黄芩苷对缺血性脑损伤的保护作用及作用机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
缺血性脑血管疾病(ICVD)严重危害人类健康,具有高发病率、高复发率和高致残率的特点。因其发病机制复杂,涉及兴奋性氨基酸损伤、氧自由基学说、炎症反应以及细胞凋亡等多个方面,一直是各国研究的难点。现在临床应用的药物因存在颅内出血、脑水肿等问题,疗效并不理想。因此,深入研究该病的发病机理、发现新的作用靶点以及寻找安全有效的治疗药物将会对缺血性脑血管疾病的防治产生重大意义。
     近期研究表明,AngⅡ参与缺血性脑损伤的发生发展,但其具体作用还未明确。炎症在介导缺血再灌后继发性损伤方面起着关键作用。黄芩苷是中药黄芩根部的主要活性成分,临床已用于抗菌、消炎和抗感染治疗。研究发现,黄芩苷对脑缺血再灌注损伤有保护作用。
     本实验采用线栓法建立大鼠脑缺血再灌注损伤模型,单次尾静脉注射给予黄芩苷。通过行为学、病理生理学以及分子生物学的方法论证黄芩苷对缺血性脑损伤的保护作用,探讨其作用机制,为缺血再灌注损伤的防治提供新思路。
     1黄芩苷对大鼠脑缺血再灌注损伤后脑梗死体积的影响
     TTC染色测定脑梗死体积。结果显示,与假手术组比较,模型组大鼠可见大面积脑梗死(p<0.01)。与模型组比较,尼莫地平0.4 mg·kg~(-1),黄芩苷50、100、200mg·kg~(-1)均可显著降低脑梗死体积。p值分别为p<0.01,p<0.05,p<0.01,p<0.01。与尼莫地平组比较,黄芩苷200 mg·kg~(-1)显著降低脑梗死体积(p<0.01)。
     2黄芩苷对大鼠脑缺血再灌注损伤后神经功能学评分的影响
     结果显示,与假手术组比较,模型组大鼠出现明显的神经功能缺损体征(p<0.01)。与模型组比较,尼莫地平0.4 mg·kg~(-1),黄芩苷50、100 mg·kg~(-1)神经功能缺损体征改善不明显。黄芩苷200 mg·kg~(-1)可明显改善神经功能缺损体征(p<0.05)。
     3黄芩苷对脑缺血再灌注损伤大鼠病理形态学的影响
     HE染色结果可见,假手术组神经元细胞未见病理学损伤。模型组细胞出现明显病理学损伤。尼莫地平0.4 mg·kg~(-1),黄芩苷50、100、200 mg·kg~(-1)均可减轻脑组织病理学损伤。
     4黄芩苷对脑缺血再灌注损伤大鼠脑组织内AngⅡ含量的影响
     将大鼠脑组织匀浆,取上清液,按照放免试剂盒说明书操作。结果显示,与假手术组比较,模型组AngⅡ含量降低(p<0.05)。尼莫地平0.4 mg·kg~(-1),黄芩苷100、200 mg·kg~(-1)可使脑中AngⅡ含量升高(p<0.05)。
     5黄芩苷对脑缺血再灌注损伤大鼠NF-κBp65核转位的影响
     免疫组化结果显示,假手术组可见皮层神经元NF-κBp65胞浆表达,胞核表达阴性。与假手术组比较,模型组可见皮层神经元NF-κBp65胞核表达阳性(p<0.01)。与模型组比较,尼莫地平0.4 mg·kg~(-1),黄芩苷50、100、200 mg·kg~(-1)可使胞核内NF-κBp65表达强度明显减弱(p<0.01),与尼莫地平组相比,黄芩苷200mg·kg~(-1)可明显减弱NF-κBp65在胞核内的表达(p<0.05)。
     6黄芩苷对脑缺血再灌注损伤大鼠NF-κBp65蛋白表达量的影响
     Western blotting结果显示,假手术组NF-κBp65蛋白有一定的基础表达。与假手术组比较,模型组表达量明显升高(p<0.01)。与模型组比较,尼莫地平0.4mg·kg~(-1),黄芩苷50、100、200 mg·kg~(-1)可显著降低NF-κBp65蛋白的表达(p<0.01)。与尼莫地平组比较,黄芩苷200 mg·kg~(-1)显著降低蛋白表达量(p<0.05)。
     7黄芩苷对脑缺血再灌注损伤大鼠NF-κBp65 mRNA表达量的影响
     以B-actin为内参,RT-PCR半定量检测缺血侧皮层NF-κBp65 mRNA表达。结果显示,模型组NF-κBp65 mRNA较假手术组明显升高,尼莫地平0.4 mg·kg~(-1),黄芩苷50、100、200 mg·kg~(-1)可显著降低NF-κBp65 mRNA表达量(p<0.01)。与尼莫地平组比较,与尼莫地平组比较,黄芩苷200 mg·kg~(-1)可显著降低NF-κBp65mRNA表达量(p<0.05)。
Ischemic cerebral vascular disease (ICVD), characterized by high incidence, high recurrence and high mutilation rate, does great harm to human health. It is difficult to study the mechanism as its pathogenesis is complicated , involved in excitatory amino acids injury, oxyradical theory, inflammatory reaction, apoptosis and so on. At present, clinical medication tend to lead to intracranial hemorrhage, brain edema and other problems, and therapeutical effect is not ideal. Therefore, searching for safe and effective drugs by further research on pathogenesis of ICVD will contribute to prevention and cure of this disease greatly.
     Recent study has revealed that AngⅡis involved in the development of ICVD, but it is still not sure about the mechanism of AngⅡon ischemia reperfusion. Inflammation plays a pivotal role in mediating secondary injury to ischemia reperfusion. Baicalin is the main active component derived from traditional Chinese medicine radix of Scutellariae, which is wildly used for antibacterial treatment, eliminating inflammation and anti-infective therapy in clinical. Studies indicates that Baicalin can protect brain from ischemia-reperfusion injury.
     In our present study, the ischemia reperfusion injury model was established by middle cerebral artery occlusion (MCAO) to assess the effect of Baicalin by single vena caudalis injection. The protective effect of Baicalin to CIRI was demonstrated using methods from ethology, pathophysiology and molecular biology, and we explored its mechanism, hoping to provide ideas for protection and treatment of CIRI.
     1 Effect of Baicalin on infarct volume of rats subjected to ischemia-reperfusion injury
     TTC staining for assessment of volume of infarction. The results indicated that the infarction volume were obvious in the model group compared with sham operation group (p<0.01). After the administration of nimodipine 0.4 mg·kg~(-1), baicalin at the dosage of 50, 100, 200 mg·kg~(-1) respectively, the infarction volume was decreased significantly (p<0.01,p<0.05, p<0.01, p<0.01). Furthermore, 200 mg·kg~(-1)and exhibited the better therapy results compared with nimodipine (p<0.05).
     2 Effect of Baicalin on neurological deficits score of rats subjected to ischemia reperfusion injury
     The results indicated that the neurological deficit were obvious in the model group compared with sham operation group (p <0.01). After the administration of baicalin at the dosage of 200 mg·kg~(-1) , the neurological deficit was eased obviously compared with the model group (p<0.05). Other groups demonstrated no significant differences.
     3 Effect of Baicalin on path morphology of rats subjected to ischemia reperfusion injury
     HE staining result showed that neurons in sham group presented normal cell structures. The neurons in the model group showed paramorphia. After the administration of baicalin at the dosage of 50, 100, 200 mg·kg~(-1) and nimodipine 0.4mg·kg~(-1), path morphology injury were markedly ascended.
     3 Effect of Baicalin on contents of AngⅡin rats subjected to ischemia reperfusion injury
     We collected the supernate of rats' brain and determined the contents of AngⅡby kit. The results showed that after the ischemia-reperfusion injury the contents of AngⅡbecome less in model group compared with sham group (p<0.05). After the administration of baicalin at the dosage of 100, 200 mg·kg~(-1) and nimodipine 0.4 mg·kg~(-1), the contents of AngⅡwere increased obviously, (p<0.05)
     4 Effect of Baicalin on nuclear translocation of NF-κB p65 in rats subjected to ischemia reperfusion injury
     NF-κB p65 are detected in cytoplasm and negative expression in nucleus by immunohistochemistry in sham groups. Compared with sham groups, in model group there are many positive NF-κB p65 expressions in cell nucleus (p<0.01). Baicalin at the dosage of 50, 100, 200 mg·kg~(-1) and nimodipine 0.4 mg·kg~(-1) decreased the NF-κB p65 expression in cell nucleus (p<0.01). Baicalin 200 mg·kg~(-1) inhibited the NF-κB p65 nuclear translocation compared with nimodipine obviously (p<0.05).
     5 Effect of Baicalin on protein expression of NF-κB p65 in rats subjected to ischemia-reperfusion injury
     The protein expression of the NF-κB p65 is faintly detected in sham groups as indicated by western blot. Whereas, the protein expression of the NF-κB p65 is dramatically increased in ischemia reperfusion injury group. After the administration of baicalin at 50, 100, 200 mg·kg~(-1) and nimodipine 0.4 mg·kg~(-1), the increased protein expression is markedly down-regulated (p<0.01). Furthermore, 200 mg·kg~(-1) baicalin eased the protein expression obviously compared with nimodipine (p<0.05).
     6 Effect of Baicalin on the mRNA levels of NF-κB p65 in rats subjected to ischemia reperfusion injury
     Semiquantative RT-PCR withβ-actin as an internal control was used to detect the NF-κBp65 mRNA expression in the ischemic cortex. The NF-κB p65 mRNA expression were increased obviously in model group compared with sham group. The NF-κB p65 mRNA expression were significantly diminished after the administration of baicalin at 50,100, 200 mg·kg~(-1) and nimodipine 0.4 mg·kg~(-1) (p<0.01). Furthermore, 200 mg·kg~(-1) baicalin decreased the mRNA levels compared with nimodipine markedly (p<0.05).
引文
[1]赵建国.脑梗死[M].北京:人民卫生出版社,2006,4.
    [2]Janardhan V,Qureshi AI.Mechanisms of ischemic brain injury[J].Curr Cardiol Rep 2004,6(2):117-23.
    [3]Mehta SL,Manhas N,Raghubir R.Molecular targets in cerebral ischemia for developing novel therapeutics[J].Brain Res Rev 2007,54(1):34-66.
    [4]Wen YD,Zhang HL,Qin ZH.Inflammatory mechanism in ischemic neuronal injury[J].Neurosci Bull 2006,22(3):171-82.
    [5]Hermann DM,Kilic E,Hata R,et al.Relationship between metabolic dysfunctions,gene responses and delayed cell death after mild focal cerebral ischemia in mice[J].Neuroscience 2001,104(4):947-55.
    [6]Li D,Shao Z,Vanden Hoek TL,et al.Reperfusion accelerates acute neuronal death induced by simulated ischemia[J].Exp Neurol 2007,206(2):280-7.
    [7]Lipton P.Ischemic cell death in brain neurons.Physiol Rev1999,79(4):1431-568.
    [8]Liu S,Lau L,Wei J,et al.Expression of Ca(2+)-permeable AMPA receptor channels primes cell death in transient forebrain ischemia[J].Neuron 2004,43(1):43-55.
    [9]Kwak S,Weiss JH.Calcium-permeable AMPA channels in neurodegenerative disease and ischemia[J].Curr Opin Neurobiol 2006,16(3):281-7.
    [10]Collino M,Aragno M,Mastrocola R,et al.Modulation of the oxidative stress and inflammatory response by PPAR-gamma agonists in the hippocampus of rats exposed to cerebral ischemia/reperfusion[J].Eur J Pharmacol 2006,530(2):70-80.
    [11]McCulloch J,Dewar D.A radical approach to stroke therapy[J].Proc Natl Acad Sci USA 2001,98(20):10989-91.
    [12]Jian Liu K,Rosenberg GA.Matrix metalloproteinases and free radicals in cerebral ischemia[J].Free Radic Biol Med 2005,39(1):71-80.
    [13] Chan PH, Longar S, Fishman RA. Protective effects of liposome-entrapped superoxide dismutase on posttraumatic brain edema[ J]. Ann Neurol 1987, 21(6):540-7.
    [14] Inta I, Paxian S, Maegele I, et al. Bim and Noxa are candidates to mediate the deleterious effect of the NF-kappa B subunit RelA in cerebral ischemia[ J]. J Neurosci 2006, 26(50): 12896-903.
    [15] Huang J, Upadhyay UM, Tamargo RJ. Inflammation in stroke and focal cerebral ischemia[J]. Surg Neurol 2006, 66(3):232-45.
    [16] Wen YD, Zhang HL, Qin ZH. Inflammatory mechanism in ischemic neuronal injury[J]. Neurosci Bull 2006,22(3):171-82.
    [17] Bowen KK, Naylor M, Vemuganti R. Prevention of inflammation is a mechanism of preconditioning-induced neuroprotection against focal cerebral ischemia[J]. Neurochem Int 2006, 49(2): 127-35.
    [18] Parsons KK, Coffman TM. The renin-angiotensin system: it's all in your head[J] J Clin Invest 2007, 117(4):873-6.
    [19] Phillips MI. Functions of angiotensin in the central nervous system[J]. Annu Rev Physiol 1987, 49:413-35.
    [20] Vardan T.Karamyan, Robert C. Speth. Identification of a novel non-ATI, non-AT2 angiotensin binding site in the rat brain[ J]. Brain Research 2007, 1143:83-91.
    [21] Davisson RL, Oliverio MI, Coffman TM, et al. Divergent functions of angiotensin II receptor isoforms in the brain[J]. J Clin Invest 2000, 106(1):103-6.
    [22] Saavedra JM. Brain angiotensin II: new developments, unanswered questions and therapeutic opportunities[J]. Cell Mol Neurobiol 2005, 25(3-4):485-512.
    [23] Von Bohlen und Halbach O, Albrecht D. The CNS renin-angiotensin system[J]. Cell Tissue Res 2006, 326(2):599-616.
    [24] 24Zhu M, Sumners C, Gelband CH, et al. Chronotropic effect of angiotensin II via type 2 receptors in rat brain neurons[J]. J Neurophysiol 2001, 85(5):2177-83.
    [25] Savaskan E. The role of the brain renin-angiotensin system in neurodegenerative disorders[J]. Curr Alzheimer Res 2005, 2(1):29-35.
    [26] Girouard H, Park L, Anrather J, et al. Cerebrovascular nitrosative stress mediates neurovascular and endothelial dysfunction induced by angiotensin II[J]. Arterioscler Thromb Vasc Biol 2007, 27(2):303-9.
    [27] Girouard H, Park L, Anrather J, et al. Angiotensin II attenuates endothelium-dependent responses in the cerebral microcirculation through nox-2-derived radicals[ J]. Arterioscler Thromb Vasc Biol 2006,26(4):826-32
    [28] Nishimura Y, Ito T, Hoe K, et al. Chronic peripheral administration of the angiotensin II AT(1) receptor antagonist candesartan blocks brain AT(1) receptors[J]. Brain Res 2000, 871(1):29-38.
    [29] Schrader J, Kulschewski A, Dendorfer A. Inhibition of the renin-angiotensin system and the prevention of stroke[J]. Am J Cardiovasc Drugs 2007, 7(1):25-37.
    [30] Vincent JM, Kwan YW, Chan SL, et al. Constrictor and dilator effects of angiotensin II on cerebral arterioles[J]. Stroke 2005, 36(12):2691-5.
    [31] Ozacmak VH, Sayan H, Cetin A, et al. ATI receptor blocker candesartan-induced attenuation of brain injury of rats subjected to chronic cerebral hypoperfusion[J]. Neurochem Res 2007, 32(8): 1314-21.
    [32] Thone-Reineke C, Steckelings UM, Unger T. Angiotensin receptor blockers and cerebral protection in stroke[J]. Hypertens Suppl 2006, 24(1):S115-21.
    [33] Epstein BJ, Gums JG Can the renin-angiotensin system protect against stroke? A focus on angiotensin II receptor blockers[J]. Pharmacotherapy 2005, 25(4):531-9.
    [34] Ma Y, Zhang L, Peng T, et al. Angiotensin II stimulates transcription of insulin-like growth factor I receptor in vascular smooth muscle cells: role of nuclear factor-kappaB[J]. Endocrinology 2006, 147(3): 1256-63.
    [35] Ruiz-Ortega M, Lorenzo O, Ruperez M, et al. Angiotensin II activates nuclear transcription factor kappaB through AT(1) and AT(2) in vascular smooth muscle cells: molecular mechanisms[J]. Circ Res 2000, 86(12):1266-72.
    [36] Watanabe K, Taniguchi M, Miyoshi M, et al. Effects of central injection of angiotensin-converting-enzyme inhibitor and angiotensin type 1 receptor antagonist on the brain NF-kappaB and AP-1 activities of rats given LPS[J].Peptides 2006,27(6):1538-46.
    [37]Lee FT,Cao Z,Long DM,et al.Interactions between angiotensin Ⅱ and NF-kappaB-dependent pathways in modulating macrophage infiltration in experimental diabetic nephropathy[J].JAm Soc Nephrol 2004,15(8):2139-51.
    [38]Ruiz-Ortega M,Bustos C,Hernandez-Presa MA,et al.Angiotensin Ⅱparticipates in mononuclear cell recruitment in experimental immune complex nephritis through nuclear factor-kappa B activation and monocyte chemoattractant protein-1 synthesis[J].J Immunol 1998,161(1):430-9.
    [39]Liu HQ,Wei XB,Sun R,et al.Angiotensin Ⅱ stimulates intercellular adhesion molecule-1 via an AT1 receptor/nuclear factor-kappaB pathway in brain microvascular endothelial cells[J].Life Sci 2006,78(12):1293-8.
    [40]Douillette A,Bibeau-Poirier A,Gravel SP,et al.The proinflammatory actions of angiotensin Ⅱ are dependent on p65 phosphorylation by the IkappaB kinase complex[J].J Biol Chem 2006,281(19):13275-84.
    [41]姚小梅.NF-κB在缺血再灌注后的作用[J].中华神经医学杂志2004,3(5):330-333.
    [42]Yang L,Tao LY,Chen XP.Roles of NF-kappaB in central nervous system damage and repair[J].Neurosci Bull 2007,23(5):307-13.
    [43]Zhen Zheng and Midori A.Yenari.Post-ischemic inflammation:molecular mechanisms and therapeutic implications[J].Neurol Res 2004;26:884-892
    [44]张喜平,田华.黄芩苷的药理作用研究现状[J].中国药理学通报 2003,19(11):1212-5.
    [45]张建春,张华,施瑛,等.黄芩苷的研究近况[J].时珍国医国药 2005,16(3):247-249.
    [46]欧阳昌汉,吴基良,陈金和.黄芩苷对大鼠心肌缺血再灌注时细胞凋亡的影响[J].中药药理与临床2006,22(2):19-20.
    [47]王超云,蒋王林,智红英,等.黄芩苷对脑损伤的保护作用[J].中草药2004,35(2):188-120.
    [48]张喜平,田华,程琪辉.黄芩苷的药理作用研究现状[J].中国药理学通报2003,19(11):1212-1215.
    [49]Lujun Zhang,Dongming Xing,Wei Wang,et al.Kinetic difference ofbaicalin in rat blood and cerebral nuclei after intravenous administration of Scutellariae Radix extract[J].Journal of Ethnopharmacology 2006,(103)120-125.
    [50]Ge QF,Hu X,Ma ZQ,et al.Baicalin attenuates oxygen-glucose deprivation-induced injury via inhibiting NMDA receptor-mediated 5-lipoxygenase activation in rat cortical neurons.Pharmacol Res.2007,55(2):148-57.
    [51]Xue D,Zhang W,Zhang Y,et al.Adjusting effects of baicalin for nuclear factor-kappaB and tumor necrosis factor-alpha on rats with caerulein-induced acute pancreatitis.Mediators Inflamm 2006,2006(5):26295.
    [52]杨莹,硕士学位论文[A],丹参素与羟基红花黄素A合用对大鼠脑缺血再灌注损伤的协同作用及机制研究[D].济南:山东大学,2006:13.
    [53]Longa EZ,Weinstein PR,Carlson S,et al.Reversible middle cerebral artery occlusion without craniotomy in rats[J].Stroke 1989,20(1):84-91.
    [54]娄海燕,博士学位论文[A],脑缺血再灌注损伤的炎症分子生物学机制及羟乙葛根素的保护作用[D].济南:山东大学,2005.
    [55]Longa EZ,Weinstein PR,Carlson S,et al.Reversible middle cerebral artery occlusion without craniotomy in rats[J].Stroke 1989,20(1):84-91.
    [56]Belayve L,O.F.Alonso,R.B usto,et al.Middle cerebral artery occlusion in the rat by intraluminal suture[J].Stroke 1996,27(6):1616-162.
    [57]余良主,魏劲波,化长林.L-精氨酸对肾性高血压大鼠主动脉肥厚及组织局部RAS的影响[J].中国药学杂志2006,41(23):1781-1783.
    [58]单琤琤,戴生明,方凤,等.动脉压力感受性反射受损后血浆和心脏、肾脏组织AngⅡ含量的变化[J].生理学报2003,55(1):75-78.
    [59]周珂,余绍祖,王惠玲.局灶性缺血再灌注大鼠脑AngⅡ 1型受体基因的表达[J].中华老年心脑血管病杂志2003,5(4):268-270.
    [60]姚小梅,王纪佐,朱学良,等.NF-κBp65在脑缺血再灌注后的作用[J].中华 神经医学杂志2004,3(5):330-333.
    [61]孙旭文,于国平.NF-κBp65和MCP-1在脑缺血再灌注后脑组织局部炎症反应中的作用[J].中华神经科杂志 2004,37(6):547-548.
    [62]张丽侠,张建宁,于士柱,等.大鼠局灶性脑缺血再灌注后Ref-1、NF-κB及IκB的表达[J].中华神经医学杂志2006,5(12):1213-1215.
    [63]蒋红玉,谭遥,郭少军,等.芪棱汤对大鼠局灶性脑缺血再灌注后核因子-κB表达的影响[J].中国中医急症2005,14(12):1201-1203.
    [64]徐淑云,药理实验方法学[M].北京:人民卫生出版社,2002.
    [65]关云谦,孙明,徐超.大鼠颈内动脉线栓法制备局灶性脑缺血模型及影响因素[J].国外医学脑血管疾病分册 2001,9(3):151-153.
    [66]帕尔哈提·热西提,更·党木仁加甫,汪永新,等.改良线栓法制作大鼠局灶性脑缺血模型[J].新疆医科大学学报2006,29(2):145-147.
    [67]刘运泉,戴颖.线栓法大鼠局灶性脑缺血模型的改进[J].中国临床解剖学杂志2005,23(2):222-223.
    [68]任建勋,刘俊,沈映君.线栓法建立大鼠局灶性脑缺血模型方法的改进[J].四川生理科学杂志2005,27(2):60-62.
    [69]黄斌,王兴勇,匡凤梧.线栓法制备Wistar大鼠局灶性脑缺血模型的实验研究[J].现代医药卫生 2005,21(15):1935-1937.
    [70]PETER LIPTON.Ischemic Cell Death in Brain.Neurons 1999,79(4):1432-1532.
    [71]孙国兵,许康,柯贤军,等.两种局灶性脑缺血再灌注模型的比较[J].卒中与神经疾病.2006,13(6):342-344.
    [72]Wanhua Shen,Chunyi Zhang et al.Nuclear factor kt3 activation is mediated by NMDA and non-NMDA receptor and L-type voltage-gated Ca~(2+)channel following severe global ischemia in rat hippocampus[J].Brain Research 2002,(933):23-30.
    [73]Clemens J.A.,Stephenson D.T.,Dixon E.P,et al.Global ischemia activates nuclear factor-kB prior to evidence of DNA fragmentation[J].Mol.Brain Res1997,(48):187-196.
    [74]石静萍,张颖冬,葛剑青,等.急性脑梗死患者血浆肾素、AngⅡ的变化及其 临床意义[J].临床神经病学杂志2002,15(4):204-206.
    [75]Fournier A,Messerli FH,Achard JM,et al.Cerebroprotection mediated by angiotensin Ⅱ:a hypothesis supported by recent randomized clinical trials[J].J Am Coll Cardio12004,43(8):1343-7.
    [76]Li J,Culman J,Hortnagl H,et al.Angiotensin AT2 receptor protects against cerebral ischemia-induced neuronal injury[J].FASEB J 2005,19(6):617-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700