mSIGIRR + LPS;实验组在质粒转染后,加入10ng/ml LPS培养12h;③用RT-PCR方法检测各组细胞SIGIRR、TLR2、TLR4、MyD88、IRAK-1和TRAF6 mRNA的表达。
     研究结果:
     ⑴TLR4/NF-κB信号通路在溃疡性结肠炎患者肠黏膜中的变化及其相互之间关系的研究:①TLR4和NF-κB P65在UC患者肠黏膜中的表达分别为50/53(94.3%)和46/53(86.8%)显著高于正常对照者的6/1(540%)和5/15(33.3%)(P<0.01),并且随着病变严重程度加重而增高;②UC患者肠黏膜内TLR4和NF-κB p65的表达呈显著正相关(r =0.923,P<0.01)。
     ⑵SIGIRR对巨噬细胞LPS/TLR信号通路的影响:①转染了SIGIRR的Raw264.7细胞内SIGIRR mRNA的表达为0.470±0.045显著高于未转染和转染空质粒的Raw264.7细胞(0.210±0.021,0.212±0.027,P<0.001)。②无论是转染了还是未转染SIGIRR的Raw264.7细胞,经LPS作用后其SIGIRR mRNA的表达均显著低于对照组(0.114±0.052 vs 0.210±0.021, 0.109±0.047 vs 0.212±0.027, 0.302±0.036 vs 0.470±0.045)(P<0.001)。③LPS对转染和未转染SIGIRR的Raw264.7细胞TLR2 mRNA的表达均无影响(0.222±0.037 vs 0.218±0.036, 0.220±0.039 vs 0.215±0.035, 0.217±0.032 vs 0.205±0.029)(P>0.05);同时SIGIRR对Raw264.7细胞内TLR2 mRNA的表达也无影响(P>0.05);④无论是转染了还是未转染SIGIRR的Raw264.7细胞,经LPS作用后其TLR4 mRNA的表达均显著高于对照组(0.587±0.103 vs 0.309±0.046 , 0.564±0.092 vs 0.291±0.050, 0.558±0.085 vs 0.210±0.062)(P<0.001);SIGIRR对Raw264.7细胞内TLR4 mRNA的表达无影响(P>0.05);⑤未转染SIGIRR的Raw264.7细胞,经LPS作用后其MyD88 mRNA的表达均显著高于对照组(0.509±0.134 vs 0.890±0.144, 0.480±0.134 vs 0.974±0.166)(P<0.001),而转染SIGIRR的Raw264.7细胞其MyD88 mRNA的表达在两组之间无显著差异(0.478±0.151 vs 0.341±0.130)(P>0.05)。在LPS作用组转染了SIGIRR的Raw264.7细胞其MyD88 mRNA的表达(0.341±0.130)显著低于未转染(0.890±0.144)和转染空质粒(0.974±0.166)的Raw264.7细胞(P<0.001),但在对照组SIGIRR对MyD88 mRNA的表达无影响(0.509±0.134, 0.480±0.134, 0.478±0.151)(P>0.05);⑥未转染SIGIRR的Raw264.7细胞,经LPS作用后其IRAK1 mRNA的表达均显著高于对照组(0.964±0.208 vs 0.522±0.096, 1.042±0.256 vs 0.491±0.121)(P<0.001),而转染SIGIRR的Raw264.7细胞IRAK1 mRNA的表达在两组之间无显著差异(0.440±0.114 vs 0.530±0.134)(P>0.05);在LPS作用组转染了SIGIRR的Raw264.7细胞其IRAK1 mRNA的表达(0.440±0.114)显著低于未转染(0.964±0.208)和转染空质粒(1.042±0.256)的Raw264.7细胞(P<0.001),但在对照组SIGIRR对IRAK1 mRNA的表达无影响(0.522±0.096, 0.491±0.121, 0.530±0.134)(P>0.05);⑦无论是转染了还是未转染SIGIRR的Raw264.7细胞,经LPS作用后其TRAF-6 mRNA的表达均显著高于对照组(0.458±0.039 vs 0.263±0.051, 0.444±0.049 vs 0.268±0.043, 0.320±0.061 vs 0.247±0.034) (P<0.001或P<0.01);在LPS作用组转染了SIGIRR的Raw264.7细胞其TRAF-6 mRNA的表达(0.320±0.061)显著低于未转染(0.458±0.039)和转染空质粒(0.444±0.049)的Raw264.7细胞(P<0.001),但在对照组SIGIRR对TRAF-6 mRNA的表达无影响(0.263±0.051, 0.268±0.043, 0.247±0.034)(P>0.05)。
     结论
     1、UC患者肠黏膜TLR4和NF-κB p65的表达均显著上调,这可能增加肠上皮细胞、固有层单个核细胞对肠腔内的细菌和内毒素的敏感性,产生过激的免疫炎症反应,导致IBD的发生。
     2、UC患者肠黏膜TLR4和NF-κB p65的表达随着患者肠黏膜病理分级加剧而增加,提示TLR4/ NF-κB通路参与了UC的发生发展。
     3、LPS可显著抑制巨噬细胞Raw264.7内SIGIRR的表达,同时上调TLR4和其信号通路的下游分子(MyD88、IRAK-1和TRAF6)的表达。
     4、给予外源性SIGIRR基因可阻断LPS对TLR信号通路的激活,下调MyD88、IRAK-1和TRAF6的表达,这可能是其对TLR信号通路的负性调控机制之一。
     5、给予外源性SIGIRR基因对无LPS作用的巨噬细胞Raw264.7的TLR信号通路无影响,但是可阻断LPS对TLR信号通路的激活,从而抑制LPS诱导的免疫炎症反应,因此,SIGIRR有望作为IBD乃至其它炎症性疾病的治疗靶点。
Objective:
     To discuss the role of TLR/NF-κB signal pathway in IBD and the mechanism of negative regulatory of its inhibitor SIGIRR on LPS/TLR inflammatory signal pathway. To provide new way of treatment of IBD.
     Methods:
     ⑴The changes of TLR/NF-κB signal pathway in the intestinal mucosa of patients with ulcerative colitis and their relations: The protein expressions of TLR4 and NF-κB P65 in 68 biopsy intestinal mucosa samples were determined by immunohistochemistry, 68 biopsy samples including: UC 53 (according to Tmelove-Richards Classification: grades I: 9, grades II: 15, grades III: 19) and the control group 15.
     ⑵The effect of SIGIRR on LPS/TLR signal pathway of macrophage cells:①Macrophage cells Raw264.7 non-transfected with SIGIRR was used as SIGIRR low expressing cell strain. Whereas macrophage cells Raw264.7 were transfected with pUNO-mSIGIRR using LipofectamineTM2000 to construct SIGIRR high expressing cell strain.②Groups: Control group 1:Raw264.7;Control group 2: Raw264.7 + pUNO ( blank plasmid); Control group 3: Raw264.7 cell + pUNO-mSIGIRR; LPS Group 1:Raw264.7 cell +LPS;LPS Group 2: Raw264.7 + pUNO(blank plasmid) + LPS;LPS Group 3: Raw264.7 cell + pUNO-mSIGIRR + LPS;LPS groups were incubated with 10 ng/ml LPS medium for 12 hours after transfection;③The mRNA expressions of SIGIRR, TLR2, TLR4, MyD88, IRAK-1 and TRAF6 were determined by RT-PCR.
     Results:
     ⑴The changes of TLR/NF-κB signal pathway in the intestinal mucosa of patients with ulcerative colitis and their relations:①The expressions of TLR4 and NF-κB P65 in the intestinal mucosa of patients with ulcerative colitis were 50/53(94.3%) and 46/53(86.8%), respectively, which were higher than those in control groups 6/15(40%)和5/15(33.3%), respectively, (P<0.01). And the expressions were higher when the pathological changes were more serious;②The expressions of TLR4 and NF-κB P65 in the intestinal mucosa of patients with ulcerative colitis were significantly positive correlated (r =0.923,P<0.01).
     ⑵The effect of SIGIRR on LPS/TLR signal pathway in macrophage cells:①The mRNA expression of SIGIRR in Raw264.7 cells transfected with SIGIRR was 0.470±0.045, which was significantly higher than those in cells non-transfected or transfected with pUNO (0.210±0.021 and 0.212±0.027,P<0.001).②In Raw264.7 cells transfected or non-transfected with SIGIRR, the mRNA expressions of SIGIRR in cells stimulated with LPS were significantly lower than those in control groups (0.114±0.052 vs 0.210±0.021, 0.109±0.047 vs 0.212±0.027, 0.302±0.036 vs 0.470±0.045)(P<0.001).③The mRNA expressions of TLR2 in Raw264.7 cells transfected or non-transfected were not affected with LPS (0.222±0.037 vs 0.218±0.036, 0.220±0.039 vs 0.215±0.035, 0.217±0.032 vs 0.205±0.029);and the mRNA expressions of TLR2 in Raw264.7 cells were not affected with SIGIRR (P>0.05).④In Raw264.7 cells transfected or non-transfected with SIGIRR, the mRNA expressions of TLR4 in cells stimulated with LPS were significantly higher than those in control groups (0.587±0.103 vs 0.309±0.046 , 0.564±0.092 vs 0.291±0.050, 0.558±0.085 vs 0.210±0.062)(P<0.001); the mRNA expressions of TLR4 of Raw264.7 cells were not affected with SIGIRR (P>0.05);⑤In Raw264.7 cells non-transfected with SIGIRR, the mRNA expression of MyD88 of cells stimulated with LPS were significantly higher than those in control groups (0.509±0.134 vs 0.890±0.144, 0.480±0.134 vs 0.974±0.166)(P<0.001), Whereas in Raw264.7 cells transfected with SIGIRR, the mRNA expressions of MyD88 were not significantly different in those two groups (0.478±0.151 vs 0.341±0.130)(P>0.05). In LPS groups, the mRNA expressions of MyD88 in Raw264.7 cells transfected with SIGIRR (0.341±0.130) were significantly lower than those in cells non-transfected (0.890±0.144) or transfected with pUNO (0.974±0.166) (P<0.001) Whereas in control groups, the mRNA expressions of MyD88 were not affected with SIGIRR (0.509±0.134, 0.480±0.134, 0.478±0.151) (P>0.05).⑥In Raw264.7 cells non-transfected with SIGIRR, the mRNA expressions of IRAK1 of cells stimulated with LPS were significantly higher than those in control groups (0.964±0.208 vs 0.522±0.096, 1.042±0.256 vs 0.491±0.121) (P<0.001),Whereas in Raw264.7 cells transfected with SIGIRR, the mRNA expressions of IRAK1 were not significantly different in those two groups (0.440±0.114 vs 0.530±0.134) (P>0.05); In LPS groups, the mRNA expressions of IRAK1 in Raw264.7 cells transfected with SIGIRR (0.440±0.114) were significantly lower than those in cells non-transfected (0.964±0.208) or transfected with pUNO (1.042±0.256) (P<0.001), Whereas in control groups, the mRNA expressions of IRAK1 were not affected with SIGIRR (0.522±0.096, 0.491±0.121, 0.530±0.134) (P>0.05).⑦In Raw264.7 cells transfected or non-transfected with SIGIRR, the mRNA expressions of TRAF-6 in cells stimulated with LPS were significantly higher than those in control groups (0.458±0.039 vs 0.263±0.051, 0.444±0.049 vs 0.268±0.043, 0.320±0.061 vs 0.247±0.034) (P<0.001 or P<0.01); In LPS groups, the mRNA expressions of TRAF-6 in Raw264.7 cells transfected with SIGIRR (0.320±0.061) were significantly lower than those in cells non-transfected (0.458±0.039) or transfected with pUNO (0.444±0.049) (P<0.001), Whereas in control groups, the mRNA expressions of TRAF-6 were not affected with SIGIRR (0.263±0.051, 0.268±0.043, 0.247±0.034) (P>0.05)
     Conclusion
     ⑴The expressions of TLR4 and NF-κB p65 in the intestinal mucosa of patients with UC were significantly upregulated, which may increase the sensibilities of intestinal epithelial cells and lamina propria mononuclear cells to bacteria and endotoxin in intestine, and generate excessive immune inflammatory response, thus cause IBD.
     ⑵The expressions of TLR4 and NF-κB P65 in the intestinal mucosa of patients with ulcerative colitis were higher when the pathological changes were more serious, which indicate that TLR4/ NF-κB signal pathway participate in the occurrence and development of UC.
     ⑶LPS can significant inhibit the expression of SIGIRR in macrophage cells Raw 264.7, and upregulate the expressions of TLR4 and the downstream molecules (MyD88、IRAK-1 and TRAF6) of the signal pathway.
     ⑷SIGIRR provided extrinsically can block the activation LPS/TLR signal pathway, and downregulate the expression of MyD88、IRAK-1 and TRAF6, which may be one of the mechanisms of negative regulatory to the TLR signal pathway.
     ⑸SIGIRR provided extrinsically has no effect on the TLR signal pathway of macrophage cells Raw264.7 not-stimulated with LPS, but can block the activation of LPS to the TLR signal pathway, thus inhibit the immune inflammatory response induced by LPS. Therefore, SIGIRR may be one of therapeutic targets of IBD and other inflammatory diseases.
引文
1. Laukoetter MG, Nava P, Nusrat A. Role of the intestinal barrier in inflammatory bowel disease. World J Gastroenterol 2008;14(3):401-407
    2. Rousseaux C, Desreumaux P. The peroxisome-proliferator-activated gamma receptor and chronic inflammatory bowel disease (PPARgamma and IBD) J Soc Biol. 2006;200(2):121-31.、
    3. Ewaschuk JB, Dieleman LA. Probiotics and prebiotics in chronic inflammatory bowel diseases. World J Gastroenterol. 2006 ;12(37):5941-5950.
    4. Weersma RK, van Dullemen HM, van der Steege G, et al. Review article: Inflammatory bowel disease and genetics. Aliment Pharmacol Ther, 2007, 26( Suppl 2):57-65.
    5. Frolova L, Drastich P, Rossmann P, et al. Expression of Toll-like receptor 2 (TLR2), TLR4, and CD14 in biopsy samples of patients with inflammatory bowel diseases: upregulated expression of TLR2 in terminal ileum of patients with ulcerative colitis. J Histochem Cytochem. 2008;56(3):267-74.
    6. De Jager PL, Franchimont D, Waliszewska A, et al. The role of the Toll receptor pathway in susceptibility to inflammatory bowel diseases. Genes Immun, 2007,8(5):387-397.
    7. Medzhitov R,Preston-Hurlburt p,Janeway CA,et al. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature. 1997; 388(6640): 394-397.
    8. Marcus D, Saemann, Thomas Weichart, et al. Tamm-Horsfall glycoprotein links innate immune cell activation with adaptive immunity via a Toll-like receptor-4-dependent mechanism. The journal of Clinical Investigation, 2005, 115(7): 468-475
    9. Vera Sobek, Nico Birkner, Ingrid Falk, etal. Direct Toll-like receptor 2 mediated co-stimulation of T cells in the mouse system as a basis for chronic inflammatory joint disease. Arthritis Res Ther, 2004, 6(5): 433-446
    10. Biragyn A, Ruffini PA, Leifer CA, et al. Toll-like receptor 4-dependent activation of dendritic cells by bate-defensin. Science, 2002, 298(5595): 1025-1029
    11. Janssens S, Beyaert R. Role of Toll-like receptors in pathogen recognition. Clinlcal Microbiology Reviews, 2003, 16(4): 637-646
    12. Beutler. Science review: Key inflammatory and stress pathways in critical illness-central role of the Toll-like receptors. Crit Care, 2003, 7(1): 39-46
    13. Jouault T, Ibala-Ombetta S, Takeuchio, et al. Candida albicans phospholipomannan is sensed thyough Toll-like receptors. J Infect Dis, 2003,188(1): 165-172
    14. Michelsen KS, Arditi M. Toll-like receptors and innate immunity in gut homeostasis and pathology. Curr Opin Hematol. 2007;14(1):48-54.
    15. Shibolet O, Podolsky DK. TLRs in the Gut. IV. Negative regulation of Toll-like receptors and intestinal homeostasis: addition by subtraction. Am J Physiol Gastrointest Liver Physiol.2007;292(6):G1469-1473.
    16. Abreu MT. Immunologic regulation of toll-like receptors in gut epithelium. Curr Opin Gastroenterol. 2003;19(6):559-564.
    17. Cobrin GM, Abreu MT. Defects in mucosal immunity leading to Crohn’s disease,Immunol Rev. 2005;206(1):277-295.
    18. Boraschi D, Tagliabue A. The interleukin-1 receptor family. Vitam Horm. 2006;74:229-254.
    19. O'Neill LA. SIGIRR puts the brakes on Toll-like receptors. Nat Immunol. 2003;4(9):823-824.
    20. 中华医学会消化病学分会.对炎症性肠病诊断治疗规范的建议.中华消化杂志 2001 21:236-239。
    21. 施先艳,邓长生.溃疡性结肠炎.见:邓长生,夏冰主编.炎症性肠病.北京:人民卫生出版社,1998.183~189.
    22. Sasaki H, Nio M, Iwami D, Funaki N, Sano N, Ohi R, Sasano H. E-cadherin, alpha-catenin and beta-catenin in biliary atresia: correlation with apoptosis and cell cycle. Pathol Int. 2001;51(12):923-32.
    23. Roger Sutmuller, Mary Morgan, Mihai Netea, et al. Toll-like receptors on regulatory T cells: expanding immune regulation. Trends in Immunology, 2006, 27(8): 387-393.
    24. Yamamoto-Furusho JK, Podolsky DK. Innate immunity in inflammatory bowel disease. World J Gastroenterol 2007;13(42):5577-5580
    25. Lakatos P, Fischer S, Lakatos L, Gal I, Papp J. Current concept on the pathogenesis of inflammatory bowel disease-crosstalk between genetic and microbial factors: Pathogenic bacteria and altered bacterial sensing or changes in mucosal integrity take "toll' ?World J Gastroenterol 2006;12(12):1829-1841.
    26. Cario E,Podolsky DK. Differential alteration in intestinal epithelial cell expression of Toll-like receptor 3(TLR3)and TLR4 in inflammatory bowel disase.Infect Immun,2000,68 (12):7010-7017.
    27. Oostenbrug LE,Drenth JP,de Jong DJ,et a1.Association between Toll-like receptor 4 and inflammatory bowel disease.Inflamm Bowel Dis,2005,11(6):567-575.
    28. Szebeni B, Veres G, Dezs?fi A, et al. Increased expression of Toll-like receptor (TLR) 2 and TLR4 in the colonic mucosa of children with inflammatory bowel disease. Clin Exp Immunol. 2008;151(1):34-41.
    29. Janssens S, Beyaert R. Role of Toll-like receptors in pathogen recognition. Clin Microbiol Rev, 2003, 16(4): 637-646.
    30. Beutler B. Science review: Key inflammatory and stress pathways in critical illness-central role of the Toll-like receptors. Crit Care, 2003, 7(1): 39-46
    31. 蒋建新,陈永华,段朝霞等。人肠上皮细胞内毒素低反应性及其机制探讨。解放军医学杂志,2003; 28 (3 ): 194-196.
    32. Nomura F, Akashi S, Sakao Y, et al. Cutting edge: endotoxin tolerance in mouse peritoneal macrophages correlates with down-regulation of surface toll-like receptor 4 expression. JImmunol. 2000 ;164(7):3476-3479.
    33. Huang X, Hazlett LD, Du W, et al. SIGIRR promotes resistance against Pseudomonas aeruginosa keratitis by down-regulating type-1 immunity and IL-1R1 and TLR4 signaling. J Immunol. 2006;177(1):548-556.
    34. Wald D, Qin J, Zhao Z, et al. SIGIRR, a negative regulator of Toll-like receptor-interleukin 1 receptor signaling. Nat Immunol. 2003;4(9):920-927.
    35. Naito Y, Takagi T, Mizushima K, et al. Gene expression clusters of a lipopolysaccharide- stimulated pathway in peripheral blood monocytes of Japanese patients with Crohn's disease. Aliment Pharmacol Ther. 2006;24 Suppl 4:256-265.
    36. Shibolet O, Podolsky DK. TLRs in the Gut. IV. Negative regulation of Toll-like receptors and intestinal homeostasis: addition by subtraction. Am J Physiol Gastrointest Liver Physiol, 2007, 292(6):G1469-1473.
    37. Nencioni A, Wesselborg S, Brossart P. Role of peroxisome proliferator-activated receptor gamma and its ligands in the control of immune responses. Crit Rev Immunol. 2003;23(1-2):1-13.
    38. Eun CS, Han DS, Lee SH, Paik CH, Chung YW, Lee J, Hahm JS. Attenuation of colonic inflammation by PPARgamma in intestinal epithelial cells: effect on Toll-like receptor pathway.Dig Dis Sci. 2006;51(4):693-697.
    39. Ogawa S, Lozach J, Benner C, Pascual G, Tangirala RK, Westin S, Hoffmann A, Subramaniam S, David M, Rosenfeld MG, Glass CK. Molecular determinants of crosstalk between nuclear receptors and toll-like receptors. Cell. 2005;122(5):707-721.
    40. Dubuquoy L, Jansson EA, Deeb S, Rakotobe S, Karoui M, Colombel JF, Auwerx J, Pettersson S, Desreumaux P. Impaired expression of peroxisome proliferator-activated receptor gamma in ulcerative colitis. Gastroenterology. 2003;124(5):1265-1276
    41. 谢勇, 周南进, 周小江, 等. 溃疡性结肠炎患者肠黏膜内 PPAR-γ 和 COX-2 的表达及意义. 中华消化杂志. 2007;27(11):770-771.
    42. XIE Yong, CHEN Jiang, ZHOU Nan-jing, ZHOU Xiao-jiang, ZHU Jun, LU Nong-hua, WANG Chong-wen .Expression of Peroxisome Proliferators-activated Receptor-γ and Cyclooxygenase-2 in Colonic Mucosa of Ulcerative Colitis and Significance Thereof. Journal of gastroenterology and hepatology, 2007,22:A159.
    43. Jobin1 C,Sartor1 RB. The I-κB / NF-κB system: a key determinant of mucosal inflammation and protection. AJP-Cell,2000;278(3): C451-C462.
    44. Verma IM, Stevenson JK, Schwarz EM, et al. Rel/NF-kappa B/I kappa B family: intimate tales of association and dissociation. Genes Dev. 1995;9(22):2723-2735.
    45. Neurath MF, Fuss I, Schürmann G, et al.Cytokine gene transcription by NF-kappa B family members in patients with inflammatory bowel disease. Ann N Y Acad Sci. 1998 ;859:149-159.
    46. Murano M, Maemura K, Hirata I, et al.Therapeutic effect of intracolonically administered nuclear factor kappa B (p65) antisense oligonucleotide on mouse dextran sulphate sodium(DSS)-induced colitis. Clin Exp Immunol. 2000;120(1):51-58.
    47. Qin J, Qian Y, Yao J, et al. SIGIRR inhibits interleukin-1 receptor- and toll-like receptor 4-mediated signaling through different mechanisms. J Biol Chem. 2005;280(26):25233-25241.
    48. 刘崇海,杨锡强,刘恩梅,等.抗生素诱导小鼠肠道菌群失调对免疫功能和 Toll 样受体 2、4 基因表达的影响.重庆医科大学学报, 2007,32(8): 839-842.
    49. Toshihiro Kaka, Humitake Gejyo, Makoto Naito. Expression of toll-like receptor 2 and 4 in lipopolysacchar ide-induced lung injury im mouse.Cell Tissue Res.2005,321:75-88.
    50. Vickers TA, Zhang H, Graham MJ,et al.Modification of MyD88 mRNA splicing and inhibition of IL-1beta signaling in cell culture and in mice with a 2'-O-methoxyethyl-modified oligonucleotide. J Immunol. 2006;176(6):3652-3661.
    51. Ma C, Xu CP, Duan L, et al. The intestinal intraepithelial lymphocytes with T cell receptor αβ express toll-like receptor 4 and are responsive to lipopolysaccharide .Int Arch Allergy Immunol 2006;141:401–407
    52. Rajapurohitam V, Chalhoub N, Benachenhou N, et al.The mouse osteopetrotic grey-lethal mutation induces a defect in osteoclast maturation/function. Bone. 2001;28(5):513-523.
    53. Garlanda C, Riva F, Polentarutti N, et al. Intestinal inflammation in mice deficient in Tir8, an inhibitory member of the IL-1 receptor family. Proc Natl Acad Sci USA. 2004;101(10): 3522-35266.
    54. Garlanda C, Riva F, Veliz T, Polentarutti N, et al. Increased susceptibility to colitis-associated cancer of mice lacking TIR8, an inhibitory member of the interleukin-1 receptor family. Cancer Res. 2007;67(13):6017-6021
    55. Xiao H, Gulen MF, Qin J, et al.The Toll-interleukin-1 receptor member SIGIRR regulates colonic epithelial homeostasis, inflammation, and tumorigenesis. Immunity. 2007;26(4):461-475.
    56. Thomassen E, Renshaw BR, Sims JE. Identification and characterization of SIGIRR,a molecule representing a novel subtype of the IL-1R superfamily. Cytokine, 1999; 11(6):389-399.
    57. Garlanda C, F. Riva, N. Polentarutti, et al. Intestinal inflammation in mice deficient in TIR8, an inhibitory member of the IL-1 receptor family. Proc. Natl. Acad. Sci. USA, 2004, 101(10): 3522–3526.
    58. Polentarutti N, Penton Rol G, Muzio M, et al. Unique pattern of expression and inhibition of IL‐ 1 signaling by the IL‐ 1 receptor family member TIR8/SIGIRR. Eur. Cytokine Netw,2003;14(4)211–218.
    59. Adib-Conquy M, Adrie C, Fitting C, et al. Up-regulation of MyD88s and SIGIRR, molecules inhibiting Toll-like receptor signaling, in monocytes from septic patients. Crit Care Med 2006,34(9):2377–2385.
    60. Garlanda C, Di Liberto D, Vecchi A,et al.Damping excessive inflammation and tissue damage in Mycobacterium tuberculosis infection by Toll IL-1 receptor 8/single IgIL-1-related receptor, a negative regulator of IL-1/TLR signaling. Immunol. 2007;179(5):3119-25.
    61. Takeuchi O, Takeda K, Hoshino K, et al . Cellular responses to bacterial cell wall components are mediated through MyD88-dependent signaling cascades. Int Immunol. 2000 Jan; 12 (1): 113~117.
    62. Burns k, Clatworthy J, Martin L, et al . Tollip , a new component of the IL-1RI pathway , links IRAK to the IL-1 receptor. Nat Cell Biol. 2000 Jun; 2 (6): 346~351.
    63. Muzio M , Natoli G, Saccani S , et al . The human toll signaling pathway: divergence of nuclear factor kappaB and JNK/ SAPK activation upstream of tumor necrosis factor receptor-associated factor 6 ( TRAF6) . J Exp Med. 1998 Jun 15;187 (12): 2097~2101.
    64. Dunne A, O’Neill LA. The interleukin-1 receptor/Toll-like receptor superfamily: signal transduction during inflammation and host defense . Sci STKE. 2003;2003 (171) : re3.
    (1) Chervonsky.AV.Meczhitov RM,Denzin LK,et a1.Subtle conformatimalmational changes induced in major histocompatibility complex class II molceules by binding peptides[J].Proc Natl Acad Sci u s A l998,95(17):10094—10099.
    (2) Aderem A.Uleviteh RJ.Toll-1ike receptors induction of the innate immune response.Nature.20OO.4O6(6797):782-787
    (3) Xu Y,Tao X,Shen B,et a1.Structural basis for sign transductionby the Toll/interleukin一1 receptor domains[J].Nature,2000。408 (6808):111—115.
    (4) O’Neill LA.Signal transduction pathways activated by the 1L-1 receptor/toll—like receptor superfamily[J].Curr TOP Microbiol Immunol,2002.270: 47—61.
    (5) Suzuki N,Suzuki S,Duncan GS,et a1.Severe imlpairment of interlenkin-l and TOLL-like receptor signalling in mice lacking IRAK-4 [J].Nature 2OO2, 416(6882):750-756.
    (6) O’Neill LA,Dunne A。Edjebaek M,et aL.Mal and MyD88:adapter proteins involved in signal transduction by Tol-like receptors[J].J EndotoxinRe, Res 2003,9(1):55—59.
    (7) Mantovani, A., M. Locati, N. Polentarutti, A. Vecchi, and C. Garlanda. 2004. Extracellular and intracellular decoys in the tuning of inflammatory cytokines and Toll-like receptors: the new entry TIR8/SIGIRR. J. Leukocyte Biol. 75: 738–742.
    (8) Garlanda, C., F. Riva, N. Polentarutti, C. Buracchi, M. Sironi, M. De Bortoli, M. Muzio, R. Bergottini, E. Scanziani, A. Vecchi, et al. 2004. Intestinal inflammation in mice deficient in TIR8, an inhibitory member of the IL-1 receptor family. Proc. Natl. Acad. Sci. USA 101: 3522–3526.
    (9) Wald, D., J. Qin, Z. Zhao, Y. Qian, M. Naramura, L. Tian, J. Towne, J. E. Sims,G. R. Stark, and X. Li. 2003. SIGIRR, a negative regulator of Toll-like receptorinterleukin 1 receptor signaling. Nat. Immunol. 4: 920–927.
    (10)Donnelly, M. A., and T. S. Steiner. 2002. Two nonadjacent regions in enteroaggregative Escherichia coli flagellin are required for activation of Toll-like receptor 5. J. Biol. Chem. 277: 40456–40461.
    (11)Qin, J, Y. Qian, J. Yao, C. Grace, and X. Li. 2005. SIGIRR inhibits interleukin-1 receptor- and Toll-like receptor 4-mediated signaling through different mechanisms.J. Biol. Chem. 280: 25233–25241.
    (12)Wald D,Qin J,Zhao Z,et a1.SIGIRR,a negative regulator of Toll-1ike reecptor-interleukin 1 receptor signaling .Nat Immunol,2OO3,4(9):920-927
    (13)Garlanda, C., F. Riva, N. Polentarutti, C. Buracchi, M. Sironi, M. De Bortoli,M. Muzio, R. Bergottini, E. Scanziani, A. Vecchi, et al. 2004. Intestinal inflammation in mice deficient in TIR8, an inhibitory member of the IL-1 receptor family. Proc. Natl. Acad. Sci. USA 101: 3522–3526.
    (14)Huang X, Hazlett LD, Du W, et al. SIGIRR promotes resistance against Pseudomonas aeruginosa keratitis by down-regulating type-1 immunity and IL-1R1 and TLR4 signaling. J Immunol. 2006;177(1):548-556.
    (15) Wald D, Qin J, Zhao Z, et al. SIGIRR, a negative regulator of Toll-like receptor-interleukin 1 receptor signaling. Nat Immunol. 2003;4(9):920-927.
    (16) O'Neill LA.SIGIRR puts the brakes on Toll-like receptors. Nat Immunol. 2003;4(9):823-824.
    (17) Garlanda, C., F. Riva, N. Polentarutti, C. Buracchi, M. Sironi, M. De Bortoli, M. Muzio, R. Bergottini, E. Scanziani, A. Vecchi, et al. 2004. Intestinal inflammation in mice deficient in TIR8, an inhibitory member of the IL-1 receptor family. Proc. Natl. Acad. Sci. USA 101: 3522–3526.
    (18) Garlanda C, Riva F, Polentarutti N, et al. Intestinal inflammation in mice deficient in Tir8, an inhibitory member of the IL-1 receptor family. Proc Natl Acad Sci USA. 2004;101(10): 3522-35266.
    (19) Van Assche G, Vermeire S, Rutgeerts P.Focus on mechanisms of inflammation in inflammatory bowel disease sites of inhibition: current and future therapies. Gastroenterol Clin North Am. 2006;35(4):743-56.
    (20) Young Y, Abreu MT. Advances in the pathogenesis of inflammatory bowel disease. Curr Gastroenterol Rep. 2006 ;8(6):470-477.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700