量子点复合系统中量子光学特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着纳米技术的发展,人们可以在自然界已经存在的原子分子基础上,构建出各种具有量子效应的纳米颗粒,如量子点、量子线、金属纳米颗粒、单层石墨。除了这些纳米材料之外,还有一些材料,比如纳米机械系统,碳纳米管等,他们的尺度虽然在微米量级,但是某一维度处于纳米量级,在一定的条件下能显示出量子效应。另外,一些生物大分子,比如DNA、RNA和蛋白质分子,在一定条件下也具有量子效应。这些纳米材料,在介于100纳米与数微米之间,或者更高尺度上,又可以被当作新的基础材料。由这些纳米基础材料,两两组装或者多个互相组装,可以构成新颖的人工复合材料。在这些新的复合材料中,会显示出不同于单个纳米材料的新的光学、电学、磁学和生物学效应,在新能源、医学、医药等领域,具有重要的应用价值。此外,这些新颖的人工复合材料尺度介于微观与宏观之间,将会表现出介于量子力学和经典力学之间的物理现象,从而将会架起量子力学和经典力学之间的桥梁,可以使人们深入了解经典力学到量子力学之间的过渡效应,验证量子力学中的假设和推断,深入了解物理本质。因此,人工复合材料成为目前的研究热点。
     在本文中,我们研究了量子点、金属纳米颗粒和纳米机械复合系统中的相干光谱、三阶Kerr效应,探讨了新颖纳米复合材料的特性,也将量子光学的研究推进到多种纳米材料的复合系统中。此外,我们研究了量子点和金属纳米颗粒相互作用系统中的拉曼光谱,引入声子与等离子的相互作用。前面的这些研究中,我们都使用的是半经典的方法,在此之后,我们又使用了全量子的方法,用腔相互作用来描述等离子体的作用,研究了量子点和金属颗粒相互耦合系统中的相干光谱和慢光效应,并对比了研究等离子相互作用的半经典的局域场作用和全量子描述下的不同结果,发现全量子语言描述下的结果更符合实验结果。最后,我们研究了竖直耦合自组装量子点中的负折射效应,创新性地将对负折射的研究引入到半导体量子点系统中。本论文各章节的内容安排如下:
     在第一章中,介绍了量子点、金属纳米颗粒和纳米机械系统的各种制作方法和它们的一些基本性质。并介绍了一些常见的人工复合纳米材料以及在这些纳米材料之上的一些研究进展。最后,介绍了本论文中涉及的各种量子光学效应的物理内涵。
     在第二章中,研究了量子点、金属纳米颗粒和纳米机械复合系统的相干光谱。在该系统中,金属纳米颗粒被悬挂在进场光学扫描显微镜的悬臂上,以精确控制量子点和金属纳米颗粒的间距。量子点被当为一个二能级系统,金属纳米颗粒表面的等离子体被当做局域场处理。纳米机械振子和量子点相互作用使得控制光的吸收峰产生一个负的吸收峰和一个正的吸收峰。等离子体会增强吸收峰,使得正负的吸收峰出现四个数量级的增强。并且这种增强可以由量子点和金属颗粒之间的距离连续调控。随着吸收峰的增强,峰的宽度变窄。这些性质使得该复合系统可以被应用到生物传感器或者被用来制造拉曼激光器。
     在第三章中,研究了量子点、金属纳米颗粒和纳米机械复合系统中的三阶非线性Kerr效应。由量子点和金属纳米颗粒组合成的复合原子被整体嵌入纳米机械振子之中。纳米机械振子与量子点的耦合会诱导产生三阶非线性Kerr效应,金属颗粒产生的等离子体进一步增强这种非线性效应。这种增强效应也可以被量子点和金属颗粒之间的间距连续调控。并且在某一个间距上改变控制光的强度,Kerr效应也会改变。在某一个控制光的强度下,Kerr系数的改变比较缓慢,超过该值以后,Kerr系数会迅速增强。我们还对比了我们的系统和本征硅及其他纳米复合系统中Kerr效应的增强结果,发现我们的系统具有很强的优势。我们还发现,系统中的Kerr系数可以受到控制光的调制,得到一个类似二极管的功率曲线。这些结果表明,我们的系统可以被用来制作Kerr器件。
     在第四章中,研究了量子点和金属纳米颗粒相互耦合系统中的类拉曼光谱效应。在该系统中,量子点被当做一个二能级系统来处理,并且我们考虑了量子点中的声子对系统的影响。由于声子与量子点的作用,会在量子点的吸收峰上诱导产生出一个正的吸收峰和负的吸收峰。金属纳米颗粒表面产生的等离子会增强正负吸收峰。这种表面等离子增强拉曼散射效应将有可能在生物,医学等领域有重要的应用价值。
     在第五章中,研究了量子点与金属纳米颗粒耦合系统中的慢光效应。不同于前面几章的讨论,我们采用了全量子化语言来描述该系统,即用腔相互作用来描述激子与等离子体的相互作用。在等离子的作用下量子点的吸收峰会产生双峰结构,该结果与实验描述近似。但不同于普通腔相互作用的是,吸收峰上会诱导产生一个尖锐的峰。在该峰的位置,会产生较大的慢光群速度。我们还将量子化语言描述的结果与一般半经典描述计算得到的结果做了相应的比较,并给出了腔近似下的量子语言描述下的讨论结果更加符合实验结果的结论。
     在第六章中,研究了竖直耦合自组装量子点系统中的负折射效应。量子点系统由两层大小不同的量子点耦合在一起组成,电子可以在上下两侧量子点之间隧穿。我们把两层量子点当做一个Λ型三能级系统来考虑。我们用外电压来调控量子点之间的隧穿。当改变外电压时,介质的折射率会从正到负连续改变。并且在取得较大的负折射的同时,介质具有较小的吸收率。
     第七章提供本文主要结论。
Due to the rapid advance of nanotechnology, it is possible to fabricatethe novel nanoparticle based on common atoms and molecules with quantumeffect, such as semiconductor quantum dot(SQD), metal nanoparticle(MNP), carbon nanotubes(CNT), nanomechanical resonator, graphene,and so on. And many other natural particles, like DNA, RNA, and proteinwith size larger than 100nm, can show quantum effect in some conditions.Based on those building blocks, it is possible to produce hybrid complexwith very different electric and optical properties. Moreover, those novelartificial materials which bestride the realms of classical and quantummechanics, can offer great promise for a huge variety of applications andfundamental research. They enable the study of hybrid superstructures tobecome a new frontier in optical field.
     In this article, we have studied the coherent spectroscopy and Kerreffect in the complex system consisted of SQD, MNP and nanomechanicalresonator. We could discuss the quantum optical properties in such anovel hybrid system. Then we have studied the Raman-like scatteringin the SQD and MNP hybrid complex and considered the phonon andplasmon interaction in the hybrid complex. These studies are based onsemiclassical methods, and then we have used the full quantum models tostudy the slow light effect in the SQD and MNP hybrid complex. Finally, we study the negative index of refraction in vertically coupled InGaAsquantum dots.
     In Chapter One, we have introduced the methods to fabricate theSQD, MNP and the properties of those nanoparticles. Then we haveshown some hybrid nanocrystal and the latest studies on those structures.Finally, we have described kinds of the optical terms in this article.
     In Chapter Two, we have studied a hybrid nanocrystal complex consistedof a metal nanoparticle and a semiconductor quantum dot embeddedin a nanomechanical resonator. It is shown that the resonance amplificationpeak of the probe spectrum will tone up dramatically due to the couplingof the plasmon, exciton and nanomechanical resonator. The peaks’enhancement increases significantly with decreasing the distance betweenthe metal nanoparticle and the quantum dot, which implies the strongplasmon enhancement effect in this coupled system. The results obtainedhere may have the potential applications such as tunable Raman lasersand bio-sensors.
     In Chapter Three, we have studied the large optical Kerr effect in ananocrystal complex consisted of a quantum dot and a metal nanoparticleembedded in a nanomechanical resonator in terms of the exciton-plasmonphononinteraction. The plasmon resonance of a Au nanoparticle will tonethe nonlinear interaction between a quantum dot and a nanomechanicalresonator, resulting in several orders of larger enlargement in optical Kerreffect than intrinsic silicon and many other synthesized structures. Moreover,the optical Kerr nonlinearity can be tuned simply by the intensityof control field. We also have compared the Kerr nonlinearity in our systemwith three other complex systems, and found our system is muchbetter than other systems in obtaining the large Kerr nonlinearity. It is prospective to realize a tunable optical Kerr switch device based on oursystem.
     In Chapter Four, we have investigated the coherent optical spectroscopyof an artificial nanocrystal consisted of a metal nanoparticle anda semiconductor quantum dot in a strong control field and a weak probefield. It is shown that the resonance amplification peak of the probe spectrumwill have a several times magnification due to the coupling of theplasmon, phonon and exciton. The magnification increases significantlywith decreasing the distance between the metallic nanoparticle and a quantumdot. The magnification can be continuously adjusted by the distanceof the metal nanoparticle and quantum dot. The Raman-like effect can beutilized in medical field.
     In Chapter Five, we have utilized a full quantum optical model andtheoretically studied the slow light effect in an artificial nanocrystal consistedof a metal nanoparticle and a semiconductor quantum dot in a strongpump field and a weak probe field. The interaction between the SQD andMNP is described as the cavity-like behavior and absorption spectrum ofthe probe light is strongly modified. It is shown that two peaks appearat the absorption spectrum due to the interaction between plasmon andexciton. And the width of the peaks can continuously controlled by thecenter to center distance between the SQD and MNP. Besides the twopeaks, a sharp peak is also found. Then we consider the slow light effectat the sharp peak. We also give some discussion about the different resultsbetween the full quantum optical method and the semi-classical methodin the same system.
     In Chapter Six, we have demonstrated that negative index of refractioncan be achieved by tuning the tunneling rate between InGaAs quantumdots layers via simply applying a bias voltage across the layers. As the bias voltage is changed, the index of refraction is tunable from negativethrough zero to positive. Moreover, the large negative refractive indexand little loss can be achieved at the same time.
     In Chapter Seven, we have listed the main conclusions in my thesis.
引文
[1] Nie S.M. Emory S.R.,“Probing single molecules and single nanoparticles bysurface-enhanced raman scattering”, Science, 1997, 275(5303), 1102–1106.
    [2] Kneipp K., Wang Y., Kneipp H., et al.,“Single molecule detection using surfaceenhancedraman scattering (sers)”, Phys. Rev. Lett., 1997, 78(9), 1667–1670.
    [3] Chang D.E., Rensen A.S.S., Demler E.A., et al.,“A single-photontransistor usingnanoscale surface plasmons”, Nat. Phys., 2007, 3(6), 807–812.
    [4] Taminiau T.H., Moerland R.J., Segerink F.B., et al.,“λ/4 resonance of an opticalmonopole antenna probed by single molecule fluorescence”, Nano Lett., 2007,7(1), 28–33.
    [5] Tam F., Goodrich G.P., Johnson B.R., et al.,“Plasmonic enhancement of molecularfluorescence”, Nano Lett., 2007, 7(2), 496–501.
    [6] Yildiz A., Forkey J.N., McKinney S.A., et al.,“Myosin v walks hand-over-hand:single fluorophore imaging with 1.5-nm localization”, Science, 2003, 300(5628),2061–2065.
    [7] Lakowicz J.R.,“Radiative decay engineering 5: metal-enhanced fluorescence andplasmon emission”, Anal. Biochem., 2005, 337, 171–194.
    [8] Hirsch L.R., Stafford R.J., Bankson J.A., et al.,“Nanoshell-mediated near-infraredthermal therapy of tumors under magnetic resonance guidance”, Proc. Natl. Acad.Sci., 2003, 100(23), 13549–13554.
    [9] Ekinci K.L., Huang X.M.H., Roukes M.L.,“Ultrasensitive nanoelectromechanicalmass detection”, Appl. Phys. Lett., 2004, 84(22), 4469–4472.
    [10] LaHaye M.D., Buu O., Camarota B., et al.,“Approaching the quantum limit of ananomechanical resonator”, Science, 2004, 304(5667), 74–77.
    [11] Ekinci K.L. Roukes M.L.,“Nanoelectromechanical systems”, Rev. Sci. Instrum.,2005, 76(6), 061101–11.
    [12] Dickinson M.E., Wolf K.V., Mann A.B.,“Nanomechanical and chemical characterizationof incipient in vitro carious lesions in human dental enamel”, Arch. OralBiol., 2007, 52(8), 753–760.
    [13] Lim S.H., Raorane D., Satyanarayana S., et al.,“Nano-chemo- mechanical sensorarray platform for high-throughput chemical analysis”, Sens. Actuators B, 2006,119(2), 466–474.
    [14] Li J.J. Zhu K.D.,“A scheme for measuring vibrational frequency and couplingstrength in a coupled nanomechanical resonator-quantum dot system”, Appl.Phys. Lett., 2009, 94(6), 063116–3.
    [15] Li J.J. Zhu K.D.,“An efficient optical knob from slow light to fast light in a couplednanomechanical resonator-quantum dot system”, Opt. Express, 2009, 17(22),19874–19881.
    [16] Schwab K.C. Roukes M.L.,“Putting mechanics into quantum mechanics”, PhysicsToday, 2005, 58, 36–42.
    [17] Suh J., LaHaye M.D., Echternach P., et al.,“Parametric amplification and backactionnoise squeezing by a qubit-coupled nanomechanical resonator”, Nano Lett.,2010, 10(10), 3990–3994.
    [18] Arakawa Y. Sakaki H.,“Multidimensional quantum well laser and temperaturedependence of its threshold current”, Appl. Phys. Lett., 1982, 40(11), 939–941.
    [19] Kouwenhoven L.P. et al., In Proceedings of NATO ASI on Mesoscopic ElectronTransport, Kluwer, 1997.
    [20] Mews A., Kadavanich A.V., Banin U., et al.,“Structural and spectroscopic investigationsof cds/hgs/cds quantum dot quantum wells”, Phys. Rev. B, 1996,53(20), R13242–R13245.
    [21] Reed M.A., Randall J.N., Aggarwal R.J., et al.,“Observation ofdiscrete electronicstates in a zero-dimensional semiconductor nanostructure”, Phys. Rev.Lett., 1988, 60(6), 535–537.
    [22] Xie Q., Madhukar A., Chen P., et al.,“Vertically self-organized inas quantum boxislands on gaas(100)”, Phys. Rev. Lett., 1995, 75(13), 2542–2545.
    [23] Oosterkamp T.H., Kouwenhoven L.P., Koolen A.E.A., et al.,“Photon sidebandsof the round state and first excite state of a quantum dot”, Phys. Rev. Lett., 1997,78(8), 1536–1539.
    [24] Atwater H.A.,“The promise of plasmonics”, Sci. Am., 2007, 296, 56–64.
    [25] Lal S., Link S., Halas N.J.,“Plasmonics: From surface plasmon sensing to plasmonwaveguiding”, Nat. Photonics, 2007, 1(1), 641.
    [26] Pines D. Bohm D.,“A collective description of electron interactions: Iii. coulombinteractions in a degenerate electron gas”, Phys. Rev., 1953, 92(3), 609–625.
    [27] Ritchie R.H.,“Plasma loss by fast electrons in thin film”, Phys. Rev., 1957,106(5), 874–881.
    [28] Kreibig U. Vollmer M., Optical properties of metal clusters, Springer-Verlag,Berlin, 1995.
    [29] Bohren C.F. Huffman D.R., Absorption and Scattering of Light by Small Particles,Wiley, 1983.
    [30] Haynes C.L., McFarland A.D., Zhao L.L., et al.,“Nanoparticle optics: The importanceof radiative dipole coupling in two-dimensional nanoparticle arrays”, J.Phys. Chem. B, 2003, 107(30), 7337–7342.
    [31] Sun Y. Xia Y.,“Shape-controlled synthesis of gold and silver nanoparticles”,Science, 2002, 298(5601), 2176–2179.
    [32] Liu M. Guyot-Sionnest P.,“Synthesis and optical characterization of au/agcore/shell nanorods”, J. Phys. Chem. B, 2004, 109(19), 5882–5888.
    [33] Rugar D., Bidaloam R., Mamin J.J., et al.,“Single spin detection by magneticresonance force microscopy”, Nature, 2004, 430(02658), 329–332.
    [34] Sazonova V., Yaish Y.,¨ust¨unel H., et al.,“A tunable carbon nanotube electromechanicaloscillator”, Nature, 2004, 431(02905), 284–287.
    [35] Knobel R. Cleland A.N.,“Nanometre-scale displacement sensing using a singleelectron transistor”, Nature, 2003, 424(01773), 291–293.
    [36] Zhang W., Govorov A.O., Bryant G.W.,“Semiconductor-metal nanoparticlemolecules: Hybrid excitons and the nonlinear fano effect”, Phys. Rev. Lett., 2006,97(6), 146804–146807.
    [37] K¨ukn S., H(a|°)kanson U., Rogobete L., et al.,“Enhancement of single-moleculefluorescence using a gold nanoparticle as an optical nanoantenna”, Phys. Rev.Lett., 2006, 97(14), 017402–017405.
    [38] Artuso R.D. Bryant G.W.,“Optical response of strongly coupled quantum dotmetalnanoparticle system: Double peaked fano structure and bistability”, NanoLett., 2008, 8(7), 2106–2111.
    [39] Sadeghi S.M.,“Plasmonic metaresonances: Molecular resonances in quantum dotmetallicnanoparticle conjugates”, Phys. Rev. B, 2009, 79(23), 233309–4.
    [40] Lu Z.E. Zhu K.D.,“Enhancing kerr nonlinearity of a strong coupled excitonplasmonin hybrid nanocrystal molecules”, J. Phys. B: At. Mol. Opt. Phys., 2008,41(18), 185503–7.
    [41] Lu Z.E. Zhu K.D.,“Slow light in an artificial hybrid nanocrystal complex”, J.Phys. B: At. Mol. Opt. Phys., 2009, 42(1), 015502–6.
    [42] Wilson-Rae I., Zoller P., Imamoˉglu A.,“Laser cooling of a nanomechanical resonatormode to its quantum ground state”, Phys. Rev. Lett., 2004, 92(7), 075507–075510.
    [43] Li J.J. Zhu K.D.,“A tunable optical kerr switch based on a nanomechanicalresonator coupled to a quantum dot”, Nanotechnology, 2010, 21(20), 205501–4.
    [44] Gr¨oblacher1 S., Hertzberg J.B., Vanner M.R., et al.,“Demonstration of an ultracoldmicro-optomechanical oscillator in a cryogenic cavity”, Nat. Phys., 2009,5(1301), 485–488.
    [45] Gigan S., B¨ohm H.R., Paternostro M., et al.,“Self-cooling of a micromirror byradiation pressure”, Nature, 2006, 444(05273), 67–70.
    [46] He W., Li J.J., Zhu K.D.,“Coupling-rate determination based on radiation pressureinduced normal mode splitting in cavity optomechanical systems”, Opt. Lett.,2009, 35(3), 339–341.
    [47] Boyd R.W., Nonlinear Optics, Academic, San Diego, California, 1992.
    [48] Pasiskevicius V., Fragemann A., Laurell F., et al.,“Enhenced stimulated ramanscattering in optical parametric oscillators from periodically poled ktiopo4”, Appl.Phys. Lett., 2003, 82(3), 325–327.
    [49] Wang H., Murai T., Fujimoto S.,“Stimulated resonance raman scattering frompolyphenylenevinylene thin film waveguides”, Appl. Phys. Lett., 2006, 89(14),141114–1411116.
    [50] Pavlov S.G., Bottger U., Hovenier J.N., et al.,“Stimulated terahertz emissiondue to electronic raman scattering in silicon”, Appl. Phys. Lett., 2009, 94(17),171112–3.
    [51] Sirleto L., Ferrara M.A., Nicotra G., et al.,“Observation of stimulated ramanscattering in silicon nanocomposites”, Appl. Phys. Lett., 2009, 94(22), 221106–3.
    [52] Hau L.V., Harris S.E., Dutton Z., et al.,“Light speed reduction to 17 metres persecond in ultracold atomic gas”, Nature, 1999, 397(6720), 594–598.
    [53] Boyd R.W., Rcymer M.G., Narum P., et al.,“Four-wave paramatric interactionin a strongly driven two-level system”, Phys. Rev. A, 1981, 24(1), 411–423.
    [54] Boyd R.W. Gauther D.J.,“Slow and fast light”, Progress in Optics, 2002, 43,497–530.
    [55] Boyd R.W., Gauthier D.J., Gaeta A.L.,“Application of slow light in telecommunications”,Optics & PhotonicsNews, 2006, 17(4), 18–23.
    [56] Liu S.Y., Chen W.K., Du J.J., et al.,“Manipulating negative-refractive behaviorwith a magnetic field”, Phys. Rev. Lett., 2008, 101(15), 157407–157410.
    [57] Mandel’shtam L.I.,“Group velocity in a crystal lattic”, Zh. Eksp. Teor. Fiz., 1945,15, 475–478.
    [58] Sivukhin D.V.,“The energy of electromagnetic waves in dispersive media”, Opt.Spektrosk, 1957, 3, 308–312.
    [59] Veselago D.G.,“The electrodynamics of substances with simultaneously negativevalues ofεandμ”, Sov. Phys. Uspekhi, 1968, 10, 509–516.
    [60] Pendry J.B.,“Negative refraction makes a perfect lens”, Phys. Rev. Lett., 2000,85(18), 3966–3969.
    [61] Houck A.A., Brock J.B., Chuang I.L.,“Experimental observations of a left-handedmaterial that obeys snell’s law”, Phys. Rev. Lett., 2003, 90(13), 137401–137405.
    [1] Engheta N.,“Circuits with light at nanoscales: optical nanocircuits inspired bymetamaterials”, Science, 2007, 317(5845), 1698–1702.
    [2] Bozhevolnyi S.I., Volkov V.S., Devaux E., et al.,“Channel plasmon subwavelengthwaveguide components including interferometers and ring resonators”, Nature,2006, 440(04594), 508–511.
    [3] Falk A.L., Koppens F.H.L., Yu C.L., et al.,“Near-field electrical detection ofoptical plasmons and single-plasmon sources”, Nat. Phys., 2009, 5(1284), 475–479.
    [4] Durach M., Rusina A., Stockman M.I., et al.,“Toward full spatiotemporal controlon the nanoscale”, Nano Lett., 2007, 7(10), 3145–3149.
    [5] Nie S.M. Emory,“Probing single molecules and single nanoparticles by surfaceenhancedraman scattering”, Science, 1997, 275(5303), 1102–1106.
    [6] Yildiz A., Forkey J.N., McKinney S.A., et al.,“Myosin v walks hand-over-hand:single fluorophore imaging with 1.5-nm localization”, Science, 2003, 300(5628),2061–2065.
    [7] Govorov A.O. Carmeli I.,“Hybrid structures composed of photosynthetic systemand metal nanoparticles: plasmon enhancement effect”, Nano Lett., 2007, 7(3),620–625.
    [8] Skirtach A.G., Dejugnat C., Braun D., et al.,“The role of metal nanoparticles inremote release of encapsulated materials”, Nano Lett., 2005, 5(7), 1371–1377.
    [9] Zhang W., Govorov A.O., Bryant G.W.,“Semiconductor-metal nanoparticlemolecules: Hybrid excitons and the nonlinear fano effect”, Phys. Rev. Lett., 2006,97(6), 146804–146807.
    [10] Komarala V.K., Rakovich Y.P., Bradley A.L., et al.,“Off-resonance surface plasmonenhanced spontaneous emission from cdte quantum dots”, Appl. Phys. Lett.,2006, 89(25), 253118–3.
    [11] K¨ukn S., H(a|°)kanson U., Rogobete L., et al.,“Enhancement of single-moleculefluorescence using a gold nanoparticle as an optical nanoantenna”, Phys. Rev.Lett., 2006, 97(14), 017402–017405.
    [12] Artuso R.D. Bryant G.W.,“Optical response of strongly coupled quantum dotmetalnanoparticle system: Double peaked fano structure and bistability”, NanoLett., 2008, 8(7), 2106–2111.
    [13] Sadeghi S.M.,“Plasmonic metaresonances: Molecular resonances in quantum dotmetallicnanoparticle conjugates”, Phys. Rev. B, 2009, 79(23), 233309–4.
    [14] Lu Z.E. Zhu K.D.,“Enhancing kerr nonlinearity of a strong coupled excitonplasmonin hybrid nanocrystal molecules”, J. Phys. B: At. Mol. Opt. Phys., 2008,41(18), 185503–7.
    [15] Lu Z.E. Zhu K.D.,“Slow light in an artificial hybrid nanocrystal complex”, J.Phys. B: At. Mol. Opt. Phys., 2009, 42(1), 015502–6.
    [16] Otto A., Mrozek I., Grabhorn H.,“Surface-enhanced raman scattering”, J. Phys.Condens. Matter, 1992, 4, 1143–1212.
    [17] Baumberg J.J., Kelf T.A., Sugawara Y., et al.,“Angle-resolved surface-enhancedraman scattering on metallic nanostructured plasmonic crystals”, Nano Lett.,2005, 5(11), 2262–2267.
    [18] Wei H., Hao F., Huang Y.Z., et al.,“Polarization dependence of surface-enhancedraman scattering in gold nanoparticle-nanowire systems”, Nano Lett., 2008, 8(8),2497–2502.
    [19] Becker M., Sivakov V., Andr¨a G., et al.,“The sers and ters effects obtained bygold droplets on top of si nanowires”, Nano Lett., 2007, 7(1), 75–80.
    [20] Ekinci K.L., Huang X.M.H., Roukes M.L.,“Ultrasensitive nanoelectromechanicalmass detection”, Appl. Phys. Lett., 2004, 84(22), 4469–4472.
    [21] LaHaye M.D., Buu O., Camarota B., et al.,“Approaching the quantum limit of ananomechanical resonator”, Science, 2004, 304(5667), 74–77.
    [22] Ekinci K.L. Roukes M.L.,“Nanoelectromechanical systems”, Rev. Sci. Instrum.,2005, 76(6), 061101–11.
    [23] Dickinson M.E., Wolf K.V., Mann A.B.,“Nanomechanical and chemical characterizationof incipient in vitro carious lesions in human dental enamel”, Arch. OralBiol., 2007, 52(8), 753–760.
    [24] Lim S.H., Raorane D., Satyanarayana S., et al.,“Nano-chemo- mechanical sensorarray platform for high-throughput chemical analysis”, Sens. Actuators B, 2006,119(2), 466–474.
    [25] Wilson-Rae I., Zoller P., Imamoˉglu A.,“Laser cooling of a nanomechanical resonatormode to its quantum ground state”, Phys. Rev. Lett., 2004, 92(7), 075507–075510.
    [26] Li J.J. Zhu K.D.,“A scheme for measuring vibrational frequency and couplingstrength in a coupled nanomechanical resonator-quantum dot system”, Appl.Phys. Lett., 2009, 94(6), 063116–3.
    [27] Zrenner A., Beham E., Stufler S., et al.,“Coherent properties of a two-level systembased on a quantum-dot photodiode”, Nature, 2002, 418(00912), 612–614.
    [28] Stufler S., Ester P., Zrenner A.,“Quantum optical properties of a singleinxga1-xas-gaas quantum dot two-level system”, Phys. Rev. B, 2005, 72(12),121301–4.
    [29] Kalkbrenner T., H(a|°)kanson U., Sandoghdar V.,“Tomographic plasmon spectroscopyof a single gold nanoparticle”, Nano Lett., 2004, 4(12), 2309–2314.
    [30] Kalkbrenner T., H(a|°)akanson U., Sch¨adle A., et al.,“Optical microscopy via spectralmodifications of a nanoantenna”, Phys. Rev. Lett., 2005, 95(7112), 200801.
    [31] Yan J.Y., Zhang W., Duan S., et al.,“Optical properties of coupled metalsemiconductorand metal-molecule nanocrystal complexes:role of multipole effects”,Phys. Rev. B, 2008, 77(20), 165301–4.
    [32] Pelton M., Aizpurua J., Bryant G.,“Metal-nanoparticle plasmonics”, Laser Photon.Rev., 2008, 2(3), 136–159.
    [33] Khoo I.C., Werner D.H., Liang X., et al.,“Nanosphere dispersed liquid crystalsfor tunable negative-zero-positive index of refraction in the optical and terahertzregimes”, Opt. Lett., 2006, 31(17), 2592–2594.
    [34] Yariv A., Quantum Electronics, Wiley, New York, 1975.
    [35] Boyd R.W., Nonlinear Optics, Academic, San Diego, California, 1992.
    [1] Scheibner M., Schmidt T., Worschech L., et al.,“Superradiance of quantum dots”,Nat. Phys., 2007, 3(494), 106–110.
    [2] Taton T.A., Mirkin C.A., Letsinger R.L.,“Scanometric dna array detection withnanoparticle probes”, Science, 2000, 289(5485), 1757–1760.
    [3] Bachtold A., Hadley P., Nakanishi T., et al.,“Logic circuits with carbon nanotubetransistors”, Science, 2001, 294(5545), 1317–1320.
    [4] Anetsberger G., Arcizet O., Unterreithemeier Q.P., et al.,“Near-field cavity optomechanicswith nanomechanical oscillators”, Nat. Phys., 2009, 5(1425), 909–914.
    [5] Trauzetel B., Bulaev D.V., Loss D., et al.,“Spin qubits in graphene quantumdots”, Nat. Phys., 2007, 3(544), 192–196.
    [6] Choi Y., Mecke A., Orr B.G., et al.,“Dna鈥揹irected synthesis of generation 7and 5 pamam dendrimer nanoclusters”, Nano Lett., 2004, 4(3), 391–397.
    [7] Ando M., Kadono K., Haruta M., et al.,“Large third-order optical nonlinearitiesin transition-metal oxides”, Nature, 1995, 374(6523), 625–627.
    [8] Pernice W.H.P., Li M., Tang H.X.,“A mechanical kerr effect in deformable photonicmedia”, Appl. Phys. Lett., 2009, 95(12), 123507–3.
    [9] Li J.J. Zhu K.D.,“A tunable optical kerr switch based on a nanomechanicalresonator coupled to a quantum dot”, Nanotechnology, 2010, 21(20), 205501–4.
    [10] R. G., Ian H., Liu Y.X., et al.,“Effective hamiltonian approach to the kerr nonlinearityin an optomechanical system”, Phys. Rev. A, 2009, 80(6), 065801–4.
    [11] Zhu Y.F.,“Large kerr nonlinearities on cavity-atom polaritons”, Opt. Lett., 2010,35(3), 303–305.
    [12] Engheta N.,“Circuits with light at nanoscales: optical nanocircuits inspired bymetamaterials”, Science, 2007, 317(5845), 1698–1702.
    [13] Bozhevolnyi S.I., Volkov V.S., Devaux E., et al.,“Channel plasmon subwavelengthwaveguide components including interferometers and ring resonators”, Nature,2006, 440(04594), 508–511.
    [14] Lu Z.E. Zhu K.D.,“Enhancing kerr nonlinearity of a strong coupled excitonplasmonin hybrid nanocrystal molecules”, J. Phys. B: At. Mol. Opt. Phys., 2008,41(18), 185503–7.
    [15] Yang Y., Nogami M., Shi J.L., et al.,“Enhancement of third-order optical nonlinearitiesin 3-dimensional films of dielectric shell capped au composite nanoparticles”,J. Phys. Chem. B, 2005, 109(11), 4865–4871.
    [16] Zrenner A., Beham E., Stufler S., et al.,“Coherent properties of a two-level systembased on a quantum-dot photodiode”, Nature, 2002, 418(00912), 612–614.
    [17] Stufler S., Ester P., Zrenner A.,“Quantum optical properties of a singlein_xga_(1-x)as-gaas quantum dot two-level system”, Phys. Rev. B, 2005, 72(12),121301–4.
    [18] Wilson-Rae I., Zoller P., Imamoˉglu A.,“Laser cooling of a nanomechanical resonatormode to its quantum ground state”, Phys. Rev. Lett., 2004, 92(7), 075507–075510.
    [19] Zhang W., Govorov A.O., Bryant G.W.,“Semiconductor-metal nanoparticlemolecules: Hybrid excitons and the nonlinear fano effect”, Phys. Rev. Lett., 2006,97(6), 146804–146807.
    [20] Yan J.Y., Zhang W., Duan S., et al.,“Optical properties of coupled metalsemiconductorand metal-molecule nanocrystal complexes:role of multipole effects”,Phys. Rev. B, 2008, 77(20), 165301–4.
    [21] Artuso R.D. Bryant G.W.,“Optical response of strongly coupled quantum dotmetalnanoparticle system: Double peaked fano structure and bistability”, NanoLett., 2008, 8(7), 2106–2111.
    [22] Biteen J.S., Sweatlock L., Mertens H., et al.,“Plasmon-enhanced photoluminescenceof silicon quantum dots: Simulation and experiment”, J. Phys. Chem. C,2007, 111(36), 13372–13377.
    [23] Ni W.H., Ambj¨ornsson T., Apell S.P., et al.,“Observing plasmonic-molecularresonance coupling on single gold nanorods”, Nano Lett., 2010, 10(1), 77–84.
    [24] Lorimor O.G. Spitzer W.G.,“Infrared refractive index and absorption of inas andcdte”, J. Appl. Phys., 1965, 36(6), 1841–1844.
    [25] Yariv A., Quantum Electronics, Wiley, New York, 1975.
    [26] Wang Y., Xie X.B., Goodson G.,“Enhanced third-order nonlinear optical propertiesin dendrimer-metal nanocomposites”, Nano Lett., 2005, 5(12), 2379–2384.
    [27] Lv J., Jiang L., Li C.H., et al.,“Large third-order optical nonlinear e?ects of goldnanoparticles with unusual ?rorescence enhancement”, Langmuir, 2008, 24(15),8297–8302.
    [28] Vamivakas A.N., Zhao Y., Lu C.Y., et al.,“Spin-resolved quantum-dot resonance?uorescence”, Nat. Phys., 2009, 5(1182), 198–202.
    [1] Engheta N.,“Circuits with light at nanoscales: optical nanocircuits inspired bymetamaterials”, Science, 2007, 317(5845), 1698–1702.
    [2] Bozhevolnyi S.I., Volkov V.S., Devaux E., et al.,“Channel plasmon subwavelengthwaveguide components including interferometers and ring resonators”, Nature,2006, 440(04594), 508–511.
    [3] Falk A.L., Koppens F.H.L., Yu C.L., et al.,“Near-?eld electrical detection ofoptical plasmons and single-plasmon sources”, Nat. Phys., 2009, 5(1284), 475–479.
    [4] Durach M., Rusina A., Stockman M.I., et al.,“Toward full spatiotemporal controlon the nanoscale”, Nano Lett., 2007, 7(10), 3145–3149.
    [5] Moskovits M.,“Surface-enhanced spectroscopy”, Rev. Mod. Phys., 1985, 57(3),783–826.
    [6] Otto A., Mrozek I., Grabhorn H.,“Surface-enhanced raman scattering”, J. Phys.Condens. Matter, 1992, 4, 1143–1212.
    [7] Ku¨kn S., H(a|°)kanson U., Rogobete L., et al.,“Enhancement of single-molecule-uorescence using a gold nanoparticle as an optical nanoantenna”, Phys. Rev.Lett., 2006, 97(14), 017402–017405.
    [8] Nie S.M. Emory,“Probing single molecules and single nanoparticles by surface-enhanced raman scattering”, Science, 1997, 275(5303), 1102–1106.
    [9] Hao E. Schatz G.C.,“Electromagnetic fields around silver nanoparticles anddimers”, J. Chem. Phys., 2004, 120(1), 357–366.
    [10] Imura K., Okamoto H., Hossain M.K., et al.,“Visualization of localized intenseoptical fields in single gold-nanoparticle assembiles and ultrasensitive raman activesites”, Nano Lett., 2006, 6(10), 2173–2176.
    [11] Wang H. Zhu K.D.,“Coherent optical spectroscopy of a hybrid nanocrystal com-plex embedded in a nanomechanical resonator”, Opt. Express, 2010, 18(15),16175–16182.
    [12] Yonzon C.R., Haynes C.L., Zhang X.Y., et al.,“A glucose biosensor based onsurface-enhanced raman scattering: Improved partition layer, temporal stability,reversibility, and resistance to serum protein interference”, Anal.Chem., 2004,76(1), 78–85.
    [13] Lyandres O., Yuan J.M., Shah N.C., et al.,“Progress toward an in vivo surface-enhanced raman spectroscopy glucose sensor”, Diabetes Tech. & Therap., 2004,10(4), 257–266.
    [14] Zrenner A., Beham E., Stu?er S., et al.,“Coherent properties of a two-level systembased on a quantum-dot photodiode”, Nature, 2002, 418(00912), 612–614.
    [15] Stuffer S., Ester P., Zrenner A.,“Quantum optical properties of a singlein_xga_(1-x)as-gaas quantum dot two-level system”, Phys. Rev. B, 2005, 72(12),121301–4.
    [16] Inoshita T. Sakaki H.,“Density of states and phonon-induced relaxation of elec-trons in semiconductor quantum dots”, Phys. Rev. B, 1997, 56(8), R4355–R4358.
    [17] Zhang W., Govorov A.O., Bryant G.W.,“Semiconductor-metal nanoparticlemolecules: Hybrid excitons and the nonlinear fano e?ect”, Phys. Rev. Lett., 2006,97(6), 146804–146807.
    [18] Yan J.Y., Zhang W., Duan S., et al.,“Optical properties of coupled metal-semiconductor and metal-molecule nanocrystal complexes:role of multipole ef-fects”, Phys. Rev. B, 2008, 77(20), 165301–4.
    [19] Jiang Y.W., Zhu K.-D.and Wu Z.J., Yuan X.Z., et al.,“Electromagnetically in-duced transparency in quantum dots”, J. Phys.B: At. Mol. Opt. Phys., 2006,39(12), 2621–2632.
    [20] Pelton M., Aizpurua J., Bryant G.,“Metal-nanoparticle plasmonics”, Laser Pho-ton. Rev., 2008, 2(3), 136–159.
    [21] Khoo I.C., Werner D.H., Liang X., et al.,“Nanosphere dispersed liquid crystalsfor tunable negative-zero-positive index of refraction in the optical and terahertzregimes”, Opt. Lett., 2006, 31(17), 2592–2594.
    [22] Yariv A., Quantum Electronics, Wiley, New York, 1975.
    [23] Huang K. Rhys A.,“Theory of light absorption and non-radiative transitions inf-centres”, Proc. R. Soc. Lond. A, 1950, 204(1078), 406–423.
    [24] Boyd R.W., Nonlinear Optics, Academic, San Diego, California, 1992.
    [25] Heitz R., Mukhametzhanov I., Stier O., et al.,“Enhanced polar exciton-lo-phononinteraction in quantum dots”, Phys. Rev. Lett., 1999, 83(22), 4654–4657.
    [26] Sauvage S., Boucaud P., Broquier T., et al.,“Dephasing of intersublevel polar-izations in inas/gaas self-assembled quantum dots”, Phys. Rev. B, 2002, 66(15),153312–4.
    [27] Heitz R., Veit M., Ledentsov N.N., et al.,“Tuning quantum dot properties byactivated phase separation of an inga(al)as alloy grown on inas stressors”, Phys.Rev. B, 1997, 56(16), 10435–10445.
    [1] Nie S.M. Emory,“Probing single molecules and single nanoparticles by surface-enhanced raman scattering”, Science, 1997, 275(5303), 1102–1106.
    [2] Yildiz A., Forkey J.N., McKinney S.A., et al.,“Myosin v walks hand-over-hand:single ?uorophore imaging with 1.5-nm localization”, Science, 2003, 300(5628),2061–2065.
    [3] Govorov A.O. Carmeli I.,“Hybrid structures composed of photosynthetic systemand metal nanoparticles: plasmon enhancement e?ect”, Nano Lett., 2007, 7(3),620–625.
    [4] Skirtach A.G., Dejugnat C., Braun D., et al.,“The role of metal nanoparticles inremote release of encapsulated materials”, Nano Lett., 2005, 5(7), 1371–1377.
    [5] Durach M., Rusina A., Stockman M.I., et al.,“Toward full spatiotemporal controlon the nanoscale”, Nano Lett., 2007, 7(10), 3145–3149.
    [6] Zhang W., Govorov A.O., Bryant G.W.,“Semiconductor-metal nanoparticlemolecules: Hybrid excitons and the nonlinear fano e?ect”, Phys. Rev. Lett., 2006,97(6), 146804–146807.
    [7] Komarala V.K., Rakovich Y.P., Bradley A.L., et al.,“Off-resonance surface plas-mon enhanced spontaneous emission from cdte quantum dots”, Appl. Phys. Lett.,2006, 89(25), 253118–3.
    [8] Artuso R.D. Bryant G.W.,“Optical response of strongly coupled quantum dot-metal nanoparticle system: Double peaked fano structure and bistability”, NanoLett., 2008, 8(7), 2106–2111.
    [9] Sadeghi S.M.,“Plasmonic metaresonances: Molecular resonances in quantum dot-metallic nanoparticle conjugates”, Phys. Rev. B, 2009, 79(23), 233309–4.
    [10] Lu Z.E. Zhu K.D.,“Enhancing kerr nonlinearity of a strong coupled exciton-plasmon in hybrid nanocrystal molecules”, J. Phys. B: At. Mol. Opt. Phys., 2008,41(18), 185503–7.
    [11] Lu Z.E. Zhu K.D.,“Slow light in an arti?cial hybrid nanocrystal complex”, J.Phys. B: At. Mol. Opt. Phys., 2009, 42(1), 015502–6.
    [12] Sadeghi S.M., Deng L., Li X., et al.,“Plasmonic (thermal) electromagnetically in-duced transparency in metallic nanoparticle-quantum dot hybrid systems”, Nan-otech., 2009, 20(36), 365401–6.
    [13] Bergman D.J. Stockman M.I.,“Surface plasmon amplification by stimulated emis-sion of radiation: Quantum generation of coherent surface plasmons in nanosys-tems”, Phys. Rev. Lett., 2003, 90(2), 027402–4.
    [14] Hohenester U. Tru¨gler A.,“Interaction of single molecules with metallic nanopar-ticles”, IEEE J Slected Topic in Quantum Electronics, 2008, 14(6), 1430–1440.
    [15] Tru¨gler A. Hohenester U.,“Strong coupling between a metallic nanoparticle anda single molecule”, Phys. Rev. B, 2008, 77(11), 115403–6.
    [16] Waks E. Sridharan D.,“Cavity qed treatment of interactions between a metalnanoparticle and a dipole emitter”, Phys. Rev. A, 2010, 82(4), 043845–14.
    [17] Ridolfo A., Di Stefano O., Fina N., et al.,“Quantum electrodynamics of quantumdot-metal nanoparticles molecules”, arXiv: 1004.1538v1/quant-ph.
    [18] Zrenner A., Beham E., Stuffer S., et al.,“Coherent properties of a two-level systembased on a quantum-dot photodiode”, Nature, 2002, 418(00912), 612–614.
    [19] Stuffer S., Ester P., Zrenner A.,“Quantum optical properties of a singlein_xga_(1-x)as-gaas quantum dot two-level system”, Phys. Rev. B, 2005, 72(12),121301–4.
    [20] Yariv A., Quantum Electronics, Wiley, New York, 1975.
    [21] Yan J.Y., Zhang W., Duan S., et al.,“Optical properties of coupled metal-semiconductor and metal-molecule nanocrystal complexes: Role of multipole ef-fectss”, Phys. Rev. B, 2008, 77(16), 165301–9.
    [22] Heitz R., Mukhametzhanov I., Stier O., et al.,“Enhanced polar exciton-lo-phononinteraction in quantum dots”, Phys. Rev. Lett., 1999, 83(22), 4654–4657.
    [23] Carmichael H.J., Brecha R.J., Rice P.R.,“Quantum interference and collapse ofthe wavefunction in cavity qed”, Opt. Commun., 1990, 82(1), 73–79.
    [24] Bennink R.S., Boyd R.W., Stroud C.R.J., et al.,“Enhanced self-action effects byelectromagnetically induced transparency in the two-level atom”, Phys. Rev. A,2001, 63(3), 033804–5.
    [25] Harris S.E., Field J.E., Kasapi A.,“Dispersive properties of electromagneticallyinduced transparency”, Phys. Rev. A, 1992, 46(1), R29–R32.
    [26] Pelton M., Aizpurua J., Bryant G.,“Metal-nanoparticle plasmonics”, Laser Pho-ton. Rev., 2008, 2(3), 136–159.
    [27] Khoo I.C., Werner D.H., Liang X., et al.,“Nanosphere dispersed liquid crystalsfor tunable negative-zero-positive index of refraction in the optical and terahertzregimes”, Opt. Lett., 2006, 31(17), 2592–2594.
    [1] Veselago D.G.,“The electrodynamics of substances with simultaneously negativevalues ofεandμ”, Sov. Phys. Uspekhi, 1968, 10, 509–516.
    [2] Pendry J.B.,“Negative refraction makes a perfect lens”, Phys. Rev. Lett., 2000,85(18), 3966–3969.
    [3] Shelby R.A., Smith D.R., Schultz S.,“Experimental veri?cation of a negativeindex of refraction”, Science, 2001, 292(5514), 77–79.
    [4] Smith D.R., Pendry J.B., Wiltshire M.C.K.,“Metamaterials and negative refrac-tion index”, Science, 2004, 305(5685), 788–792.
    [5] Zhang S., Fan W.J., Panoiu N., et al.,“Experimental demonstration of near-infrared negative-index metamaterials”, Phys. Rev. Lett., 2005, 95(13), 137404–4.
    [6] Shalaev V.M., Cai W.S., Chettiar U.K., et al.,“Negative index of refraction inoptical metamaterials”, Opt. Lett., 2005, 30(24), 3356–3358.
    [7] Yannopapas V. Moroz A.,“Negative refractive index metamaterials from inher-ently non-magnetic materials for deep infrared to terahertz frequency ranges”, J.Phys. Condens. Matter, 2005, 17(25), 3717–3734.
    [8] Dolling G., Wegener M., Soukoulis C.M., et al.,“Negative-index metamaterial at780nm wavelength”, Opt. Lett., 2007, 32(1), 53–55.
    [9] Valentine J., Zhang S., Zentgraf T., et al.,“Three dimensional optical metamate-rial exhibiting negative refractive index”, Nature, 2008, 455(07247), 376–379.
    [10] Liu S.Y., Chen W.K., Du J.J., et al.,“Manipulating negative-refractive behaviorwith a magnetic ?eld”, Phys. Rev. Lett., 2008, 101(15), 157407–157410.
    [11] Oktel M. Mu¨stecaplioˇglu O.E.,“Electromagnetically induced left-handedness ina dense gas of three-level atoms”, Phys. Rev. A, 2004, 70(5), 053806–7.
    [12] Thommen Q. Mandel P.,“Electromagnetically induced left handedness in opti-cally excited four-level atomic media”, Phys. Rev. Lett., 2006, 96(5), 053601–4.
    [13] Liu H.J., Niu Y.P., Gong S.Q.,“Electromagnetically induced negative refractiveindex in a v-type four-level atomic system”, Phys. Lett. A, 2007, 363(5), 497–501.
    [14] Shen J.Q.,“Isotropic negatively-refracting atomic-vapor medium”, Mod. Phys.Lett. B, 2007, 21(12), 717–728.
    [15] Krowne C.,“Obtaining negative index metamaterials using quantum states”, Vac-uum Tech. & Coating, 2010, Jan, 38–44.
    [16] Krowne C.M. Shen J.Q.,“Dressed-state mixed-parity transitions for realizing neg-ative refractive index”, Phys. Rev. A, 2009, 79(2), 023818–11.
    [17] Xie Q., Madhukar A., Chen P., et al.,“Vertically self-organized inas quantum boxislands on gaas(100)”, Phys. Rev. Lett., 1995, 75(13), 2542–2545.
    [18] Krenner H.J., Sabathil M., Clark E.C., et al.,“Direct observation of controlledcoupling in an individual quantum dot molecule”, Phys. Rev. Lett., 2005, 94(5),057402–4.
    [19] Krenner H.J., Stuffer S., Sabathil M., et al.,“Recent advances in exciton-basedquantum information processing in quantum dot nanostructures”, New J. Phys.,2005, 7, 184–28.
    [20] Bester G., Zunger A., Shumway J.,“Broken symmetry and quantum entanglemental of an exciton in in_xga_(1-x)as/gaas quantum dot molecules”, Phys. Rev. B,2005, 71(7), 075325–13.
    [21] Bayer M., Hawrylak P., Hinzer K., et al.,“Coupling and entangling of quantumstates in quantum dot molecules”, Science, 2001, 291(5503), 451–453.
    [22] Villas-B(?)oas J.M., Govorov A.O., Ulloa S.E.,“Coherent control of tunneling in aquantum dot molecule”, Phys. Rev. B, 2004, 69(12), 125342–4.
    [23] Brandes T.,“Coherent and collective quantum optical e?ects in mesoscopic sys-tems”, Phys. Rep., 2005, 408(5), 315–474.
    [24] Simmons C. B.and Thalakulam M., Rosemeyer B.M., Van Bael B.J., et al.,“Charge sensing and controllable tunnel coupling in a si/sige double quantumdot”, Nano Lett., 2009, 9(9), 3234–3238.
    [25] Scully M. O.and Zubairy M.S., Quantum Optics, Cambridge University Press,Cambridge, UK, 1997.
    [26] Yuan C.H. Zhu K.D.,“Voltage-controlled slow light in asymmetry double quantumdots”, Appl. Phys. Lett., 2006, 89(5), 052115–3.
    [27] Kamada H., Gotoh H., Temmyo J., et al.,“Exciton rabi oscillation in a singlequantum dots”, Phys. Rev. Lett., 2001, 87(13), 246401–4.
    [28] Wang L., Rastelli A., Kiravittaya S., et al.,“Towards deterministically controlledingaas/gaas lateral quantum dot molecules”, New J. Phys., 2008, 10, 045010–17.
    [29] Brandes T. Renzoni F.,“Current switch by coherent trapping of electrons inquantum dots”, Phys. Rev. Lett., 2000, 85(19), 4148–5151.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700