基于原子相干效应的相干反射的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光与原子相互作用,作为量子光学中一个非常重要的研究内容,在近几十年得到了蓬勃的发展,而基于相干光场与原子介质相互作用的产物,原子相干效应更是受到人们的广泛关注。原子相干总是伴随着量子干涉,在此基础上,产生了许多新奇有趣的量子现象。
     本文基于原子相干,回顾了电磁诱导透明(EIT)效应,介绍了近十几年人们对基于原子非线性相干效应的四波混频技术的研究现状及发展方向,简单介绍了电磁诱导吸收光栅这一特殊的四波混频过程。在此基础上,重点介绍了我们实验小组在基于原子相干效应方面开展的实验和理论研究工作,主要包括:双色耦合场作用于EIT系统的动力学过程的理论计算,驻波耦合场作用于不同原子能级上的相干辐射的实验研究及理论分析;在原子气体中,首次提出了在相位失配情况下,反常色散补偿相位失配的理论,详细分析了四光子相互作用过程;更进一步地,实验上研究了在不同简并二能级系统中Fg     1)从理论上研究了双色耦合场作用于Λ型EIT系统的动力学过程,给出了原子与探针场作用的密度算符的通解形式。在此基础上,详细讨论了特殊情况下,即在驻波耦合场条件下,原子介质对探针场的吸收和色散特性,发现当只有向前耦合场作用时,原子对探针场的吸收很弱,色散特性为正常色散,即典型的EIT现象;而加入向后耦合场后,原子对探针场的吸收增强,色散由正常色散变为反常色散。由于原子对探针场产生吸收,导致在此过程中可能会出现高阶非线性相干效应(多波混频),从而产生新的光场。
     2)在实验上,观察了当向后耦合场从无到有时,探针场由透明向吸收增强的转变过程,证实了理论的分析。研究了在三能级铯原子气体系统中,当作用光场不满足相位匹配条件(或Bragg反射条件)的情况下,即ωc>ωp,实验上仍然获得了高效率的相干反射场,并在理论上首次提出反常色散补偿相位失配的理论,很好地解释了实验现象。
     3)为了进一步验证理论的适用性,依然在Λ型三能级系统中,转换耦合光场和探针场的作用能级,即ωc<ωp,实验研究了在相位匹配角度(θ0=0.42°)下的相干反射情况,并测量了辐射场随探针场与耦合场夹角的变化关系,分别讨论了在相位匹配和相位失配两种情况下的四波混频过程,即四光子相互作用过程,而色散补偿理论同样很好地诠释了实验结果,并且在较宽的耦合场频率失谐范围内,都能得到效率较高的辐射信号,这为实现多通道量子信息处理提供了更多选择。
     4)在实验和理论上研究了在简并二能级系统中(ωc=ωp),不同塞曼子能级结构时(Fg>Fe,Fg=Fe和Fg     其中创新性的工作包括:
     I.在热原子系统中,当耦合场和探针场频率不满足相位匹配条件’(或Bragg反射条件)时,实验上依然获得了高效率的相干反射信号,研究了在不同驻波条件下,相干反射场随探针场频率的变化情况;理论上,提出了反常色散补偿相位失配的理论。
     II.基于色散补偿理论,比较了耦合场和探针场频率在满足和不满足相位匹配条件下,相干辐射信号的变化规律;实验研究了向前、向后耦合场在相干辐射过程中光强的变化,分析了四光子相互作用物理机制,即在相互作用过程中,原子吸收一个探针光子和一个反向传播的耦合光子,同时又辐射一个同向传播的耦合光子和一个反向传播的信号光子(四波混频场光子)。在理论拟合中,提出并应用了有效长度的概念,在相位失配情况下,有效长度发挥着非常重要的作用。
     III.在简并二能级系统中,实验研究了三种不同简并能级结构下的相干辐射情况,给出在相同实验参数条件下,当Fg>Fe时,相干反射效率最高,当Fg=Fe时,反射信号的效率较弱,且线宽较窄;而当FgThe interaction of the light with atoms, as a very important research content of the quantum optics, has thriving development in recent decades. Based on the generation of the interaction of coherent light with atomic medium, atomic coherence effects have received increasing attention. Atomic coherent is always accompanied by quantum interference, which caused many novel and interesting quantum phenomena.
     This dissertation reviews the traditional electromagnetic induction transparency (EIT) effect, introduces the present research situation and development direction of four-wave mixing which induced by the atomic coherence effects. More importantly, we focus on our research work in experiment and theory, which including the theoretical calculation of the dynamical process about bichromatic fields coupled EIT atomic system, experimental research and theoretical analysis of the coherent reflection induce by the standing-wave fields coupled different atomic level. Based on the atomic gas system, we first supply the theory that on the condition of phase mismatching in the process of four-wave mixing, anomalous dispersion compensates the phase mismatching, and furthermore, the interaction of four photons is analyzed in detail. We also demonstrate the necessary condition of realization on coherent reflection in different degenerate two-level systems (Fg>Fe, Fg=Fe and Fg     1) The dynamical process about bichromatic fields coupled A-type EIT system has investigated theoretically, and the general form of density operator for the interaction of atoms with probe light is presented. Based on this, the property of absorption and dispersion of atoms to the probe light has investigated on the condition of standing-wave coupling fields. We find that when only the co-propagating coupling field is used, the absorption of atoms to the probe is very weak, and the dispersion is normal dispersion, that is classical EIT effect; however, when the travelling-wave coupling light is replaced by the standing-wave, the absorption of the probe is enhanced, and normal dispersion is changed to anomalous dispersion, EIT changes to electromagnetically induced absorption (EIA). So we deduce the higher order nonlinear coherent process (multi-wave mixing) may be generated in this system due to the standing-wave coupled.
     2) On the basics of theoretical analysis, at first, we observed experimentally the fact that the probe light through the atoms is changed from transparency to be vanished when increasing the power of counter-propagating via R from0to1. We also demonstrate that in the three-level Cs atomic system, the high efficiency coherent reflection signal is rather generated experimentally even when the frequency of fields are not satisfied with the condition of phase matching (or Bragg reflection), that is ωe>ωp. Comparing with the results of experiment, we supply the theory that the dispersion compensation, that is the phase mismatching is compensated for by anomalous dispersion due to the strong absorption of the probe.
     3) For further verify the universality of the theory on the dispersion compensation, we do research in experiment in the case that changing the energy levels acted by the coupling and probe lights, in which the frequencies of all fields should be satisfied with the condition of phase matching (for Cs atom Di line, the phase matching angle is θ=0.42°), and the generation of coherent reflection is demonstrated experimentally. Furthermore, we also measure the relation of coherent reflection with the probe's frequency detuning. We also theoretically elaborate the four-wave mixing process on the condition of phase matching and phase mismatching, respectively, and the theory of dispersion compensation interpret the experimental results well. The high reflection efficiency of signal are also generated in wide range of detuning of the coupling fields and the results have many potential applications in quantum optics and quantum information, such as the multi-channel information processing, tunable optical switching.
     4) The coherent reflection is also investigated experimentally in the case of degenerate two level systems (where the frequencies of coupling and probe light are equal), which includes three sorts:Fg>Fe, Fg=Fe and Fg     The characterized works among the above are as follows:
     Ⅰ. In a hot atom system, the coherent reflection signal with high efficiency is obtained at the case that the frequencies of interacting fields are not satisfied with the condition of phase matching (or Bragg reflection), and the relation of coherent reflection with probe detuning is also investigated in different condition of standing-wave. In theory, based on four-wave mixing process, we supply the theory of anomalous dispersion compensate the phase mismatching.
     Ⅱ. Based on the dispersion compensation, we compare the relation of coherent reflection at the case that the frequencies of coupling and probe lights are and are not satisfied with the condition of phase matching. We also investigate the change of intensity of co-and counter-propagating fields after interacting with atoms, and the experimental results supply the physical mechanism of four-photon interaction. The atoms absorb the probe and the counter-propagating coupling field, and meanwhile emit the co-propagating coupling field and the reflected field. The probe and the co-propagating coupling field form a Doppler-free pair, and the reflected and the counter-propagating coupling fields form another Doppler-free pair, so that we have Doppler-free reflection, because both pairs are at two-photon resonance. In fitting the theory to the experiment, we put forward to the concept of effective length, and find that it play the key action in the case of phase mismatching.
     Ⅲ. The coherent reflection is also investigated experimentally in the degenerate two level systems. We find that in the same experimental parameters, different level structures cause different results:when Fg>Fe, the reflection efficiency is highest; and when Fg=Fe, the reflection intensity is much smaller than that in the case of Fg>Fe, but the line-width of signal is narrower than that above. However, when Fg
引文
[1]O. A. Kocharovskaya and Y. I. Khanin, Coherent amplifi-cation of an ultrashort pulse in a three-level medium with-out a population inversion, Jetp Letters, 1988,48,630-634.
    [2]S. E. Harris, Lasers without inversion:Interference of lifetime-broadened resonances, Phys, Rev. Lett.,1989,62,1033-1036.
    [3]M. O. Scully, S. Y. Zhu and A. Gavrielides, Degenerate quantum-beat laser: Lasing without inversion and inversion without lasing, Phys, Rev. Lett.,1989,62, 2813-2816.
    [4]S. E. Harris, J. E. Field, and A. Imamoglu, Nonlinear optical processes using electromagnetically induced transparency, Phys. Rev. Lett.,1990,64,1107-1110.
    [5]K. J. Boller, A. Imamoglu, and S. E. Harris, Observation of electromagnetically induced transparency, Phys. Rev. Lett.,1991,66,2593-2596.
    [6]A. S. Zibrov, M. D. Lukin, D. E. Nikonov, L. Hollberg, M. O. Scully, V. L. Velichansky, and H. G. Robinson, Experimental Demonstration of Laser Oscillation without Population Inversion via Quantum Interference in Rb, Phys. Rev. Lett.,1995,75,1499-1502.
    [7]G. G. Padmabandu, George R. Welch, Ivan N. Shubin, Edward S. Fry, Dmitri E. Nikonov, Mikhail D. Lukin, and Marlan O. Scully, Laser Oscillation without Population Inversion in a Sodium Atomic Beam, Phys. Rev. Lett.,1996,76, 2053-2056.
    [8]Olga Kocharovskaya, Lasing without inversion:problems and prospects, Hyperfine Interactions,1997,107,187-195.
    [9]J Mompart and R Corbalan, Lasing without inversion, J. Opt. B:Quantum Semiclass. Opt.,2000,2,7-24.
    [10]S.Ya. Kilin, Kishore T. Kapale, and M. O. Scully, Lasing without Inversion: Counterintuitive Population Dynamics in the Transient Regime, Phys. Rev. Lett., 2008,100,173601.
    [11]Haibin Wu, Min Xiao, and J. Gea-Banacloche, Evidence of lasing without inversion in a hot rubidium vapor under electromagnetically-induced-transparency conditions, Phys. Rev. A (R),2008,78,041802.
    [12]D. Budker, D. F. Kimball, S. M. Rochester, and V. V. Yashchuk, Nonlinear Magneto-optics and Reduced Group Velocity of Light in Atomic Vapor with Slow Ground State Relaxation, Phys. Rev. Lett.,1999,83,1767-1770.
    [13]Bajcsy M, Zibrov A.S, Lukin M.D., Stationary pulses of light in an atomic medium, Nature,2003,426,638-641.
    [14]C. Liu, Z. Dutton, C. H. Behroozi, L. V. Hau, Observation of coherent optical information storage in an atomic medium using halted light pulses, Nature (London),2001,409,490-493.
    [15]D. F. Phillips, A. Fleischhauer, A.Mair, and R. L. Walsworth, M. D. Lukin, Storage of Light in Atomic Vapor, Phys. Rev. Lett.,2001,86,783-786.
    [16]I. Pop and L. Moorman, Electromagnetically induced generation, gain in delayed wave mixing, and measuring coherent states using quantum-interference windows, Phys. Rev. A,1999,60,678-686.
    [17]G. C. Cardoso, V. R. de Carvalho, S. S. Vianna, and J. W. R. Tabosa, Population-grating transfer in cold cesium atoms, Phys. Rev. A,1999,59,1408-1412.
    [18]C. Affolderbach, S. Knappe, and R. Wynands, A. V. Talchenachev and V. I. Yudin, "Electromagnetically induced transparency and absorption in a standing wave," Phys. Rev. A,2002,65,043810.
    [19]H. Kang, G. Hernandez, Y. Zhu, Nonlinear wave mixing with electromag-netically induced transparency in cold atoms," J. of Mod. Opt.2005,52, 2391-2399.
    [20]A. W. Brown and M. Xiao, All-optical switching and routing based on an electromagnetically induced absorption grating, Opt. Lett.,2005,30,699-701.
    [21]Juan F. Lam and Richard L. Abrams, Theory of nonlinear optical coherences in resonant degenerate four-wave mixing, Phys. Rev. A,1982,26,1539-1548.
    [22]P. P. Kircheva, G. B. Hadjichristov, and M. D. Stamova, Two-photon resonance degenerate four-wave mixing in a three-level polar molecule (model calculations), Optical and Quantum Electronics,1996,28,1055-1066.
    [23]V. Boyer, C. F. McCormick, E. Arimondo, and P. D. Lett, Ultraslow Propagation of Matched Pulses by Four-Wave Mixing in an Atomic Vapor, Phys. Rev. Lett., 2007,99,143601.
    [24]H. Kang, G. Hernandez, and Y. Zhu, Resonant four-wave mixing with slow light, Phys. Rev. A,2004,70,061804.
    [25]S. Du, E. Oh, J.-M. Wen, and M. H. Rubin, Four-wave mixing in three-level systems:Interference and entanglement, Phys. Rev. A,2007,76,013803.
    [26]Klaus M. Gheri, et al, Quantum noise reduction close to an optically bistable dark resonance, Phys. Rev. A,1994,50,1871-1876.
    [27]B. Julsgaard, A. Kozhekin, E. S. Polzik, Experimental long-lived entanglement of two macroscopic objects, Nature,2001,413,400-403.
    [28]C. H. van der Wal, M. D. Eisaman, A. Andre, R. L. Walsworth, D. F. Phillips, A. S. Zibrov and M. D. Lukin, Atomic Memory for Correlated Photon States, Science, 2003,301,196-200.
    [29]A. Kuzmich, W. P. Bowen, A. D. Boozer, A. Boca, C. W. Chou, L.-M. Duan, H. J. Kimble, Generation of nonelassical photon pairs for scalable quantum communication with atomic ensembles, Nature,2003,423,731-734.
    [30]B. B. Blinov, D. L. Moehring, L.-M. Duan, C. Monroe, Observation of entanglement between a single trapped atom and a single photon, Nature,2004, 428,153-157.
    [31]A. Dogariu, A. Kuzmich, and L. J. Wang, Transparent anomalous dispersion and superluminal light-pulse propagation at a negative group velocity, Phys. Rev. A, 2001,63,053806.
    [32]M. G. Payne and L. Deng, Extremely slow propagation of a light pulse in an ultracold atomic vapor:A Raman scheme without electromagnetically induced transparency, Phys. Rev. A,2001,64,031802.
    [33]M. Kozuma, D. Akamatsu, and L. Deng, E. W. Hagley and M. G. Payne, Entangled-photon generation from parametric down-conversion in media with inhomogeneous nonlinearity, Phys. Rev. A,2002,66,031801.
    [34]Ying Wu and Xiaoxue Yang, Electromagnetically induced transparency in V-, L-, and cascade-type schemes beyond steady-state analysis, Phys, Rev. A,2005,71, 053806.
    [35]S. E. Harris, J. E. Field, and A. Kasapi, Dispersive properties of electromag-netically induced transparency, Phys. Rev. A,1992,46, R29-R32.
    [36]Min Xiao, Yong-qing Li, Shao-zheng Jin, and J. Gea-Banacloche, Measurement of Dispersive Properties of Electromagnetically Induced Transparency in Rubidium Atoms, Phys. Rev. Lett.1995,74,666-669.
    [37]A. Kasapi, M. Jain, G. Y. Yin, and S. E. Harris, Electromagnetically Induced Transparency:Propagation Dynamics, Phys. Rev.Lett.,1995,74,2447-2450.
    [38]Bajcsy M, Hofferberth S, Balic V, Peyronel T, Hafezi M, Zibrov A.S, Vuletic V, Lukin M.D., Efficient All-Optical Switching Using Slow Light within a Hollow Fiber, Phys. Rev. Lett.,2009,102,203902.
    [39]A. Yariv, Quantum Electronics, (John Wiley & Sons, New York,1989).
    [40]N. Bloembergen, Conservation Laws in Nonlinear Optics, J. Opt. Soc. Am.1980, 70,1429-1436.
    [41]J. F. Reintjes, Nonlinear Optical Parametric Processes in Liquids and Gases, (Academic Press, Orlando,1984).
    [42]N. Bloembergen, Recent Progress in Four-Wave Mixing Spectroscopy, in Laser Spectroscopy IV, edited by H. Walther and K. W. Rothe, (Springer, Berlin,1979), 340-348.
    [43]M. D. Levenson and S. S. Kano, Introduction to Nonlinear Laser Spectroscopy, (Academic Press, San Diego,1988).
    [44]N. Bloembergen, H. Lotem, R. T. Lynch, Indian Lineshapes in coherent resonant Raman scattering, J. Pure and Appl. Phys.,1978,16,151.
    [45]S. Y. Yee, T. K. Gustafson, S. A. J. Druet, and J-P. E. Taran, Diagrammatic Evaluation of the Density Operator for Nonlinear Optical Calculations, Opt. Comm.,1977,23,1-7.
    [46]M. D. Lukin, A. B. Matsko, M. Fleischhauer, and M.O. Scully, Quantum Noise and Correlations in Resonantly Enhanced Wave Mixing Based on Atomic Coherence, Phys. Rev. Lett.,1999,82,1847-1850.
    [47]A. M. Marino, V. Boyer, R. C. Pooser, P. D. Lett, K. Lemons, and K. M. Jones, Delocalized Correlations in Twin Light Beams with Orbital Angular Momentum, Phys. Rev. Lett.,2008,101,093602.
    [48]C. F. McCormick, A. M. Marino, V. Boyer, and P. D. Lett, Strong low-frequency quantum correlations from a four-wave-mixing amplifier, Phys. Rev. A,2008,78, 043816.
    [49]Cunjin Liu, Jietai Jing, Zhifan Zhou, Raphael C. Pooser, Florian Hudelist, Lu. Zhou, and Weiping Zhang, Realization of low frequency and controllable bandwidth squeezing based on a four-wave-mixing amplifier in rubidium vapor, Opt. Lett.,2011,36,2979-2981.
    [50]H. Y. Ling, Y. Q. Li, and M. Xiao, Electro magnetically induced grating: Homogeneously broadened medium, Phys. Rev. A,1998,57,1338-1344.
    [51]Masaharu Mitsunaga and Nobuyuki Imoto, Observation of an electromagnetically induced grating in cold sodium atoms, Phys. Rev. A,1999,59,4773-4776.
    [52]G C. Cardoso and J. W. R. Tabosa, Electromagnetically induced gratings in a degenerate open two-level system, Phys. Rev. A,2002,65,033803.
    [53]M. Artoni and G. C. La Rocca, Optically Tunable Photonic Stop Bands in Homogeneous Absorbing Media, Phys. Rev. Lett.,2006,96,073905.
    [54]HE Q Y,WU J H,WANG T J,and GAO J Y., Dynamic control of the photonic stop bands formed by a standing wave in inhomogeneous broadening solids, Physical Review A,2006,73,053813.
    [55]P. Villain, P. Ohberg, L. Santos, A. Sanpera, and M. Lewenstein, Four-wave mixing in degenerate atomic gases, Phys. Rev. A,2001,64,023606.
    [56]S. Wang, D.G. Ducreay, R. Pina, Min Yan, and Yifu Zhu, Coherent population trapping and four-wave mixing via dark states in a Doppler-broadened open Rb system, Phys. Rev. A,2000,61,033805.
    [57]Y. Lin, W. Liao, T. Peters, H. Chou, J. Wang, H. Cho, P. Kuan, and Ite A. Yu, Stationary Light Pulses in Cold Atomic Media and without Bragg Gratings, Phys. Rev. Lett.,2009,102,213601.
    [58]E. Arimondo, and G. Orriols, Non-Absorbing Atomic Coherences by Coherent 2-Photon Transitions in a 3-Level Optical-Pumping, Lettere al Nuovo Cimento, 1976,17,333-338.
    [59]H. R. Gray, R. M. Whitley, and C. R. Stroud, Coherent trapping of atomic populations, Opt. Lett.,1978,3,218-220.
    [60]E. Arimondo, Coherent population trapping in laser spectroscopy, Progress in Optics,1996,35,257-354.
    [61]Matsko A.B., Kocharovskaya O., Rostovtsev Y., Welch G.R., Zibrov A.S., Scully M.O., Slow, ultraslow, stored, and frozen light", Advance in Atomic, Molecular, And Optical Physics,2001,46,191-242.
    [62]Melnichuk Mike, Lowell T. Wood, Direct Kerr electro-optic effect in noncentro-symmetric materials, Phys. Rev. A,2010,82,013821.
    [63]Cumberbatch, E. Self-focusing in Non-linear optics, J. Inst. Maths Applics,1970, 6,250-262.
    [64]Kelley, P. L. Self-focusing of optical beams, Phys. Rev. Lett.,1965,15, 1005-1008.
    [65]Lallemand, P. and Bloembergen, N. Self-focusing of laser beams and stimulated Raman gain in liquids, Phys. Rev. Lett.,1965,15,1010-1012.
    [66]A. L. Gaeta, Catastrophic Collapse of Ultrashort Pulses, Phys. Rev. Lett.,2000, 84,3582-3585.
    [67]L. Q. Chen, Guo-Wan Zhang, Chun-Hua Yuan, Jietai Jing, Z. Y. Ou, and Weiping Zhang, Enhanced Raman scattering by spatially distributed atomic coherence, Appl. Phys. Lett.,2009,95,041115.
    [68]Ken-ichi Harada, Tatsuya Kanbashi, and Masaharu Mitsunaga, Competition between electromagnetically induced transparency and stimulated Raman scattering, Phys. Rev. A,2006,73,013807.
    [69]Ken-ichi Harada, Kenji Mori, Junji Okuma, Nobuhito Hayashi, and Masaharu Mitsunaga, Parametric amplification in an electromagnetically-induced-transparency medium, Phys. Rev. A,2008,78,013809.
    [70]A. S. Zibrov, M.D. Lukin, and M. O. Scully, Nondegenerate Parametric Self-Oscillation via Multiwave Mixing in Coherent Atomic Media, Phys. Rev. Lett.,1999,83,4049-4052.
    [71]F. A. Hashmi and M. A. Bouchene, Coherent Control of the Effective Susceptibility through Wave Mixing in a Duplicated Two-Level System, Phys. Rev. Lett.,2008,101,213601.
    [72]Haitao Zhou, Dawei Wang, Dan Wang, Junxiang Zhang, Shiyao Zhu, Efficient reflection via four-wave mixing in a Doppler-free electromagnetically-induced-transparency gas, Phys. Rev. A,2011,84,053835.
    [73]Carl E. Wieman, leo Hollerg, Using diode lasers for atomic physics Rev. Sci. Instrum.,1991,62,1-20.
    [74]K. B. MacAdam, A. Steimbach, C. Wieman, A narrow-band tunable diode laser system with grating feedback, and a saturated absorption spectrometer for Cs and Rb, Am. J. Phys.,1992,60,1098-1111.
    [75]R. W. Fox, C. S. Weime, L. Hollberg, and G. C. Turk, The Diode Laser as a Spectroscopic Tool, Spectro. Acta Rev.,1993,15,291-299.
    [76]G. M. Tino, Atomic spectroscopy with diode lasers, Physics Scripta,1994, T51, 58.
    [77]Gan Jianhua, Li Yimin, Chen Xuzong, Liu Haifeng, Yang Donghai, Wang Yiqiu, Magneto-Optical Trap of Cesium Atoms, Chin. Phys. Lett.,1996,13,821-824.
    [78]H. Wang, D. Goorskey, M. Xiao, Enhanced Kerr Nonlinearity via Atomic Coherence in a Three-Level Atomic System, Phys. Rev. Lett.,2001,87,073601.
    [79]H. Wang, D. Goorskey, M. Xiao, Dependence of enhanced Kerr nonlinearity on coupling power in a three-level atomic system, Opt. Lett.,2002,27,258-260.
    [80]T. Day, F. Luecke and M. Brownell, Contin-uously tunable diode lasers, Lasers & Op-tronics,1993,6,15-16.
    [81]A. S. Arnold, J. S. Wilson and M. G. Boshier, A simple extended-cavity diode laser, Rev.Sci.Instrum.,1998,69,1236-1239.
    [82]S. Z. Jin, Y. Q. Li, M. Xiao, Single-mode diode laser with a large frequency-scanning range based on weak grating feedback, Appl Opt.,1996,35,1436-1441.
    [83]K. C. Harvey, C. J. Myatt, External-cavity diode laser using a grazing incidence diffraction grating, Opt Lett.,1991,16,910-912.
    [84]X. Z. Chen, J. L. Yao, Y. M. Li, D. H. Yang, Y. D. Wang,A narrow linewidth diode laser for high resolution spectroscopy and its properties, Acta Optical Sinica(光 学学报),1996,16,1383-1388.
    [85]L. Fiqueroa, K. Y. Lau, H. W. Yen, Studies of GaAlAs injection lasers operating with an optical fiber resonator, J Appl Phys.,1980,51,3062-3071.
    [86]B. Dahmani, G. L. Hollber, R. Drullinger, Frequency stabilization of semicon-ductor lasers by resonant optical feedback, Opt. Lett.,1987,12,876-878.
    [87]A. Hemmerich, D. H. Mcintyre, D. Schropp, et al. Optically stabilized narrow linewidth semiconductor laser for resolution spectroscopy, Opt Comm.,1990,75, 118-122.
    [88]P. H. Laurent, A. Clairon, C. H. Breant, Frequency noise analysis of optically self-locked diode lasers, IEEE J Quantum Eletron,1989,25,1131-1141.
    [89]C. J. Hawthorn, K. P. Weber, and R. E. Scholten, Littrow configuration tunable external cavity diode laser with fixed direction output beam, Rev.Sci.Instrum., 2001,72,4477-4479.
    [90]K. C. Harvey and C. J. Myatt, External-cavity diode laser using a grazing-incidence diffraction grating, Opt. Lett.,1991,12,910-912.
    [91]DL100 Diode Laser System Manual, Toptica Photonics AG, Germany.
    [92]R. A. Nyman, G. Varoquaux, B. Villier, et al. Tapered-amplified antireflection-coated laser diodes for potassium and rubidium atomic-physics experiments, Rev. Sci. Instrum.,2006,77,033105.
    [93]K. Takase, J.□K. Stockton, and M.□A. Kasevich, High-power pulsed-current-mode operation of an overdriven tapered amplifier, Opt. Lett.,2007,32, 2617-2619.
    [94]周炳琨,高以智,陈家骅,陈倜嵘.激光原理[M].北京:国防工业出版社,1996.
    [95]W. E. Moerner, Persistent spectral hole-burning:Science and applications, Springer-Verlag New York Inc., New York,2008.
    [96]D. A. Steck, Cesium D Line Data, Oregon Center for Optics and Department of Physics, University of Oregon.
    [97]蓝信钜等,激光技术, (科学出版社)2001.
    [98]屠世谷,稳频与测频技术, (科学出版社)1986.
    [99]T. W. Hansch, I. S. Shahin, A. L. Schawlow, High-Resolution Saturation Spectroscopy of the Sodium D Lines with a Pulsed Tunable Dye Laser, Phys. Rev. Lett.,1971,27,707-710.
    [100]Gary C. Bjorklund, Frequency-modulation spectroscopy:a new method for measuring weak absorptions and dispersions, Opt. Lett.,1980,5,15-17.
    [101]J. L. Hall and T. W. Hansch, External dye-laser frequency stabilizer, Opt. Lett., 1984,9,502-504.
    [102]A. M. Akulshin, S. Barreiro, A. Lezama, Steep Anomalous Dispersion in Coherently Prepared Rb Vapor, Phys. Rev. Lett.,1999,83,4277-4280.
    [103]F. Silva, J. Mompart, V. Ahufinger, and R. Corbalan, Electromagnetically induced transparency in Doppler-broadened three-level systems with resonant standing-wave drive, Europhys. Lett.,2000,51,286-292.
    [104]Dmitry V. Strekalov, Andrey B. Matsko, and Nan Yu, Electromagnetically induced transparency with a partially standing drive field, Phys. Rev. A,2007,76, 053828.
    [105]F. Silva, J. Mompart, V. Ahufinger, and R. Corbalan, Electromagnetically induced transparency with a standing-wave drive in the frequency up-conversion regime, Phys. Rev. A,2001,64,033802.
    [106]Peter J. Martin, Bruce G. Oldaker, Andrew H. Miklich, and David E. Pritchard, Bragg scattering of atoms from a standing light wave, Phys. Rev. Lett.,1988,60, 515-518.
    [107]A. W. Brown and M. Xiao, Frequency detuning and power dependence of reflection from an electromagnetically induced absorption grating, J. Mod. Opt., 2005,52,2365-2371.
    [108]Shang-qi Kuang, Ren-gang Wan, Peng Du, Yun Jiang, and Jin-yue Gao, Transmission and reflection of electromagnetically induced absorption grating in homogeneous atomic media, Opt. Express,2008,16,15455-15462.
    [109]I. Bae, H. Moon, M. Kim, L. Lee, J. Kim, Transformation of electromagnetically induced transparency into enhanced absorption with a standing-wave coupling field in an Rb vapor cell, Opt. Express,2010,18,1389-1397.
    [110]Junxiang Zhang, Haitao Zhou, Dawei Wang,Shiyao Zhu, Enhanced reflection via phase compensation from anomalous dispersion in atomic vapor, Phys. Rev. A, 2011,83,053841.
    [111]Kristian Rymann Hansen and Klaus M(?)lmer, Stationary light pulses in ultracold atomic gases, Phys. Rev. A,2007,75,065804.
    [112]G. S. Agarwal and N. Nayak, Effects of collisions and saturation on multiphoton processes and nonlinear mixing in the field of two pumps, Phys. Rev. A,1986,33, 391-402.
    [113]B. R. Mollow, Stimulated Emission and Absorption near Resonance for Driven Systems, Phys. Rev. A,1972,5,2217-2222.
    [114]Y. R. Shen, The Principles of Nonlinear Optics, (Wiley, New York),1984, p.250.
    [115]R. L. Abrams and R. C. Lind, Degenerate four-wave mixing in absorbing media, Opt. Lett.,1978,2,94-96.
    [116]D. Budker, W. Gawlik, D. F. Kimball, S. M. Rochester, V. V. Yashchuk, and A. Weis, Resonant nonlinear magneto-optical effects in atoms, Rev. Mod. Phys., 2002,74,1153-1201.
    [117]S. I. Kanorsky, A. Weis, J. Wurster, and T. W. Hansch, Quantitative investigation of the resonant nonlinear Faraday effect under conditions of optical hyperfine pumping, Phys. Rev. A,1993,47,1220-1226.
    [118]P. F. Liao and G. C. Bjorklund, Polarization Rotation Induced by Resonant Two-Photon dispersion, Phys. Rev. Lett.,1976,36,584-587.
    [119]F. Schuller and D. N. Stacey, Magneto-optical rotation in atomic transitions between levels with J=0 and J=1, Phys. Rev. A,1999,60,973-981.
    [120]Shengwang Du, Jianming Wen, Morton H. Rubin, and G.Y. Yin, Four-Wave Mixing and Biphoton Generation in a Two-Level System, Phys. Rev. Lett.,2007, 98,053601.
    [121]E. Pawelec, W. Gawlik, B. Samson, and K. Musiol, Resonant degenerate four-wave mixing in dense media, Phys. Rev. A,1996,54,913-919.
    [122]Binh Do, Jongwhan Cha, D. S. Elliott and S. J. Smith, Degenerate phase-conjugate four-wave mixing in a nearly-Doppler-free two-level atomic medium, Phys. Rev. A,1998,58,3089-3098.
    [123]G. L. Gattobigio, F. Michaud, J. Javaloyes, J. W. R. Tabosa, and R. Kaiser, Bunching-induced asymmetry in degenerate four-wave mixing with cold atoms, Phys. Rev. A,2006,74,043407.
    [124]V. S. Smirnov, A. M. Tumaikin, and V. I. Yudin, Zh. Eksp. Teor. Fiz.,1989,96, 1613. Sov. Phys.JETP 69913-921 (Engl. Transl.)
    [125]A. Lezama, S. Barreiro, and A. M. Akulshin, Electromagnetically induced absorption, Phys. Rev. A,1999,59,4732-4735.
    [126]O. S. Mishina, M. Scherman, P. Lombardi, J. Ortalo, D. Felinto, A. S. Sheremet, A. Bramati, D. V. Kupriyanov, J. Laurat, and E. Giacobino, Electromagnetically induced transparency in an inhomogeneously broadened A transition with multiple excited levels, Phys. Rev. A,2011,83,053809.
    [127]J. R. Morris and B. W. Shore, Reduction of degenerate two-level excitation to independent two-state systems, Phys. Rev. A,1983,27,906-912.
    [128]F. T. Hioe and C. E. Carroll, Coherent population trapping in N-level quantum systems, Phys. Rev. A,1988,37,3000-3005.
    [129]H. Y. Ling, Y. Li, and M. Xiao, Coherent population trapping and electromagneti-cally induced transparency in multi-Zeeman-sublevel atoms, Phys. Rev. A,1996,53,1014-1026.
    [130]V. Milner and Y. Prior, Multilevel Dark States:Coherent Population Trapping with EllipticallyPolarized Incoherent Light, Phys. Rev. Lett.,1998,80,940-943.
    [131]Y. Zhu, S. Wang, and N. Mulchan, Multilevel dark states in an inhomogeneously broadened open atomic system, Phys. Rev. A,1999,59,4005-4011.
    [132]V. Milner, B. M. Chernobrod, and Y. Prior, Coherent-population trapping in a highly degenerate open system, Europhys. Lett.,1996,34,557-562.
    [133]F. Papoff, F. Mauri, and E. Arimondo, Transient velocity-selective coherent population trapping in one dimension, J. Opt. Soc. Am. B,1992,9,321-331.
    [134]A. Schilke, C. Zimmermann, P. W. Courteille, and W. Guerin, Photonic Band Gaps in One-Dimensionally Ordered Cold Atomic Vapors, Phys. Rev. Lett.,2011, 106,223903.
    [135]C. Goren, A. D. Wilson-Gordon, M. Rosenbluh, and H. Friedmann, Electromag-netically induced absorption due to transfer of coherence and to transfer of population, Phys. Rev. A,2003,67,033807.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700